

Monte Carlo Code Development at UNIST

2017.03.02 Prof. Deokjung Lee UNIST

COmputational Reactor Physics & Experiment lab

CONTENTS

- Overview
- Functions
- <u>V&V</u>
- BEAVRS HFP Cycle 1
- Ongoing & Plan

CORE COmputational Reactor Physics & Experiment lab in UNIST

2

OVERVIEW

3

DEVELOPMENT TEAM

Monte Carlo (MC) development at UNIST (Since 2013.)

• 3 Post-doc., 5 Graduate students

Deokjung Lee

- Associate Professor

- Manage the development

Jiankai Yu

- Post Doctoral Program
- On-The-Fly Xs Generation
- TH coupling

Peng Zhang - Post Doctoral Program - Modified Power Method - TH coupling

Hyunsuk Lee

- Main developer

Matthieu Lemaire

- Post Doctoral Program
- MHTGR-350
- Gamma Transport

Wonkyeong Kim

- Graduate Student
- Depletion solver
- Hybrid Depletion

Jinsu Park - Graduate Student - Monte Carlo acceleration (CMFD)

Azamat Khassenov - Graduate Student

- OTF-DB (multipole)

URE COmputational Reactor Physics & Experiment lab in UNIST

ILLIIZ.L

GENERAL OVERVIEW

- Monte Carlo Code MCS
 - Language: Fortran 2003
 - Purpose
 - Large Scale Reactor Analysis with accelerated Monte Carlo simulation
 - University research: MC methodology development, advanced reactor design
 - General 3-D geometry (CSG)
 - Nuclear Data
 - ENDF-B/VII.0 and ENDF-B/VII.1
 - Continuous energy and multi-group
 - Double indexing method
 - Physics
 - Resonance upscattering (DBRC, FESK)
 - Probability table method
 - S(α, β)
 - Acceleration
 - MOC and MC Hybrid solver
 - Modified power iteration
 - Parallelism
 - Parallel fission bank
 - Depletion
 - CRAM , MEM, Krylov Subspace
 - Hybrid depletion

- Gamma transport

- On the fly Doppler broadening
- CTF coupling
- Wielandt methodCMFD

6

- Collision Kernel
 - <u>Probability-table</u>
 - <u>Resonance Up-scattering (DBRC)</u>
- Acceleration Technique
 - <u>Modified Power Method</u>
 - <u>Coarse Mesh Finite Difference (CMFD)</u>
 - <u>MC-MOC Hybrid</u>
- Feedbacks
 - <u>Depletion</u>
 - <u>Hybrid Depletion</u>
 - <u>Simple TH1D coupling</u>
 - <u>Cobra-TF (CTF) Coupling</u>
 - <u>Multipole (On-The-Fly Doppler broadening)</u>
 - SIGMA1 Kernel (inline broadening)
- ETC
 - <u>Image</u>
 - <u>Gamma Transport</u>
 - Indexing
 - <u>Triso Particle Sampling</u>
 - Parallel Fission Bank

Probability-table (unresolved resonance range)

CORE COmputational Reactor Physics & Experiment lab in UNIST

8

PROBABILITY TABLE METHOD

ENDF data provide average cross section in the unresolved resonance range

ULLIZ.L

 Probability distribution for the total cross section at 20 KeV (solid) and 140 Kev (dashed) of U-238

ULLIST

- The International Criticality Safety Benchmark Experimental Problem (ICSBEP)
 - Well-publicized neutronics benchmark problems
 - AEN-NEA

International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD Nuclear Energy, 2005.

ULLIZ.L

PROBABILITY TABLE METHOD

Case	Handbook ID	Experiment keff (Uncertainty)	Case	Handbook ID	Experiment keff (Uncertainty)
1	HEU-MET-FAST-001	1.00000 (0.00100)	14	PU-MET-FAST-002	1.00000 (0.00200)
2	HEU-MET-FAST-003, case2-1	1.00000 (0.00500)	15	PU-MET-FAST-019	0.99920 (0.00150)
3	HEU-MET-FAST-003, case2-2	1.00000 (0.00500)	16	PU-MET-FAST-022	1.00000 (0.00210)
4	HEU-MET-FAST-003, case2-3	1.00000 (0.00500)	17	PU-SOL-THERM-001-case16-1	1.00000 (0.00520)
5	HEU-MET-FAST-003, case2-4	1.00000 (0.00500)	18	PU-SOL-THERM-001-case16-5	1.00000 (0.00520)
6	HEU-MET-FAST-028	1.00000 (0.00300)	19	PU-SOL-THERM-011-case18-1	1.00000 (0.00520)
7	HEU-SOL-THERM-013, case 1	1.00120 (0.00260)	20	PU-SOL-THERM-011-case18-6	1.00000 (0.00520)
8	HEU-SOL-THERM-013, case 2	1.00070 (0.00360)	21	U233-MET-FAST-001	1.00000 (0.00100)
9	HEU-SOL-THERM-013, case 3	1.00090 (0.00360)	22	U233-MET-FAST-002	1.00000 (0.00100)
10	HEU-SOL-THERM-013, case 4	1.00030 (0.00360)	23	U233-MET-FAST-003	1.00000 (0.00100)
11	IEU-MET-FAST-015	1.00070 (0.00110)			
12	IEU-SOL-THERM-002	1.00010 (0.00540)			
13	PU-MET-FAST-001	1.00000 (0.00200)			

PROBABILITY TABLE METHOD

	with probability table			without probability table				
Case	MCS		MCNP		MCS		MCNP	
	keff	SD	keff	SD	keff	SD	keff	SD
1	0.99998	0.00010	0.99994	0.00008	0.99998	0.00009	0.99985	0.00007
2	1.00832	0.00010	1.00846	0.00008	1.00930	0.00009	1.00955	0.00008
3	1.00913	0.00009	1.00945	0.00008	1.00997	0.00010	1.00999	0.00008
4	1.01256	0.00009	1.01271	0.00009	1.01064	0.00010	1.01087	0.00009
5	1.01676	0.00010	1.01701	0.00008	1.01278	0.00010	1.01291	0.00007
6	1.00301	0.00009	1.00284	0.00008	1.00313	0.00009	1.00309	0.00009
7	0.99873	0.00007	0.99871	0.00007	0.99876	0.00007	0.99868	0.00007
8	0.99758	0.00007	0.99769	0.00008	0.99774	0.00008	0.99793	0.00024
9	0.99426	0.00008	0.99421	0.00008	0.99419	0.00008	0.99432	0.00042
10	0.99597	0.00009	0.99570	0.00009	0.99585	0.00008	0.99568	0.00009
11	0.99938	0.00008	0.99928	0.00012	0.99798	0.00008	0.99820	0.00019
12	1.00849	0.00006	1.00852	0.00011	1.00850	0.00006	1.00864	0.00011
13	1.00017	0.00011	0.99986	0.00007	1.00013	0.00011	0.99977	0.00008
14	1.00028	0.00011	0.99990	0.00008	1.00033	0.00010	1.00008	0.00008
15	0.99770	0.00011	0.99782	0.00008	0.99838	0.00011	0.99835	0.00008
16	0.99861	0.00011	0.99857	0.00007	0.99862	0.00012	0.99852	0.00008
17	1.00992	0.00012	1.01009	0.00011	1.01013	0.00013	1.00990	0.00010
18	1.00618	0.00013	1.00614	0.00012	1.00622	0.00013	1.00642	0.00011
19	0.99424	0.00011	0.99448	0.00009	0.99429	0.00010	0.99423	0.00009
20	1.00028	0.00011	0.99999	0.00012	1.00009	0.00011	1.00010	0.00010
21	0.99967	0.00010	0.99959	0.00007	0.99973	0.00010	0.99983	0.00007
22	0.99922	0.00011	0.99912	0.00007	0.99926	0.00010	0.99907	0.00008
23	0.99838	0.00011	0.99860	0.00008	0.99899	0.00011	0.99889	0.00008

Resonance Up-scattering (DBRC)

ref: Dr. Becker's presentation at 2010 May 17-21 ORNL Meeting

The sampling of the target velocity method is based on the probability function:

$$P(V, \mu_t) = \frac{\sigma_s(v_r, 0) v_r p(V)}{2\sigma_s(E, T)v}$$

which is directly obtained from the Doppler broadening eq uation.

Commonly Monte Carlo codes assume:

$$P(V, \mu_{t}) \approx \frac{v_{r} \cdot p(V)}{2v} \cdot \frac{\sigma_{s}(v_{r}, 0)}{\sigma_{s}(E, T)}$$

The temperature effect is kept but the XS dependence is ne glected: Wigner-Wilkins scattering kernel

RESONANCE UPSCATTERING

ref: Dr. Becker's presentation at 2010 May 17-21 ORNL Meeting

- Direct implementation of the resonant scattering kernel: Doppler Broadening Rejection Correction (DBRC)
 - Idea: Modification of the approximated MCNP SVT probability function; removal of the constant XS assumption
- The basic PDF can be rewritten as:

$$P(V, \mu_t) = C \left\{ \frac{\sigma_s(v_r, 0)}{\sigma_s^{max}(v_{\xi}, 0)} \right\} \left\{ \frac{v_r}{v + V} \right\} \left\{ (v' + V)p(V) \right\}$$
$$= C \left\{ \frac{\sigma_s(E_r, 0)}{\sigma_s^{max}(E_{\xi}, 0)} \right\} \left\{ \frac{v_r}{v + V} \right\} \left\{ (v' + V)p(V) \right\}$$

with the normalization constant C:

 $C = \frac{\sigma_s^{max} \left(E_{\xi}, 0 \right)}{2 v \sigma_s \left(E, T \right)}$

 $\sigma^{max}(E_{\xi}, 0)$ is the maximal cross section in an specific dimensionless speed interval ξ (like in NJOY):

$$\sqrt{\frac{AE}{k_BT}} - 4 \le \sqrt{\frac{AE_{\xi}}{k_BT}} \le \sqrt{\frac{AE}{k_BT}} + 4$$

