

OPTIMIZATION OF STREAM BURNUP CHAIN USING DEPLETION PERTURBATION THEORY

Khang Nguyen Hoang Nhat, Sooyoung Choi and Deokjung Lee

UNIST-CORE

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 0114 Web. www.unist.ac.kr Computational Reactor physics & Experiment lab Tel. +82 52 217 2940 Web, reactorcore.unist.ac.kr

- I. Introduction
- **II. Method and Materials**
 - **1. Overview of Depletion Perturbation Theory**
 - 2. Simplification of the burnup matrix
 - 3. Decay data and fission yield redistribution

III. Numerical Results

- 1. OPR-1000 FA depletion problem
- 2. VERA benchmarks depletion problems

IV. Conclusion and Future Work

Overview to STREAM

Neutron Transport Analysis Code STREAM

Features and methodologies

- 2D & 3D transport calculations
- Hybrid MPI/OPENMP parallelization
- Resonance self-shielding using PSM
- Depletion calculation
- On-the-fly energy release model
- Sub-channel T/H feedback
- Automatic thermal expansion
- Few-group constant generation
- CBC search, Equilibrium-Xe feedback
- 6 symmetric modeling options
- Source term calculation

Applications

- PWR fuel pin / assembly / whole core analyses
- STREAM/RAST-K 2-step procedure
- UO₂, gadolinia, MOX and R-BA fuel analyses
- Spent fuel analysis

I. Introduction

• ENDF/B-VII depletion library is implemented in STREAM

nuclides: 3837
transitions: 43416

UNIST CORE

Introduction (2/4)

• Over 1,000 FP nuclides are generated by a fission reaction.

G. Chiba, M. Tsuji, T. Narabayashi, Y. Ohoka and T. Ushio, "Important fission product nuclides identification method for simplified burn up chain construction" *Journals of Nuclear Science and Technology*, Vol 52 No. 7-8 (2015).

Evaluate the importance of a given nuclide to one nuclide !!!

UNIST CORE

- <u>STEP 1</u>: Identify the relevant nuclides using Depletion Perturbed Theory (DPT)
- STEP 2: Redistribute the decay data and the fission yields
- <u>STEP 3</u>: Reconduct the depletion problem using optimized burnup chain

II. Method and Materials

1. Overview of Depletion Perturbation Theory

Overview of DPT (1/6)

The burnup equation in matrix form:

$$\frac{\partial \boldsymbol{n}(t)}{\partial t} = \boldsymbol{M}(t) \, \boldsymbol{n}(t) \tag{1}$$

- $\mathbf{M} \in \mathbb{R}^{n \times n}$ is called the burnup matrix
- The adjoint burnup equation :

$$-\frac{\partial \boldsymbol{n}^{*}(t)}{\partial t} = \boldsymbol{M}^{*}(t) \, \boldsymbol{n}^{*}(t)$$
⁽²⁾

• One can easily note that:

$$\boldsymbol{M}^*(t) = \boldsymbol{M}^T(t)$$

• "T" is the transpose operator.

- If $n_i(t)$ = the *i*th component of the nuclide number density vector at the time *t*.
- Then n^{*}_i(t) can be interpreted as the importance of nuclide i at the time t to the response at time t_{EOC}.
- Final response can be:
 - •Neutron multiplication factor (k_{eff})
 - Number density of a specific nuclide
 - Reaction rate
- In our case: the number density of a specific nuclide k at the end of burn up process n_k(t_{EOC}).

• Multiply E.q (1) with $n^*(t)$ and E.q (2) with n(t), then subtracting the result yields

$$\boldsymbol{n}^{*}(t)\frac{\partial \boldsymbol{n}(t)}{\partial t} - \boldsymbol{n}^{T}(t)\frac{\partial \boldsymbol{n}^{*}(t)}{\partial t} = \boldsymbol{n}^{*T}(t)\boldsymbol{M}(t)\boldsymbol{n}(t) - \boldsymbol{n}^{T}(t)\boldsymbol{M}^{T}(t)\boldsymbol{n}^{*}(t)$$
(3)

• Using the adjoint property:

$$n^T M^T n^* = n^{*T} M n$$

$$\mathbf{n}^{*}(t) \frac{\partial \boldsymbol{n}(t)}{\partial t} - \boldsymbol{n}^{T}(t) \frac{\partial \boldsymbol{n}^{*}(t)}{\partial t} = 0 \qquad (4)$$

Overview of DPT (4/6)

Integrating Eq.(4) over the time period [t, t_{EOC}] produces

$$\int_{t}^{t_{EOC}} n^{*T} n \, dt = 0 \tag{5}$$

$$\rightarrow n^{*T}(t) n(t) = n^{*T}(t_{EOC}) n(t_{EOC})$$

- If we define $n^*(t_{EOC})$ as a unit column-vector: $\begin{cases}
 n_j^*(t_{EOC}) = 1 \\
 n_i^*(t_{EOC}) = 0 \ (i \neq j)
 \end{cases}$
- Eq. (5) can be expressed as

$$\sum_{i}^{N} n^{*}{}_{i}^{T}(t)n_{i}(t) = n_{j}(t_{EOC})$$
(6)

Overview of DPT (5/6)

Then introduce the parameter so-called contribution function (CF):

$$\boldsymbol{CF}_{i \to j}(\boldsymbol{t}) = \frac{n_i^{*l}(t) \cdot n_i(t)}{n_j(t_{EOC})}$$
(7)

• Eq. (7) is the relative fraction at the time t that nuclide i will contribute to the number density of nuclide j at the end of burnup process. By setting threshold for the CF value, the candidates for the simplified chain can be identified!