RESONANCE UPSCATTERING

ref: Dr. Becker's presentation at 2010 May 17-21 ORNL Meeting

• This leads to:

$$P(V, \mu_t) = C' \left\{ \frac{\sigma_s(E_r, 0)}{\sigma_s^{max}(E_{\xi}, 0)} \right\}$$
(1)
$$\left\{ \frac{v_r}{v + V} \right\}$$
(2)
$$\left\{ \frac{2\beta^4 V^3 e^{-\beta^2 V^2} + (\beta v \sqrt{\pi/2})(4\beta^3/\sqrt{\pi})V^2 e^{-\beta^2 V^2}}{1 + \beta v \sqrt{\pi/2}} \right\}$$
(3)

$$C' = \frac{\sigma_s^{max} \left(E_{\xi}, 0 \right) \left(1 + \beta v \sqrt{\pi}/2 \right)}{2 v \sigma_s \left(E, T \right) \beta \sqrt{\pi}/2}$$

(2) + (3): standard MCNP rejection and sampling

(1): an additional rejection in terms of cross sections is added to the code. This term completes the full Doppler broadening of the kernel

RESONANCE UPSCATTERING

Mosteller UO2 benchmark problem

Modified Power Method

Operator Form:

$$M\phi = \frac{1}{k}F\phi$$
$$A\psi = k\psi$$
$$A = FM^{-1}, \psi = F\phi$$

$${}^{(l)} = A^{l} \psi^{(0)} = A^{l} \left(c_{1} u_{1} + c_{2} u_{2} + \dots + c_{N} u_{N} \right)$$

 $= k_1^l \left(c_1 u_1 + \sum_{i=2}^N \left| \left(\frac{k_i}{k_1} \right)^l c_i u_i \right| \right)$

Ψ

$$\approx k_1^l c_1 u_1 \quad (\text{as } l \to \infty)$$

$$k_0 > k_1 \ge k_2 \ge \dots$$

$$u_0, \quad u_1, \quad u_2$$

$$k_n / k_0$$
Only
fundamental
mode is not
enough.

Converge slow if

DR≈1.

Eigenvalues:

Eigenfunctions:

Decay ratio of n-th mode:

Dominance Ratio (DR):

Modified Power Method (MPM)

ULAN MATHANA INSTITUTE OF SILECCA AND TECHNICASY 2 0 0 9

Start with two arbitrary functions:

Power Iteration:

$$A^{n}\phi_{1}^{init} = \sum_{i=0}^{\infty} k_{i}^{n}a_{i}u_{i}, A^{n}\phi_{2}^{init} = \sum_{i=0}^{\infty} k_{i}^{n}b_{i}u_{i}.$$

The linear combination:

$$A^{n}\phi(x) = A^{n}\phi_{1}^{init} + xA^{n}\phi_{2}^{init}$$
$$= \sum_{i=0}^{\infty} k_{i}^{n} (a_{i} + xb_{i})u_{i}$$

 $\phi_1^{init} = \sum_{i=0}^{\infty} a_i u_i, \quad \phi_2^{init} = \sum_{i=0}^{\infty} b_i u_i.$

 $A^n \phi(x)$ Do not have 1st mode if $x = -a_1/b_1$

$$A^{n}\phi(x) \approx k_{0}^{n}(a_{0} + (-a_{1} / b_{1})b_{0})u_{0}$$

 $A^n \phi(x)$ Do not have fundamental mode if $x = -a_0/b_0$

$$A^{n}\phi(x) \approx k_{1}^{n}(a_{1} + (-a_{0} / b_{0})b_{1})u_{1}$$
 $CR \sim \frac{k_{2}}{k_{1}}$

CORE COmputational Reactor Physics & Experiment lab in UNIST

1st mode solution.

CORE COmputational Reactor Physics & Experiment lab in UNIST

The general solution strategy

Algorithm:

- **1.** Apply power iteration to $\Psi_0, \Psi_1, ..., \Psi_{n-1}$.
- 2. Obtain the integrations over every subregions:

$$\mathbf{V} = \begin{pmatrix} V_{0,1} & \dots & V_{n-1,1} \\ \vdots & \ddots & \vdots \\ V_{0,n} & \dots & V_{n-1,n} \end{pmatrix}, \mathbf{W} = \begin{pmatrix} W_{0,1} & \dots & W_{n-1,1} \\ \vdots & \ddots & \vdots \\ W_{0,n} & \dots & W_{n-1,n} \end{pmatrix}.$$

- 3. Calculate the transfer matrix: $P = WV^{-1}$.
- 4. Apply eigen decomposition to transfer matrix:

 $\mathbf{P}\mathbf{Q} = \mathbf{Q}\boldsymbol{\Lambda}, \ \mathbf{P} = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^{-1}.$

- 5. Get the correction matrix: $X = W^{-1}Q$.
- 6. Update the eigenfunctions:

 $(\psi_0 \quad \cdots \quad \psi_{n-1}) = (\psi_0 \quad \cdots \quad \psi_{n-1}) \mathbf{X}.$

• 7. Determine the convergence. If not, goto 1.

Shannon Entropy of different methods

Simulation parameters: 200 inactive cycles / 600 active cycles / 500000 histories per cycle. 2014 Korean Nuclear Society Fall 2017-03-02

25

Method	Eigenvalue	Results	ki/k0
Original power method	k0	1.01936 (4)	
	k0	1.01945 (4)	
	k1	1.01084 (8)	0.9916
	k2	1.01078 (7)	0.9915
	k3	1.00635 (7)	0.9872
	k4	0.99907 (8)	0.9800
	k5	0.99827 (8)	0.9792
	k6	0.99816(7)	0.9791
MPM_6_6_6_16mod	k7	0.99138 (8)	0.9725
es	k8	0.98691 (7)	0.9681
	k9	0.98498 (7)	0.9662
	k10	0.97937 (8)	0.9607
	k11	0.97999 (9)	0.9613
	k12	0.97695 (8)	0.9583
	k13	0.97672 (7)	0.9581
	k14	0.97523 (8)	0.9566
	k15	0.97603 (8)	0.9574

3D PWR core problem

3D PWR core problem

Coarse Mesh Finite Difference Method (CMFD)

Effect of MC-CMFD on active cycle

ULEN VETRIAL INSTITUTE OF SCHECK AND TECHNOLOGY 2 0 0 9

CMFD Method

- Coarse Mesh Finite Difference Method.
- Originally developed for storage reduction.
- Fast convergence of nodal solutions.
- Very effective in accelerating source convergence in direct whole core transport calculation.
- Significant reducing in the number inactive cycles in MC eigenvalue calculation.

Algorithm

Monte Carlo - CMFD

I-Dimensional CE Problem

- Problem specification
 - 1D slab problem
 - 2.1wt% enriched UO $_2$ fuel, zirconium cladding, and water were mixed.
 - 1,000,000 histories per cycle/ 1,000 inactive cycles / 1,000 active cycles
 - Black boundary condition
 - CMFD start from 1,000 inactive cycle
 - CMFD mesh = 260
 - Window size = 10

X=	=0.0 cm	x=260).0 cm

Isotope	Density (g/cm ³)
²³⁵ U	1.88E-01
²³⁸ U	8.50E+00
²³⁷ Np	2.90E-03
²³⁸ Pu	5.99E-04
¹⁶ 0	1.21E+00
⁹¹ Zr	6.45E-01
⁹² Zr	9.97E-01
⁹⁴ Zr	1.03E+00
⁹⁶ Zr	1.70E-01
¹ H	8.27E-02

ID CE Problem

- Plot the fission reaction rate for each cycle and simulation
- To check the CMFD gave the correct solution or not
- Fission reaction rate at most left mesh for 260 mesh tally

URE COmputational Reactor Physics & Experiment lab in UNIST

ITULIE.L

Effect of MC-CMFD on active cycle

- ID CE Problem
 - Dominance ratio = 0.9956

• 3D 1G Problem (20.00cm)

- 3-Dimensional 1-Group
- Black boundary condition
- Active cycle: 1,000
- Inactive cycle: 100
- Histories/cycle: 1,000,000
- Number of simulation : 10

3D 1G Problem (100.00cm)

- 3-Dimensional 1-Group
- Black boundary condition
- Active cycle: 1,000
- Inactive cycle: 100
- Histories/cycle: 1,000,000
- Number of simulation : 10
- Window size: 10

CORE COmputational Reactor Physics & Experiment lab in UNIST

Numerical test results

• 3D 1G Problem

• Real & Apparent RMS STD

-0.2 -0.4 lag k

CORE COmputational Reactor Physics & Experiment lab in UNIST

• 3D 1G Problem

Autocorrelation Coefficient

MC-MOC Hybrid Method
MC-MOC HYBRID

Hybrid of MC & MOC

- MC for resonance energy
- MOC for thermal and fast energy

	MC	ΜΟϹ
Method	Probabilistic	Deterministic
Data	Continuous energy	Multi-group
Accuracy	High	Low

H. Lee, S. Choi, D. Lee, "A Hybrid Monte Carlo/Method-of-Characteristics Method for Efficient Neutron Transport Analysis, "Nucl. Sci. Eng. 180 (1) pp.30-40 (2015) CORE COmputational Reactor Physics & Experiment lab in UNIST

Hybrid form of neutron transport equation

MC-MOC HYBRID

Scattering source from MOC to MC

• Multi-group -> continuous energy

Slowing-down source neutron energy distribution

• Analytic form of slowing down equation is derived

$$P(E)^{g' \to g} = \begin{cases} \frac{C}{Q(1-\alpha)} \left(\frac{1}{E_b^g} - \frac{1}{E_e^g} \right) & \left(E \ge \alpha E_e^g \right) \\ \frac{C}{Q(1-\alpha)} \left(\frac{1}{E_b^g} - \frac{\alpha}{E} \right) & \left(E < \alpha E_e^g \right) \end{cases}$$

 $E_{g_b}^{g}$ is the upper boundary energy of group $E_{g_e}^{g}$ is the lower boundary energy of group

$$\alpha = \left(\frac{A-1}{A+1}\right)^2$$

$$Q = \int_{E_e^g}^{E_b^g} \int_{E_e^{g'}}^{E_b^{g'}} \frac{\sum_s (E')\varphi(E')}{(1-\alpha)E'} dE' dE$$

 $C = \sum_{s} (E')\varphi(E')E' = \sum_{s} (E_e^{g'})\varphi(E')E'$ is constant

A is atomic weight

MODEL PROBLEM

A single pin cell with 8 group macroscopic cross section

Monte Carlo

- Multi-group
- Continuous energy
- MOC
 - Azimuthal/polar/ray space = 128/10/0.01
- Hybrid
 - 1 2 groups: MOC
 - 3 4 groups: MC
 - 5 8 groups: MOC

Material composition

Region	T(K)	Nuclide	Number Density (#/barn-cm)
		U-235	7.30E-04
Fuel	300	U-238	2.18E-02
		O-16	$4.51 ext{E-02}$
Clad	300	Zr-90	2.23E-02
Coolant	- - 	H-1	4.86E-02
1&2		O-16	2.43E-02

Energy boundary

Group	Upper boundary	Lower boundary
1	1.00E+07	8.21E+05
2	8.21E+05	5.53E+03
3	5.53E+03	4.00E+00
4	4.00E+00	6.25E-01
5	6.25E-01	2.80E-01
6	2.80E-01	1.40E-01
7	1.40E-01	5.80E-02
8	5.80E-02	1.00E-05

VERIFICATION

- Tallied Elastic: tallied during elastic Monte Carlo
- Tallied Inelastic + Elastic: tallied during Monte Carlo
- Inelastic SDP is small relative to elastic SDP

ULLIZ.L

MC: 50/1000/100000 (active/inactive/history) HYBRID: 10/100/100000 (active/inactive/history)

Method	Keff	Stdev ³⁾	Error (pcm)	FOM
MC	1.38339	0.00010	-	9,531
МОС	1.38011	-	328	-
HYBRID_A ¹⁾	1.38303	0.00004	36	612,130
HYBRID_T ²⁾	1.38311	0.00004	28	54,796

1) HYBRID_A = hybrid method with analytic SDP

2) HYBRID_T = hybrid method with tallied SDP

3) Stdev = standard deviation

VERIFICATION

Reactivity error

$$\Delta \rho^{g,i} = \left(\frac{1}{k_{eff}^{MC}} - \frac{1}{k_{eff}^{g,i}}\right) \times 10^5$$

$$\Delta R_{a,i}^g = R_{a,i}^{M,g} - R_{a,i}^{MC,g}$$

FUNCTIONS

Depletion

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 45

Data library

- ENDF/B-VII.0 for transport calculation
- Same decay and fission yield data with McCARD
- 1,374 isotopes is considered in burnup calculation

Depletion solver

- Chebyshev Rational Approximation Method(CRAM) with 16 order
- Acceleration of the matrix solver with sparse Gauss Seidel
- Parallel depletion

Burnup interval treatment

Semi/full predictor-corrector method

Hybrid depletion

- 72-group XSs from STREAM(in-house lattice code)
- 1-group condensation with 1-group flux solution of MCS
- Memory reduction in reaction rates tally

ULLIE.

Verification(Model description : 1/3)

- 3.1% enriched UO₂ fuel pin from VERA Benchmark
 - Geometry

- Temperature: Fuel 900K / Clad and Moderator 600K
- Power density: 40W/gU
- 3 equi-volumetric burnup regions
- 20000(Histories per cycle)/80(Active)/20(Inactive)
- Full predictor-corrector
- HELIOS kappa(McCARD default)

DEPLETION

VERA Benchmark

• 3.1% Enrichment, No BP

FUNCTIONS

Hybrid Depletion

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 50

High-fidelity full-core modelling capabilities for LWRs

- Kord Smith Challenge
 - Depletion sub-regions(100 axial and 10 radial zones in a fuel pin)
 - > 50~60 million burnup regions(200~300 fuel pins for 200 fuel assemblies in a core)
 - 1% pin-power accuracy
 - Within one hour on a desktop computer
 - Estimated that it will be 2030 before

• MCS

- The current MCS functions for the whole core depletion
 - Acceleration of depletion solver
 - Parallelization of depletion module
 - Indexing technique for high performance tally
 - <u>Hybrid depletion method for the reduction of computational requirements</u>

ULLIE!

- 9 reaction types are considered during the depletion calculation
 - (n, a), (n, γ), (n, α), (n, 2n), (n, 3n), (n, p) and 3 * (n, f)
 - > 3-group fission reaction rates are required by employing 3-group fission yields
- 400 axial burnable regions and 10 radial zones for one fuel rod
- ~250 isotopes in a burnup region (EOC for VERA pin depletion)
- 50,952 burnable regions (BEAVRS whole core)
- 8 byte for double precision data type
- Variables for the statistical process
 - x, $\sum x$, $\sum x^2$
 - In the MCS, " $\sum x$, $\sum x^{2}$ " are allocated in only one process for parallel depletion
- $9 \times 250 \times 50,952 \times 400 \times 10 \times 8byte = 3.7$ Tb

1.5.1

Hybrid depletion method

- No reaction rate tallies since STREAM resonance treated XSs
- 72-group structures

MC	Hybrid	
9	-	
1	72	
50,000	50,000	
400	400	
10	10	
300	-	
8 byte	8 byte	
4,322 Gb	115 Gb	Reduced factor : ~40 times
	MC 9 1 50,000 400 10 10 300 8 byte 4,322 Gb	MC Hybrid 9 - 1 72 50,000 50,000 400 400 10 10 300 - 8 byte 8 byte 4,322 Gb 115 Gb

- 1) reaction rates are calculated for every nuclides in every burnable regions

- 2) Flux is calculated in every burnup region
- 3) (# of reaction type * # of nuclides + # of flux groups) * # of burnable regions

- Hybrid depletion method
 - 72-group flux(MCS) + 72-group XSs(STREAM) \rightarrow 1-group effective XSs
 - Parallel algorithm

Fig. Flow scheme for parallel hybrid depletion

Hybrid depletion method

• Data server

- Management of the memory usage for generating MG
- Independently managed in other computational node
 - > MG XSs can be generated during the transport simulation
 - > No time requirement for reaction rates tally

Parallel depletion

- Burnable regions are allocated as tasks in each thread
- MG XSs from STREAM are provided when they proceed the burnup
 - > Data communication

Verification

• 3.1% enriched UO₂ fuel assembly from VERA Benchmark

• 3.1% enriched UO₂ fuel assembly from VERA Benchmark

• Single core calculation

		Unit. Second
	MCS	Hybrid
Transport	163,886	147,640
Read ACE XSs	252	258
Read Input	0.1	0.6
Depletion	771	678
Execution time	164,909	148,577

• Hybrid method takes 10% less time than original MC depletion

The specification of calculation cluster : Intel Xeon CPU E5-2690 v2 3.00GHz, 250Gb memory

Preliminary results (2/2) – Memory requirement

- 3.1% enriched UO₂ fuel assembly from VERA Benchmark
 - Parallel calculation(40 thread)

		Unit. Kb
	MCS	Hybrid
Geometry	6.6	6.6
Tracking	193.4	193.4
Indexing	6.6	6.6
Read ACS XSs	5.1Gb	5.1Gb
Material	4,734.9	4,738.3
Depletion	24,887	1,013

• The reduction factor is around 24.5 times

The specification of calculation cluster : Intel Xeon CPU E5-2690 v2 3.00GHz, 250Gb memory

FUNCTIONS

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 59

TH1D Solution Method

Radial heat conduction

- axial heat conduction is neglected
- fuel rod is divided into multiple rings to get the radial temperature distribution

$$C_{p} \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(k \left(T \right) r \frac{\partial T}{\partial r} \right) + q$$

Cp: the production of the heat capacity and the material density, $c_p \rho$, $J/cm^3 \cdot {}^\circ C$; k(T): the heat conductivity, $w/cm \cdot {}^\circ C$; *q*: the volumetric heat source, w/cm^3 .

Mesh structure fir heat conduction calculation

TH1D Solution Method

ALLEN ANTRAN ANTRAN ANTRAN HALAN NATIRAN ANTRAN BENERA AN TRANSPORT

• Axial heat convection in Coolant

- 1D, single-phase model
 - no boiling is considered
- constant pressure
 - only mass continuity and energy conversation equations are solved

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v}{\partial z} = 0$$
$$\frac{\partial \rho h}{\partial t} + \frac{\partial \rho h v}{\partial z} = q_c + \frac{\zeta}{A_c} q_w \equiv q$$

Node structure and variables

 ρ : the coolant density, kg/m^3 ; *h*: the coolant enthalpy, J/kg; *v*: the coolant velocity, m/s; ζ : the heated perimeter, *m*;

 A_c : the cross section of the channel, m^2 ;

 q_c : the heat source generated inside the coolant, w/m^3 ; CORE CON q_w : the heat flux of the fuel, w/m^2 .

Notation:

- nuclide field N(r)
- temperature distribution T(r)
- neutron flux $\phi(r, \Omega, E)$
- MCS find \u03c6 and k by solving k-eigenvalue form of neutron transport equation:

$$B(N,T)\begin{bmatrix}\phi\\k\end{bmatrix} = \left[L(N,T) - \frac{1}{k}F(N,T)\right]\phi = 0$$

• TH1D solves $T(r)$ and $N(r)$:

$$M\left(\phi\right) \begin{bmatrix} T\left(r\right) \\ N\left(r\right) \end{bmatrix} = 0$$

Gradient-based methods (Newton's method)

- Jacobian
- JFNK

Fixed-point (Picard) iteration

- The most common iterative approach
- Allows for independent MC and TH solvers which exchange flux, temperatures and desities.
 - MCS starts with nuclide composition and temperature of last iteration:

$$B\left(N^{n},T^{n}\right)\left[\begin{matrix}\phi^{n+1}\\k^{n+1}\end{matrix}\right]=0$$

- TH1D is called with updated flux distribution:

$$M\left(\phi^{n+1}\right) \begin{bmatrix} T^{n+1} \\ N^{n+1} \end{bmatrix} = 0$$

Iteration Methods

TH1D

BEAVRS BENCHMARK

BEAVRS benchmark (2013)

- Published by MIT reactor physics group
- Updated reactor challenge problem to replace the H-M benchmark
- 4 Contains detailed description of most reactor core components
- loop Westinghouse PWR

ITUR:

BEAVRS TH CALCULATION

BEAVRS CORE

 # of fuel cells 	:	50952
• # of axial meshes		20

- # of axial meshes 2
- # of radial meshes 2
- Fission (collision and track-length), • Cell tallies 2 absorption, flux

3

- Library ENDF-B/VII.1 2 OpenW On • Equilibrium Xenon On 2 • TH feedback On Critical Boron Search : On
- **30 K** • Tempdiff 2
- Active **40** 2 • Inactive 4
- Multicycle 300
- 100,000 • Histories 2

BEAVRS TH CALCULATION

Core Power	3,411 MW
Inlet Coolant Temperature	560 °F
Pressure	2,250 psia
Core Flow Rate	61.5×10 ⁶ kg/hr
Control Rod Position	ARO