Contribution functions to Eu155

II. Method and Materials

2. Simplification of the burnup matrix

Simplification of the burnup matrix (1/2)

Identify target nuclides:

- Threshold for $\Sigma_f \phi$ and $\Sigma_c \phi$ for each depletion region (fuel, burnable absorber, etc..) in the problem.
- Identify candidate nuclides:
 - Calculate adjoint nuclides number density for target nuclides
 - Calculate CF for all nuclides to the target nuclides
 - Set threshold for the CF

Redistribute the decay data and fission yield

Simplification of the burnup matrix (2/2)

- Redistribute the decay data and fission yield
 - Paths of radioactive decay are reorganized

• Independent fission yields of neglected precursors nuclides is added to the independent fission yields of the daughter nuclides

A simplified burnup chain is constructed !

Constructing the simplified burnup chain

 A mixed type fuel (Fuel, Gad fuel, IFBA,BP) fuel assembly 2D depletion problem is conducted.

Burnup region	$\Sigma_f \phi$ threshold*	# target nuclide	$\Sigma_c \phi$ threshold	# target nuclide
Fuel	1.00E-6	30	1.00E-6	166
BP	1.00E-6	0	1.00E-6	67
IFBA	1.00E-6	0	1.00E-6	21

* Relative threshold (%)

→ 197 target nuclides !

Threshold for CF: 1.00E-7 (%)

🗭 464 candidate nuclides !

III. Numerical results

OPR-1000 FA depletion problem (1/2)

Fuel Assembly Composition and Specifications

Fuel type	Uranium oxide (UO2)		
Enrichment (w/o)	3.42 / 2.92		
Burnable Absorber (BA)	Gd_2O_3 (6 w/o)		
Cladding material	Zircaloy-2		
Coolant/Moderator	Borated Water		
FA size	16 pins by 16 pins		
Power Density	36.843 (W/gU)		
Number of BA	12		
	Fuel - 900K		
Temperatures	Cladding – 600K		
	Coolant/Moderator – 600K		

OPR-1000 FA depletion problem (2/2)

VERA Fuel Assembly 2D Depletion Problem

Geometry and Specification: "https://www.casl.gov/vera"

Nuclide number density reproduction error

-Low concentration. -Slight impact on reactivity (~0.3% difference): ¹⁰⁴Pd, ⁸²Kr, ⁹⁶Zr, ¹⁵¹Pm, ¹⁶⁵Ho, ¹⁶⁶Er

Numerical Results in time reduction

	Total simulation time(s)			Depletion time(s)		
Problem	Full chain	464 chain	Ratio	Full chain	464 chain	Ratio
OPR-1000 FA	1736.4	539.9	3.2	1237.7	58.1	21.3
VERA_2A	1824.8	498.5	3.7	1358.2	34.8	39.0
VERA_2B	1792.9	474.9	3.8	1359.2	34.7	39.2
VERA_2C	1775.6	469.4	3.8	1337.8	34.4	38.8
VERA_2D	1790.1	490.6	3.6	1338.2	33.3	40.1
VERA_2E	1856.8	530.3	3.5	1357.0	33.3	40.7
VERA_2F	1869.3	543.8	3.4	1345.2	36.2	37.2
VERA_2G	1857.8	553.5	3.4	1340.9	34.0	39.4
VERA_2H	1816.5	523.7	3.5	1325.0	35.3	37.5
VERA_2I	1809.3	497.8	3.6	1357.1	34.3	39.5
VERA_2J	1849.0	548.6	3.4	1338.4	34.4	38.9
VERA_2K	1853.0	537.3	3.4	1343.1	37.6	35.7
VERA_2L	1802.9	514.0	3.5	1335.8	34.7	38.4
VERA_2M	1836.7	530.9	3.5	1343.7	34.0	39.6
VERA_2N	1829.3	541.7	3.4	1322.7	34.1	38.8
VERA_20	1821.2	515.8	3.5	1343.6	36.5	36.8
VERA_2P	1819.0	532.9	3.4	1332.1	36.2	36.8

Conclusion

- Automatic method for building a compressed library
- Reduction of the burn up matrix size:
 - From 3837 nuclides to 464 nuclides
 - From 43416 transitions to 10638 transitions
 - Only ~10 pcm difference in k-eff for all cases
- Acceleration
 - speed-up factor of 20~40 in depletion time
 - speed-up factor of 3~4 in total simulation time

- Generate reduced-order libraries for other purposes
 - decay heat / source term
- Consider the implicit effect
- Use pseudo nuclides to improve performance
- Implement on-the-fly nuclide tracking to adjust the size of the burnup matrix as the burnup increases