$k_{e\!f\!f}$	1.00001 ± 0.00004
CBC	$660 \pm 0.281 \text{ ppm}$
Memory per Process	~ 17 GB
Simulation Time	29.8 hours
# of processes	48

CONVERGENCE CHECK

Simulation time for TH1D solver is about 20 seconds

Diverged pin

- If TH1D solver diverges
- If The solution is wrong
 - Fuel temperature is too high (> 3,000 K)
 - Water density is negative

CORE COmputational Reactor Physics & Experiment lab in UNIST

ITULIE.L

Normalized power and Relative Standard Deviation

Flux and Relative Standard Deviation

• Fuel temperature, coolant temperature, and coolant density

Relative Statistical Error

- Fuel temperature
- Coolant temperature
- Coolant density

~ 1.4 % ~ 0.07 % : ~ 0.2 %

2

2
FUNCTIONS

CTF Coupling

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 73

T/H Feedbacks

- TH1D
 - Very simplified model
- CTF
 - Sub-channel TH solver

	TH1D	CTF
Conserved Eqas	Mass+Energy	Mass+Energy+Momentum
Two-phase Model	No	Yes(Liquid+Vapor+Droplet)
Cross-Flow Model	No	Yes
Boron Tracking	No	Yes
DNBR Analysis	No	Yes
Calculation Efficiency	High	Low
Parallelism	No	Yes(Assembly-based)

Iteration Methods – On the fly feedback

UORE COmputational Reactor Physics & Experiment lab in UNIST

Unis'r

Coupling Interface

Coupling Procedure

- Read MCS input file and generate input files for CTF_Preprocessor
- Initialize CTF and allocate memory
- Call CTF_Preprocessor to generate input file for CTF
- Transfer pin-by-pin power distribution to CTF variables
- Execute CTF_Solver_Standalone to solve T/H models
- Transfer temp. and density distribution from CTF to MCS
- Print visualized result and release memory

use ctf prepro, only: preprocessor use CTF Coupling Interface, only : CTF Initialize use CTF Coupling Interface, only : CTF Solve Standalone use CTF_Coupling_Interface, only : CTF_Cleanup use CTF_Coupling_Interface, only : CTF_Edits use CTF Coupling Interface, only : CTF set rodpowers W cm3 use CTF Coupling Interface, only : CTF set rodpowers W cm use CTF_Coupling_Interface, only : CTF_set_inlet_temp use CTF_Coupling_Interface, only : CTF_get_coolant_temp use CTF Coupling Interface, only : CTF get coolant dens use CTF Coupling Interface, only : CTF get clad temp use CTF Coupling Interface, only : CTF get fuel temp use CTF_Coupling_Interface, only : CTF_print_coupling_data use transfer io, only: basefn, filename set in CTF Coupling Interface

CORE COmputational Reactor Physics & Experiment lab in UNIST

Index Mapping

Index numbering

- CTF
 - Global core-wise index
 - Homogenized gap b/w assemblies

82

194 195

282 283

426

457

0 578 579 580 581 582 583

717 718 719 720 721 722 723 724 725 726

783 784

863 864

890 891 892 893 894 895 896 897 898 899 900 901

834 835 836

746 747 748 749 750 751 752 753 754 755 756 757 758

810 811 812 813 814 815

837 838 839

865

162 163 164 165

316

492

634 635 636 637 638

667 668

607

696 697 698

786 787 799

0 0

728

701

166

• MCS

140 150

1 2 3 4 5

121 122

145 146

177 178

209 210

237 238

265 266

297 298

329 330

353 354

377 378

409 410

441 442

473 474

505 506

569 570

649 650

801 802

881 882 883 884 885

- Assembly-wise index

10 11 12 13 14

103 104 105

153 154 155 156 157 158

100

128 120

- Detailed gap b/w assemblies

108 100 110

106

120 121 122 122 134 135

451 452 453 454 455 456

602

662

483 484 485

689 690 691

778 779 780 781 782

858 859 860 861 862

808 809

832 833

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

0 572 573 574 575 576 577 0

596 597 598 599 600 601

651 652 653 654 655 656 657 658 659 660 661

711 712 713 714 715

773 774 775 776

851 852 853 854 855 856 857

804 805 806

886 887 888

828 829 830 831

880

619 620 621 622 623 624 625 626 627 628 629 630 631 632

150 160 161

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 102 737 738 739 743 744 745 746 747 748 749 750 721 722 723 724 725 92 728 730 731 732 734 736 977 978 979 980 981 982 983 984 985 986 705 706 707 718 963 969 970 971 714 715 720 961 962 966 967 968 974 975 976 689 690 691 694 695 696 697 702 703 704 945 946 947 0 0 950 951 952 953 954 955 959 960 673 674 675 676 677 685 688 929 930 931 932 933 934 935 936 937 938 939 940 941 171 172 173 174 175 176 657 658 659 660 661 662 662 664 665 666 667 668 669 670 671 672 913 914 915 916 917 918 919 920 921 922 923 924 925 641 642 643 644 645 646 650 651 652 653 654 655 656 897 898 899 900 901 906 902 903 907 908 909 911 912 625 626 627 628 629 630 631 634 635 636 637 638 639 640 881 882 883 884 885 886 887 890 891 892 893 609 610 611 616 617 618 619 620 621 623 **624** 865 866 867 868 869 870 871 872 873 874 875 876 877 291 593 594 595 596 597 500 600 601 602 604 605 606 607 608 849 850 851 852 853 854 855 956 057 050 962 964 577 578 579 582 583 584 585 586 587 590 591 592 833 834 835 838 839 840 841 842 843 847 848 561 562 563 0 0 566 567 568 569 570 571 0 0 574 575 576 817 818 819 0 0 822 823 824 825 826 827 0 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 801 802 803 804 805 806 807 808 809 810 811 812 813 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 785 786 787 788 789 790 791 792 793 794 795 796 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 769 770 771 772 773 774 775 776 777 778 779 780 781 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 458 459 460 461 462 463 464 465 466 467 468 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 481 482 483 484 485 486 487 488 489 490 491 492 493 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 465 466 467 468 469 470 471 472 473 474 475 476 477 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 193 194 195 0 0 198 199 200 201 202 203 ٥ 206 207 208 449 450 451 0 454 455 456 457 458 459 177 178 179 0 0 182 183 184 185 186 187 0 0 190 191 192 433 434 435 0 0 438 439 440 441 442 443 0 447 448 0 584 585 586 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 417 418 419 420 421 422 423 424 425 426 427 428 429 431 432 612 613 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 401 402 403 404 405 406 407 408 409 410 411 412 413 138 139 140 141 142 143 144 385 386 387 388 129 130 131 132 133 134 135 389 390 391 0 39/ 395 396 397 399 //// 670 671 672 673 674 675 676 113 114 115 116 117 122 123 124 125 126 127 128 369 370 371 372 373 374 375 0 378 379 380 381 730 731 97 98 110 112 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 81 82 83 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 702 70/ 705 65 66 78 321 322 326 327 328 329 330 331 335 336 816 817 818 819 820 821 49 50 306 307 0 0 310 311 312 313 314 315 0 840 841 842 843 844 845 33 34 44 45 46 47 289 290 291 292 293 294 295 296 297 298 299 300 301 48 866 867 868 869 870 871 872 873 874 875 876 877 17 28 29 30 31 32 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 902 903 904 905 906 907 908 910 911 912 27 937 938 939 940 1 2 10 11 12 13 14 15 16 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 935 936

MCS

Index Mapping

ITUL!

Results

• Eigen-values

<criticality active="200" inactive="200" history="500000" k-initial="1.0" />

Pin power: 0.0834684 MW Flow rate: 0.335276 kg/sec Inlet Temperature: 566.6 K (293.45 °C) Gap conductance: 5678.3 W/m-K

Table 1. Result of difference TH feedback

Case #	TH_mode	keff	Time/sec	Ratio
Pin	w/o	1.12999 ± 0.00005	61664.2	
Pin	TH1D	1.12747 ± 0.00006	75257.8	1.22
Pin	CTF	1.12761 ± 0.00007	72853.3	1.18

• Power distributions

Numerical test

Results

Results

• Fuel Temperatures

Results

Coolant Temperatures

- Results
 - Coolant Density

Results

• Radial Fuel Temperature

Multipole (On-The-Fly Doppler Broadening)

CORE COmputational Reactor Physics & Experiment lab in UNIST

ULGAN MATICAL INSTITUTE OF BELEVIC AND TICAMEGAN 2 0 6 5

- Alternative to the conventional R-Matrix theory
- Hwang converted resonance parameters given in nuclear data files into multipoles.

Energy Space, Resonance Half-Widths

Energy-dependent Less parameters

Real parameters

Momentum Space, Poles and Residues

Energy-independent More parameters: 2(l + 1)Complex parameters

• Hwang proposed using **pseudo-poles** to decrease number of parameters

In order to obtain poles, following polynomial equation should be solved:

$$F(u) = \det(I - K) \times q_l(u) \times \prod_{\lambda}^{N} \left(E_{\lambda} - u^2 - i \frac{\Gamma_{\gamma\lambda}}{2} \right) = 0$$

URE COmputational Reactor Physics & Experiment lab in UNIST

Multi-pole representation

Real and Imaginary parts of F(u) for the first 10 p-wave resonances of U²³⁸ (s-wave like poles)

Real and Imaginary parts of F(u) for the first 10 s-wave resonances of U²³⁸

Multi-pole representation

LUCINIST ULAN NATIFAL INTITUTE OF SOLECC AND TECHNOLOGY 2 0 0 9

Relative difference(%

Isotope: Pu²³⁹ (Reich – Moore) Temperature: 0K Energy range: 10⁻⁵eV ~ 1keV

C Note: s-wave resonances case is working well. **C** ORE COmputational Reactor Physics & Experiment lab in UNIST

- Proposed by Hwang (ANL)
- Implemented into OpenMC (MIT)
- Window Concept: Inner and Outer

$$\overline{\sigma_{t}(E,T)} = \sigma_{p}(E) + p(E)_{poles \notin \Omega_{outer}} + \frac{1}{E} \sum_{l,J} \sum_{poles \in \Omega_{outer}} \frac{\operatorname{Re}\left[R_{l,J,\lambda,j}^{(t)}\sqrt{\pi}W(z_{0}(T))\right]}{2\sqrt{\xi}}$$

- *E* energy point of interest within Ω_{inner} window;
- • Ω_{inner} and Ω_{outer} are inner and outer window ranges;
- $p(E)_{poles \notin \Omega_{outer}}$ is the polynomial fitting of the all poles outside the outer window; • $\sigma_p(E)$ potential scattering cross section

C. Josey et al., Windowed multipole for cross section Doppler broadening, J. Comput. Phys (2015).

URE COmputational Reactor Physics & Experiment lab in UNIST

Converting resonance parameters into Multi-poles

- Simultaneous Root finding
- Restart Capability
- Arbitrary Precision
- Higher orbital angular momenta resonances

• On the fly Doppler broadening for in-house Monte Carlo code

- Reducing the number of poles
- Polynomial fitting
- Window energy concept

CORE COmputational Reactor Physics & Experiment lab in UNIST

ON-THE-FLY DOPPLER BROADENING

- Multipole representation
 - OpenW module is implemented
- Benchmark problem
- : BEAVRS Full core
- Temperature : 293.6K
- Simulation specifications
 - # of inactive cycles : 200
 - # of active cycles : 2,000
 - # of histories per cycle
 - # of cores : 20

Cross section	Eigenvalue	STD	N/s inactive	N/s Active
ACE	1.01860	0.00005	22,870	23,705
OTF DB	1.01873	0.00005	20,409	21,204

: 100,000

FUNCTIONS

SIGMA1 Kernel (Makxsf)

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 92

- The makxsf code is a utility program for manipulating crosssection library files for the MCNP5 Monte Carlo code.
 - makxsf can be used to
 - convert ACE data files between ASCII and binary formats and to make customized libraries containing selected datasets.
 - **Doppler broaden** the resolved data to any higher temperature with using several routines from the *NJOY* and *DOPPLER*.
 - interpolate $S(\alpha, \beta)$ thermal scattering kernels and probability tables for unresolved resonance data between two bracketing temperature with using several routines from the *NJOY* and *DOPPLER*.

UORE COmputational Reactor Physics & Experiment lab in UNIST

ULLIZ.L

CROSS SECTION LIBRARY GENERATION

- Cross section libraries are generated by NJOY at different temperatures (0, 300, 450, 550, 600, 650, 750, 900, 1200 K).
- Different 600K Cross section libraries are generated by makxsf.

• XXXXX.04: *makxsf* from *NJOY* 0 K

TEST PROBLEM – UO2 PINCELL

- UO2 pin cell geometry with reflective boundary
 - R1~R4 = 0.98 cm, 1.10 cm, 1.34 cm, 1.47 cm / Z = 40 cm
 - M1~M4 = UO2, Air, Zr, Coolant
- Material composition
 - Fuel density (900 K) = 10.176 g/cm3
 - 234 U (0.03%) + 235 U (2.96%) + 238 U (85.16%) + 16 O (11.85%)
 - Air density (600 K) = 0.001 g/cm3
 - ¹⁶0 (100%)
 - Zr density (600 K) = 6.55 g/cm3
 - ⁹⁰Zr (100%)
 - Coolant density (600 K) = 0.7 g/cm3
 ¹H (11.19%) + ¹⁶O (88.81%) + ¹⁰B (0.01%)
- MCS is used for calculation.
 - 100,000 neutron histories per a cycle, 50 inactive cycle and 500 active cycle

Library	MCS_k _{eff}	Cross section generation time
<i>NJOY</i> 900K, <i>NJOY</i> 600K	1.24234 ± 0.00013	-
makxsf from 'NJOY 566.6K'	1.24210 ± 0.00010	6.85 sec
makxsf from ' <i>NJOY</i> 293.6K'	1.24227 ± 0.00012	12.43 sec
makxsf from 'NJOY 0K'	1.24201 ± 0.00013	40.28 sec

UORE COmputational Reactor Physics & Experiment lab in UNIST

ITUR:

FUNCTIONS

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 97

Format

• PPM (Portable Pixmap Format)

Advantage

- Format is very easy
- Processing speed is faster than others (since it does not compress the image files)

Disadvantage

• The file size is huge (100 times than PNG format, 50 times larger than JPG format)

• PWR assembly

• MHTGR-350

BEAVRS

IMAGES

• PMR-200

FUNCTIONS

Gamma Transport

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 103

Status of photon transport in MCS

- Photoatomic XS from ACE files (ENDF/B-VII.1)
- Additional photon data files from SERPENT2 library
- Photoelectric effect:
 - Sampling of electron subshell using subshell photoelectric XS
 - Atomic relaxation simulated for all subshells with binding energy > 1 keV
- Rayleigh (coherent) scattering
 - Sampling from Thomson differential XS with coherent form factors
- Compton (incoherent) scattering
 - Sampling from Klein-Nishina differential XS with incoherent scattering factors
 - Kahn's method below 1.4 MeV and Koblinger's method above 1.4 MeV
- Pair production
 - Positron/electron annihilation at rest and production of two 511 keV photons
- Ongoing implementation:
 - Doppler broadening during Compton scattering
 - Bremsstrahlung (use of thick-target bremsstrahlung approximation)
 - Photon KERMA tally

ITUL!

Preliminary MCNP6 / MCS photon flux comparison

Uranium sphere (20 cm radius) surrounded by water

Isotropic 6-MeV monokinetic point source in the center of the sphere

DOP: Doppler broadening during Compton scattering

TTB: thick-target bremsstrahlung

URE COmputational Reactor Physics & Experiment lab in UNIST

FUNCTIONS

Indexing

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 106

TALLY INDEXING

Cell indexing for massive tallies

- Direct calculation (hash-table algorithm)
- Every cell have unique index (default index)
- Easy to make index

Default index	Index for fuel cell	Index for coolant
1	1	NONE
2	NONE	1
3	2	NONE
4	NONE	2
5	3	NONE
6	NONE	3
7	4	NONE

TALLY INDEXING

Pin-wise tally of McCARD

```
Tally (
if FLAG TALLY>=1 :
   out.write(' Flux\n')
   for k in range(FLAG TALLY):
      for j in range(ASM NUM):
        for i in range(ASM NUM):
            if (compBB[j][i] != 0):
               for q in range(PIN NUM):
                  for p in range(PIN NUM):
                     if (compAA[q][p] == 0):
                        if NUM AXIAL==1:
                           for m in range(1,NUM RADIAL+1):
                                               asm%02d_%02d>pin%02d_%02d>Pellet_%04d \n' % (j+1, i+1, q+1, p+1, m) )
                              out.write('
                        else :
                           for n in range(1,NUM AXIAL+1):
                              for m in range(1,NUM RADIAL+1):
                                                  asm%02d %02d>pin%02d %02d>Pellet %04d \n' % (j+1, i+1, q+1, p+1, ((n-1)*NUM RADIAL+m))
                                 out.write('
```

Pin-wise index of MCS

```
<indices>

<name> tempname </name>

<cell-wise> fuel-1.6% fuel-2.4% fuel-3.1% </cell-wise>

</indices>
```

CORE COmputational Reactor Physics & Experiment lab in UNIST
TALLY INDEXING

Material-wise option

```
<indices>
    <name> tempname </name>
    <material-wise> fuel-1.6% fuel-2.4% fuel-3.1% </material-wise>
</indices>
```


Cell-wise option

<indices>

<name> tempname </name>
 <cell-wise> fuel-1.6% fuel-2.4% fuel-3.1% </cell-wise>
</indices>

Cell-wise option

<indices>

```
<name> tempname </name>
  <cell-wise> air bg fuel-1.6% fuel-2.4% fuel-3.1% he inconel
  ss304 clad water carbon-steel cr </cell-wise>
</indices>
```


TALLY INDEXING

Efficiency test with BEAVRS 3D core

- Case1: # of tally cell=0
- Case2: # of tally cell=781,662, # of tally quantity=1
- Case3: # of tally cell=781,662, # of tally quantity=10

	Case1	Ca	ase2	С	ase3				
# cells: 781,662	Time	Time	Ratio	Time	Ratio				
	Time	Time	(case2/case1)	Time	(case3/case1)				
MCS	1.000	1.010	1.014	1.090	1.088				
MCNP6	2.430	349.0	144.0	3420	1412				
Ratio									
(MCNP/MCS)	2.4	344	-	3,148	-				

PERFORMANCE EVALULATION

- Efficiency test with H-M core
 - # of neutrons used: 10,000,000

		Time	[sec]	
# pinwise tallies	MCS	McCARD	Serpent	Serpent (w/o woodcock)
0	2,678	3,839	1,576	3,602
1	2,715	9,124	Inf.	-
5	3,131	49,651	Inf.	-

INDEXING SYSTEM

This index is used for

- Tallies
- Burnup
- TH feedback
- Etc..

<burnup></burnup>						
<pre><pre>power> 8</pre></pre>	52.75 <th>ver></th> <th></th> <th></th> <th></th> <th></th>	ver>				
<indices></indices>	→ dep <th>ices></th> <th></th> <th></th> <th></th> <th></th>	ices>				
<eq-xe> o</eq-xe>	n					
<pc> semi</pc>						
<time></time>						
	2.336	59E-04 9.043	7E-01 3.49	13E+00 4.000	DOE+00 6.000	0E+00
6.2675	E+00 7.629	9E+00 1.100	OE+01 1.50	68E+01 1.564	41E+01 1.600	0E+01
2.0534	E+01 2.100	0E+01 2.200	OE+01 2.39	13E+01 2.50	DOE+01 3.027	4E+01
3.1000	E+01 3.521	L2E+01 3.600	0E+01 5.053	35E+01 5.200	DOE+01 6.900	0E+01
7.7049	E+01 8.000	0E+01 8.500	0E+01 9.600	DOE+01 1.07	B1E+02 1.100	0E+02
1.2400	E+02 1.400	0E+02 1.405	OE+02 1.410	DOE+02 1.440	DOE+02 1.500	0E+02
1.5167	E+02 1.520	0E+02 1.560	OE+02 1.640	DOE+02 1.74	DOE+02 1.754	5E+02
1.7700	E+02 1.800	0E+02 1.900	0E+02 2.03	33E+02 2.040	DOE+02 2.140	0E+02
2.1900	E+02 2.200	0E+02 2.250	OE+02 2.280	DOE+02 2.29	08E+02 2.350	0E+02
2.4800	E+02 2.590	02E+02 2.660	OE+02 2.71	DOE+02 2.884	40E+02 2.950	0E+02
2.9600	E+02 3.018	31E+02 3.100	0E+02 3.17	90E+02 3.26	DOE+02 3.270	0E+02

@ _____ </burnup>

<cell indices="assms" detector="power" /> @ assembly-wise power tally

<th1d> <switch> on </switch> <n-axial-meshes> 10 </n-axial-meshes> <period> 1 </period> <power> 852.75 </power> <temperature-inlet> 293.6 </temperature-inlet> <radii> 3.9218e-01 0.40005 0.45720 </radii> <pitch> 1.26 </pitch> <z-meshes> 10*36.5764 </z-meshes> <flow> 0.335276 </flow> <n-th-rings> 10 </n-th-rings> <n-pins> 14784 </n-pins>

off </print> <indices> fuels clad water </indices> <i-temperature> water 1 carbon-steel 2 </i-temperature> </i-temperature> </i-temperature>

Triso Particle Random Sampling

Random sampling of tris particle position

<universe name="triso"></universe>
<compact coeffs="0.6225 -0.5 0.5" matrix="CMP_m1" type="cylinder"></compact>
<triso fill="abc" pf="0.2350" radius="0.046500"></triso>
<cell material="CMP_m1" name="matrix" zone="-inf"></cell>
<cell fill="abc" name="kernel-1" zone="-inf"></cell>

MCS image / PF 27.5%

CORE COmputational Reactor Physics & Experiment lab in UNIST

MCS image / PF 23.5%

• PMR 200 compact

	Problem		PMR 200 compact													
#	of histori	es		2,200,000	0 (10 inac	ctive / 10	0 active,	/ 20000 h	istories p	per cycle)					
#	of proce	SS					1									
		MCS		McCARD Serpent												
	keff	SD	Time [min]	keff	SD	Time [min]	Diff [pcm]	keff	SD	Time [min]	Diff [pcm]					
0.1235	1.52746	0.00053	30.2	1.52817	0.00058	115.0	71.0	1.52638	0.00034	20.8	-108.0					
0.2350	1.34252	0.00060	25.3	1.34469	0.00052	176.6	217.0	1.34385	0.00040	16.3	133.0					
0.3235	1.24548	0.00053	23.6	1.24660	0.00051	239.1	112.0	1.24770	0.00038	16.0	222.0					

• PMR BLOCK

		Block (PF=2	7.5)			
	McCARD (k-inf)	std (pcm)	Time (s)	MCS (k-inf)	std (pcm)	Time (s)
T=300	1.18823	29	7876	1.18531	26	1347
T=1500	1.00151	27	8352	0.99575	24	1409

Parallel Fission Bank

Parallel fission bank

• Paul K. Romano "Parallel algorithm for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures," Ph. D. thesis

Fission bank (Cycle 3)

- Test condition
 - BEAVRS benchmark
 - Parallel efficiency was tested with linux cluster (Intel Xeon CPUX5680)

2017-03-02 122

- Criticality Safety Analysis (CSA) ICSBEP
- <u>VENUS-2</u>
- Hoogenboom-Martin Benchmark
- BEAVRS benchmark
- KN-12 Cask

Criticality Safety Analysis ICSBEP

- The purpose of the criticality safety analysis (CSA)
 - Spent fuel pools (SFPs) rack and Storage casks
 - Validation for 279 critical benchmark experiments selected from ICSBEP 2015
 - Verification through the comparison with proven reactor analysis codes (MCNP6 and SERPENT2)
 - Establishment of Upper Safety Limit (USL) for MCS code
 - Area of Applicability (AOA) is defined according to "NUREG/CR-6698 report¹)" and "NET-300067-01²)"
 - 279 critical benchmark selected cover all commercial LWR fuel storage rack or casks.

- 1) Guide for Validation of Nuclear Criticality Safety Calculational Methodology, NUREG/CR-6698, U.S. national Regulatory Commission, January 2001.
- 2) Criticality Safety Analysis of the Indian Point Unit 2 Spent Fuel Pool with Credit for Inserted Neutron Absorber Panels, NETCO Report NET-300067-01, Rev. 1.

ULLIE.

 Representative of the usual range of physical conditions met in LWR spent fuel pools and storage casks

Parameter	Range	Comments				
Fissionable material	UO ₂	The fuel is the same than in the benchmark experiments				
Enrichment (wt% ²³⁵ U)	2.35 to 4.74					
Lattice type	Square					
H/U	0.4683 to 11.5398					
Lattice pin pitch (cm)	1.075 to 2.540					
Temperature (K)	289 to 298	Room temperature				
Soluble boron concentration (g/L)	0.015 to 5.030	41 cases (LCT-008, LCT-011, LC T-035, LCT-050, LCT-051)				
Reflector	Water, Lead, Depleted Uraniu m, Carbon Steel					
Moderating material	Water	The moderator in all the validati on cases is water				

Catagory	Me	ean	$\Delta_{(\text{calc - exp})} \pm \sigma$	$\Delta_{(ext{calc} - ext{MCNP})} \pm \sigma$
Category	$k_{e\!f\!f}$	Std.	(pcm) ¹⁾	(pcm) ²)
Experiment	1.00015	0.00214		
MCNP6	0.99944	0.00027	-72 ± 258	
MCS	0.99941	0.00021	-74 ± 263	-3 ± 69
SERPENT2	0.99932	0.00025	-83 ± 240	-12 ± 98

1)
$$\left(\sum_{i=1}^{\# of cases} \left(k_{eff}^{calc} - k_{eff}^{exp}\right)\right) / (\# of cases) \pm \left(\sum_{i=1}^{\# of cases} \left(\sqrt{\left(\sigma_{eff}^{calc}\right)^2 + \left(\sigma_{eff}^{exp}\right)^2\right)}\right) / (\# of cases)\right)$$
2)
$$\left(\sum_{i=1}^{\# of cases} \left(k_{eff}^{calc} - k_{eff}^{MCNP6}\right)\right) / (\# of cases) \pm \left(\sum_{i=1}^{\# of cases} \left(\sqrt{\left(\sigma_{eff}^{calc}\right)^2 + \left(\sigma_{eff}^{MCNP6}\right)^2\right)}\right) / (\# of cases)\right)$$

• Table shows statistical of k_{eff} and the standard deviation for all critical e xperiment benchmarks, which is sum of experiment or calculated k_{eff} va lues

1.5.1

- VENUS -2 core benchmark
 - MOX fuel benchmark problem for validation

Z. Zhong, T.J. Downar, H.G. Joo, J.Y. Cho, "Benchmark Analysis of the DeCART MOC Code with the VENUS-2 Critical Experiment," PHYSOR 200 4, Chicago, Illinois, April 25-29 (2004)

B.C. Na, "Benchmark on the VENUS-2 MOX Core Measurements," OECD/NEA Report, NEA/NSC/DOC (2000)7, (2000)

UOX Assembly

MOX Assembly

Bench	ımark	MCNP	MCS	Diff.
	2 20/ 110	1.41209	1.41182	27
	$3.3\% 00_2$	0.00008	0.00010	27
VENUS-2	4 004 110	1.34236	1.34211	25
Pin Cell	4.0% 002	0.00009	0.00011	25
	MOV	1.26573	1.26553	20
	MOX	0.00009	0.00010	20
	UOV	1.17862	1.17843	10
VENUS-2	UUX	0.00010	0.00010	19
Assembly	MOY	1.30169	1.30155	14
	ΙνιΟΧ	0.00009	0.00010	14

Corre computational Reactor Physics & Experimeomatical All & Factor physics & Experiment lab.

• 2D core result

Corre computational Reactor Physics & Experimeomatical Reactor physics & Experiment lab.

Unis'r

Hoogenboom Martin

- Hoogenboom benchmark
 - 200/450/100,000 : inactive/active/history per cycle
 - Flux tally: 357x357 = 127449
 - Fission rate tally: 357x357 = 127449

ITUR:

Hoogenboom benchmark

• 200/450/100,000 : inactive/active/history per cycle

code	keff	stdev.
MCNP	1.00023	0.00006
OPENMC	1.00002	0.00006
MCS	1.00090	0.00010

CORE COmputational Reactor Physics & Experiment lab in UNIST

ULLIZ.L

CORE COmputational Reactor Physics & Experiment lab in UNIST

2017-03-02 142

BEAVRS

BEAVRS geometry generated by SCORE

	5			i.					Ľ	1	Ľ	i.	1	ļ		5	l		1		L	L	"	1		!!	1		1	l			1	1		l							2		1	1	L	1			1		۵		ľ	Ľ	1	5		2						
																																																										I								
			H		H	I.	l			ł			ľ	ļ			l	ŀ	ł	ļ			I	l	l		l	ŀ	H	ŀ				I		ľ	I	ŀ	ŀ	l				ł			ł	ļ				ļ						l								
	II																																																									I								
	II																																																									I								
	I																														I																											I			l					
	II								ľ																						I																											I								
	II																																																									I								
	II																																																									I								
	II																																																									I								
	II																														I																											I						ļ		
	II																																																									I						ļ		
	II																																																									I						ļ		
	II																																																									I						ļ		
	I																																																									l			l			ļ		
	II																														I																											I			l			ļ		
	II																																																									I						ļ		
	II																																																									I						ļ		
	II																																																									I						ļ		
	I								ŀ																						I																											l						ļ		
	II																																																									I						ļ		
	II																																																									I						ļ		
	II																																																									I								
	I																																																									l			l			ļ		
	Ш	ľ							ľ																						I																											I			l					
	II																																																									I						ļ		
	II																																																									I								
	II																																																									I						ļ		
	I								ŀ																						I																											I						ļ		
	II																																																									I						ļ		
	II																																																									I								
	II																																																									I						ļ		
	II																																																									I						ļ		
						I				1						I				I		I		1	1	I		I		l	Í					Í	I	I				ľ		I									ľ		I											
	11			I	11			1			1	1	1		I	I					I	I				1	1	I		1	11			1	11	I	I	1				1	11	1					1	l				1	11			I	1		1					

Rod worth and keff

	MCS			Rod w	vorth	
	keff	STD	MCS	measured	OpenMC	nTRACER
ARO	0.99819	0.00007		-	-	-
D in	0.99060	0.00006	786	788	776	771
C in	0.97856	0.00007	1249	1203	1210	1234
B in	0.96652	0.00007	1221	1171	1230	1197
A in	0.96224	0.00007	545	548	535	556
SE in	0.95872	0.00007	492	461	455	501
SD in	0.95155	0.00007	811	772	-	-
SC in	0.94164	0.00007	1102	1099	-	-

- 566.6K and 580K were used
- ACE cross section data were generated at exact temperature
- Thermal expansion of water was considered (water only)
- Density at 580K was calculated with STEAM TABLE and MCS uses the density with red color

	STEAM TABLE		BEA	VRS
Т [К]	Pressure [psia]	Density [g/cm3]	Density w/o B [g/cm3]	Density w/ B [g/cm3]
566.6	2250	0.73980	0.73979	0.74058
580	2250	0.71156	0.71155	0.71231

• DBRC for all nuclide which has more than 200 atomic weight

C	Condition	Keff at	566.6K	Keff at	580K	ITC	STD	Measured	Diff [%]
	No Upscattering	0.99818	6.42E-06	0.99783	9.22E-06	-1.46	0.05	-1.75	17%
AKU	DBRC	0.99774	9.30E-06	0.99735	8.86E-06	-1.62	0.05	-1.75	7%
Din	No Upscattering	0.99974	1.26E-05	0.99907	1.26E-05	-2.78	0.07	-2.75	-1%
D III	DBRC	0.99933	1.29E-05	0.99859	1.27E-05	-3.07	0.08	-2.75	-12%
	No Upscattering	0.99891	1.29E-05	0.99699	1.32E-05	-7.99	0.08	-8.01	0%
C In	DBRC	0.99844	1.27E-05	0.99653	1.29E-05	-7.96	0.08	-8.01	1%

• Fission chambers in IT

Figure 28: Instrument tube positions. Source: 43

Detector Signal

Statistical error is < 0.2 %</p>

Rms: 4.85%

	R	Ρ	N	М	L	к	J	н	G	F	E	D	с	В	Α
	Tallied				-	-	0.789	-	-	0.710	-				
1	Measured				-	-	0.777	-		0.699	-				
	C/E-1 [%]				-	-	1.462	-		1.547					
			0.692	-		1.256	-	1.255		-		-	-		
2			0.645	-	-	1.171	-	1.223	-	-	-	-	-		
			6.770	-	-	6.731	-	2.577		-		-	-		
				-	-	-	-	0.933	-	0.975	-	1.193	-	0.694	
3			-	-	-	-	-	0.898	-	0.965	-	1.171	-	0.689	
		-		-	-	-	-	3.766	-	0.990	-	1.856	-	0.733	
		0.928	1.184		1.1	-	-	1.162		-	-				
4		0.845	1.115			-	-	1.115		-					
		8.920	5.791	-	-	-	-	4.017	-	-	-	-	-	-	
-		-		-	1.263	-	-	-	1.167	-	1.276	-	1.363		
5		-		-	1.105	-	-	-	2 2 2 2 7	-	1.247	-	2 120		
	- 0 702	-	0.966		7.754	1 156		1 085	5.207		2.295		5.150	1 264	
6	0.702		0.900			1.100		1.005						1.204	
0	4.604		4 780			1.102		2 071						1.235	
	4.004		4.780	0.959		4.002	1 036	5.571		0.912			1 207	1.561	
7	_			0.924	_	_	1.008	_		0.892			1 204		
				3.685		_	2.726	_		2.210		_	0.275	-	
	0.752	-	0.928	_	0.933	_	0.788	-	-	1.087	-	1.172	0.941	1.266	
8	0.730	-	0.899		0.918		0.774		-	1.088	-	1.185	0.966	1.295	1.1
	2.975		3.111	-	1.585		1.791		1.1	-0.073		-1.108	-2.647	-2.290	
		0.850	-	-	-	-	-	-	1.044	-	1.171	-	-	-	0.798
9		0.837	-	-	-	-	-	-	1.071	-	1.175	-	-		0.846
	-	1.505	-	-	-	-	-	-	-2.617	-	-0.320	-	-		-6.037
	-	-	-	-	0.979	-	0.909	-	-	-	-	1.224	-	-	
10	-	-	-	-	0.964	-	0.920	-	-	-	-	1.291	-	-	
	-	-	-	-	1.519	-	-1.212	-	-		-	-5.486	-	-	10 A.
	0.572	-	-	-	1.268	-	-	0.939	-	-	1.276	-	-		0.582
11	0.576	-	-	-	1.263	-	-	0.968	-		1.330	-	-		0.631
	-0.672	-	-	-	0.400	-	-	-3.128	-		-4.271	-	-	-	-8.471
			-		1.1	1.214	-	-	0.968	-	-	1.338			
12			-			1.223	-	-	1.034	-	-	1.438			
		-	-		-	-0.732	-	-	-6.805	-	-	-7.494	-	-	
		-	0.840	-	1.355	-	-	0.939	-		-	-	-	0.695	
13		-	0.857	1	1.339	-	-	0.984	-	1.1	-	1	-	0.792	
	_	-	-2.059	-	1.154	-	-	-4.799		-		-		-13.916	I
10			0.686		1	-	0.858	-	1	1.260		0.940			
14			0.700			-	0.919	-	1	1.357		1.050			
			-2.005	-	-		-7.048	-		-7.722		-11.657	1		
15					0.577			0.759							
15					-1 302			-10 262							
	1				-4.352			-10.202							

2017-03-02 149

KN-12 Transport Cask Configuration

ULLIZ.L

KN-12 Transport Cask Configuration

KN-12 Configuration by MCNP Visual Editor

• KN-12 Cask Components and Materials

Component	#/cask	Material	Density [g/cm ³]	Isotope Abundance [%]
Cask body	1	Carbon steel	7.85	Si (0.021%), Mn (0.55%), C (0.7%), P (0.014%), S (0.3%), Fe (98.415%)
Cask lid	1	Stainless steel	8.03	Ni (9%), Cr (19%), Si (1%), Mn (2%), C (0.08%), P (0.045%), S (0.03%), Fe (68.845%)
Fuel assembly	12	Fuel rod, cladding, air, water	-	STREAM provides
Basket	12	Borated stainless steel	7.8	Stainless steel (99%) Boron (1%)
Moderator rod	72	Polyethylene	0.94	С (33.33%), Н (66.67%)

KN-12 Configuration by MCNP Visual Editor

ITUR:

- MCNP6 Visual Editor Plot (KN-12 Cask with FA's)
 - 60,000 MWd/MTU Burned Fuel Assemblies
 - Provided by STREAM

KN-12 Configuration by MCS

MCS Plot (KN-12 Cask with FA's)

- 60,000 MWd/MTU Burned Fuel Assemblies
- Provided by STREAM

Criticality Calculation (MCNP6 vs MCS)

- Criticality Calculation and Computing Performance
 - History 30,000 / inactive cycle 50 / active cycle 500
 - Parallel process using 32 cores
 - *k_{eff}* difference = **12** pcm (Standard deviation = 14 pcm)

	MCNP6	MCS (Double indexing off)
$k_{e\!f\!f}$	0.64736 (0.00014)	0.64724 (0.00014)
Computing time [sec]	2098	1261

• Double-indexing $ON \rightarrow MCS$ computing time \downarrow

BEAVRS CYCLE 1

BEAVRS BENCHMARK

BEAVRS benchmark (2013)

- Published by MIT reactor physics group
- Updated reactor challenge problem to replace the H-M benchmark
- 4 Contains detailed description of most reactor core components
- loop Westinghouse PWR

BEAVRS TH CALCULATION

BEAVRS CORE

 # of fuel cells 	:	50952
• # of axial meshes	:	20

- # of axial meshes 2
- # of radial meshes 2
- Fission (collision and track-length), • Cell tallies 2 absorption, flux

3

- Library ENDF-B/VII.1 2 OpenW On • Equilibrium Xenon On 2 • TH feedback On Critical Boron Search : On
- **30 K** • Tempdiff 2
- Active **40** 2 • Inactive 4
- Multicycle 300
- 100,000 Histories 2

BEAVRS TH CALCULATION

Core Power	3,411 MW
Inlet Coolant Temperature	560 °F
Pressure	2,250 psia
Core Flow Rate	61.5×10 ⁶ kg/hr
Control Rod Position	ARO

k _{eff}	1.00001 ± 0.00004
CBC	660 ± 0.281 ppm
Memory per Process	~ 17 GB
Simulation Time	29.8 hours
# of processes	48

Critical Boron Centration

- Shannon entropy of fission source and fuel temperature
 - # of inactive cycle = 4

UNIS'

CONVERGENCE CHECK

Simulation time for TH1D solver is about 20 seconds

Diverged pin

- If TH1D solver is diverged
- If The solution is wrong
 - Fuel temperature is too high (> 3,000 K)
 - Water density is negative

CORE COmputational Reactor Physics & Experiment lab in UNIST

ITULIE.L

Normalized power and flux

Normalized power and flux

• Fuel temperature, coolant temperature, and coolant density

Relative Statistical Error

- Fuel temperature
- Coolant temperature
- Coolant density

~ 1.4 % ~ 0.07 % ~ 0.2 %

2

2

XENON NUMBER DENSITY

• Xe-135 Density and Absorption Reaction Rate

- Statistical error of Xe-135 Density and Absorption Reaction Rate
 - Statistical error is similar with that of power

ULLIZ.L

BA DISTRIBUTION & FLUX SPECTRUM

Integrated spectrum in assembly

STATISTICAL ERROR

- Statistical error of power
 - Statistical error at 95/95 cell 4.18 % :
 - It will takes 22 days to get 1 % statistical error

BEAVRS TH-DEP CALCULATION

i
Unis'r
ULSAN NATIONAL INSTITUTE OF Science and technology 2 0 0 9

BEAVRS QUARTER C	ORE	
 # of fuel cells 	:	14784 (whole core = 50952)
 # of axial meshes 	:	10
 # of radial meshes 	:	1
• Library	:	ENDF-B/VII.1
• OpenW	:	On
• Equilibrium Xenon	:	On
• TH feedback	:	On
 Critical Boron Search 	:	On
• Tempdiff	:	inf. K
• Power	:	100% (constant)
• Active	:	40
• Inactive	:	4
Multicycle	:	300
• Histories	:	10,000
		•

BEAVRS CYCLE 1

Restart with given condition

					Detector Signals						
Calander days	nower	FEDD	Power [%]	Inlet	humun [MWD/MT]	Average boron [nnm]	P	osition of	Control Ba	nk	
Calalitiel days	power	EFFD	Power [76]	met	burnup [wwb/wrr]	Average boron (ppin)	Α	В	С	D	
0	24.07	0.00	0.71%	558.88	0.01	975.25	228	228	228	207	
7	119.61	0.00	3.51%	558.13	0.0	876.79	229	176	69	215	
18	692.69	0.90	20.31%	554.28	38.7	801.36	229	228	228	165	
54	1105.96	3.49	32.42%	557.98	149.4	754.69	228	228	229	162	
62	1660.93	6.27	48.69%	557.35	268.2	703.12	228	228	229	228	
66	1668.06	7.63	48.90%	557.43	326.5	700.00	228	228	228	204	
81	2525.37	15.07	74.04%	560.13	644.8	625.15	228	228	228	192	
82	2495.80	15.64	73.17%	558.78	669.3	643.54	228	228	228	158	
88	3051.70	20.53	89.47%	560.00	878.7	632.38	228	228	228	217	
92	3365.70	23.91	98.67%	557.10	1023.3	622.62	228	228	228	207	
161	2141.38	30.27	62.78%	556.40	1295.5	698.50	228	228	228	187	
169	3403.53	35.21	99.78%	561.30	1506.8	629.86	228	228	228	198	
187	3410.19	50.54	99.98%	561.38	2162.5	621.00	228	228	228	192	
218	3198.76	77.05	93.78%	561.50	3297.1	578.23	228	228	228	195	
251	3397.52	107.81	99.60%	560.93	4613.5	516.92	228	228	228	194	
323	2171.18	140.50	63.65%	556.55	6012.2	526.18	228	228	228	179	
339	3400.67	151.67	99.70%	560.98	6490.4	436.92	228	228	228	199	
368	3378.21	175.45	99.04%	560.48	7508.0	383.21	228	228	228	215	
403	3406.24	203.33	99.86%	560.60	8701.0	306.09	228	228	228	222	
434	3394.23	229.08	99.51%	561.13	9802.9	259.00	228	228	228	207	
468	3407.78	259.02	99.91%	560.83	11083.9	180.00	228	228	228	218	
504	3403.71	288.40	99.79%	560.58	12341.2	120.00	228	228	228	215	
551	2881.59	301.81	84.48%	558.95	12915.2	50.00	228	228	228	216	
573	2382.84	317.90	69.86%	557.18	13603.4	35.00	228	228	228	208	

	Tabl	e 23				Table 25		
EFPD	Boron [pp	EFPD	Boron [ppm]	Exporsure	Boron [pp	Inlet [tem	Bank D	% Power
4	599	13	918	0	709	559.2	212	48.6
11	610	23	882	6	674	559.2	212	48.6
16	614	43	832	21	609	561.1	217	89.5
22	621	63	764	25	598	561.5	207	98.5
31	638	84	687	36	596	561.6	198	99.8
36	610	103	623	52	590	561.6	228	100
52	623	129	538	80	556	561.3	195	94
69	598	150	466	110	494	561.6	193	100
85	569	176	376	140	437	561.6	208	100
96	559	202	292	144	476	559.9	178	64
110	533	234	184	150	416	561.6	199	100
124	506	257	104	156	404	561.6	199	100
141	471			180	352	561.6	215	100
144	461			220	258	561.6	223	100
152	457			235	218	561.6	208	100
164	415			266	140	561.6	217	100
174	394			296	58	561.6	215	100
177	384			310	49	560.9	216	84.5
180	384			326	31	560.2	208	70
190	367			327	29	560.2	208	70
204	322							
214	296							
219	286							
225	2/0							
228	2/0							
248	207							
2/1	149							
295	/2							
320	U							

CORE COmputational Reactor Physics & Experiment lab in UNIST

Unis'r

At BOC (step 1)

Detector signal comparison

-	0.78	1.07	0.94	1.15	0.94	1.27	0.78	
-	0.79	1.09	0.92	1.16	0.92	1.25	0.76	
-	1.73	1.73	-2.71	0.66	-1.71	-1.04	-2.71	
0.78	1.01	0.90	1.15	0.98	1.17	0.84	0.82	
0.80	1.03	0.91	1.17	0.97	1.20	0.85	0.78	
1.90	2.01	1.31	2.42	-0.35	2.79	1.41	-4.22	
1.07	0.90	1.14	0.97	1.21	0.99	1.25	0.73	
1.10	0.92	1.18	0.98	1.22	0.97	1.24	0.70	
2.83	1.95	3.07	1.22	0.53	-2.16	-0.02	-4.31	
0.94	1.15	0.97	1.25	_	1.31	_	0.59	
0.93	1.19	0.97	1.27	-	1.35	-	0.58	
-1.78	3.89	0.08	1.24	-	3.39	_	-1.44	
1.15	0.98	1.21	-	1.35	1.20	0.96		-
1.19	0.98	1.22	-	1.29	1.17	0.93		
3.77	0.74	0.36	_	-3.97	-2.46	-3.27		
0.94	1.17	0.99	1.31	1.20	0.85	0.70		
0.94	1.21	0.98	1.35	1.17	0.83	0.68	Rel. D	iff [%]
0.08	3.26	-0.87	3.19	-2.83	-2.49	-2.79	Max	-4.47
1.27	0.88	1.25	-	0.96	0.70		Min	-0.02
1.28	0.87	1.25	-	0.93	0.69		RMS	2.41
1.13	-0.33	0.79	-	-3.57	-2.42			
0.78	0.82	0.73	0.59				BEAVRS	
0.77	0.80	0.70	0.57				MCS	
-1.41	-2.36	-4.47	-3.07				Rel. D	iff. [%]

At MOC (step 15)

Detector signal comparison

-	1.06	1.30	1.11	1.28	1.02	1.16	0.66	
-	1.04	1.31	1.10	1.28	1.02	1.19	0.66	
_	-1.28	0.27	-0.93	0.28	0.12	2.56	-0.14	
1.06	1.29	1.11	1.30	1.09	_	0.83	0.67	
1.03	1.28	1.10	1.32	1.08	-	0.83	0.66	
-2.55	-0.85	-1.18	1.07	-0.71	_	-0.44	-1.00	
1.30	1.11	1.32	1.11	1.26	1.01	1.12	0.61	
1.31	1.09	1.33	1.09	1.28	1.01	1.16	0.62	
0.31	-1.95	0.62	-1.91	1.62	-0.11	2.94	1.79	
1.11	1.30	1.11	1.30	-	1.21	-	0.50	
1.10	1.34	1.09	1.29	-	1.22	-	0.49	
-0.60	2.58	-1.50	-0.60	_	0.69	_	-2.18	
1.28	1.09	1.26	-	1.09	1.00	0.72		
1.28	1.06	1.27	-	1.10	0.99	0.71		
0.45	-2.12	1.03	_	0.64	-0.15	-1.39		
1.02	-	1.01	1.21	1.00	0.70	0.53		
1.02	-	0.99	1.22	1.00	0.69	0.52	Rel. D	iff [%]
-0.29	_	-1.76	1.37	0.45	-0.97	-0.73	Max	2.94
1.16	0.83	1.12	_	0.72	0.53		Min	-0.02
1.18	0.83	1.14	-	0.71	0.53		RMS	1.29
1.84	-0.74	1.39	_	-0.68	0.81			
0.66	0.67	0.61	0.50				BEAVRS	
0.66	0.67	0.61	0.49	MCS				CS
0.37	-0.02	0.32	-1.25			Rel. Diff. [%]		

CORE COmputational Reactor Physics & Experiment lab in UNIST

At EOC (step 23)

Detector signal comparison

-	-	1.17	1.05	1.20	1.06	1.20	0.68	
-	-	1.18	1.03	1.25	1.08	1.23	0.70	
-	-	0.52	-1.56	3.97	1.25	2.48	2.28	
-	1.18	1.03	1.17	1.07	-	0.93	0.70	
-	1.20	1.03	1.21	1.05	-	0.92	0.70	
-	1.09	-0.46	2.72	-1.07	_	-1.70	-0.45	
1.17	1.03	1.20	1.06	1.23	1.08	1.16	0.66	
1.18	1.03	1.20	1.06	1.23	1.07	1.20	0.65	
1.20	-0.05	0.20	-0.25	0.77	-0.82	4.12	-1.93	
1.05	1.17	1.06	1.24	-	1.25	-	0.55	
1.03	1.20	1.05	1.24	-	1.26	-	0.52	
-2.13	2.26	-0.72	-0.14	-	1.11	-	-4.91	
1.20	1.07	1.23	-	1.13	1.11	0.76		
1.23	1.06	1.23	-	1.13	1.08	0.76		
2.69	-0.35	-0.02	_	0.35	-2.12	0.08		
1.06	-	1.08	1.25	1.11	0.82	0.57		
1.08	-	1.06	1.26	1.08	0.78	0.55	Rel. Diff [%]	
1.17	-	-1.76	1.37	-2.51	-5.16	-3.10	Max	-6.16
1.26	0.93	1.16	-	0.76	0.57		Min	-0.02
1.22	0.92	1.20	-	0.75	0.54		RMS	2.38
-3.17	-1.52	4.19	_	-1.68	-4.95			
0.68	0.70	0.66	0.55			BEAVRS		
0.69	0.72	0.65	0.52	M				CS
1.65	1.49	-1.46	-6.16				Rel. D	iff. [%]

CORE COmputational Reactor Physics & Experiment lab in UNIST

ONGOING & PLAN

CORE COmputational Reactor Physics & Experiment lab in UNIST

ONGOING & PLAN

- Whole core simulation
 - BEAVRS cycle 1 & 2
 - VERA
 - Youngkwang unit 3 cycle 1-2
 - Kori unit 4 cycle 1
 - Shin-Kori unit 1 cycle 1-4
 - Shin-Kori unit 3 cycle 1
- Multipole (OTF-DB)
 - Conversion of parameter (poles and residues)
- Decomposition
 - Domain decomposition
 - Data decomposition
- Depletion
 - Hybrid depletion (MC and MOC)
 - Depletion chain optimization

2017-03-02

ITULIE.L

ONGOING & PLAN

- Gamma transport capability
- Multi-physics
 - Coupling with COBRA-TF (CTF)
 - Depletion calculation with TH-feedback
- Generalized Perturbation Theory (GPT)
- Source term calculation
- Spent fuel pool & transportation vessel analysis
 - USL evaluation
- Acceleration technique
 - Coarse Mesh Finite Difference Method (CMFD)
 - Modified Power Method (MPM)
 - Effect on active cycle (inter-cycle correlation)

#