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Despite growing evidence for perceptual interactions between
motion and position, no unifying framework exists to account for
these two key features of our visual experience. We show that
percepts of both object position and motion derive from a common
object-tracking system—a system that optimally integrates sensory
signals with a realistic model of motion dynamics, effectively infer-
ring their generative causes. The object-tracking model provides an
excellent fit to both position and motion judgments in simple stim-
uli. With no changes in model parameters, the same model also
accounts for subjects’ novel illusory percepts in more complex mov-
ing stimuli. The resulting framework is characterized by a strong
bidirectional coupling between position and motion estimates and
provides a rational, unifying account of a number of motion and
position phenomena that are currently thought to arise from inde-
pendent mechanisms. This includes motion-induced shifts in per-
ceived position, perceptual slow-speed biases, slowing of motions
shown in visual periphery, and the well-known curveball illusion.
These results reveal that motion perception cannot be isolated from
position signals. Even in the simplest displays with no changes in
object position, our perception is driven by the output of an object-
tracking system that rationally infers different generative causes of
motion signals. Taken together, we show that object tracking plays
a fundamental role in perception of visual motion and position.

visual motion perception | Kalman filter | object tracking |
causal inference | motion-induced position shift

Research into the basic mechanisms of visual motion processing
has largely focused on simple cases in which motion signals are

fixed in space and constant over time (e.g., moving patterns pre-
sented in static windows) (1). Although this approach has resulted
in considerable advances in our understanding of low-level motion
mechanisms, it leaves open the question of how the brain in-
tegrates changing motion and position signals; when objects move
in the world, motion generally co-occurs with changes in object
position. The process of generating coherent estimates of object
motion and position is known in the engineering and computer
vision literature as “tracking” (e.g., as used by the Global Posi-
tioning System) (2). Conceptualizing motion and position per-
ception in the broader context of object tracking suggests an
alternative conceptual framework—one that we show provides a
unifying account for a number of perceptual phenomena.
An optimal tracking system would integrate incoming position

and motion signals with predictive information from the recent
past to continuously update perceptual estimates of both an
object’s position and its motion. Were such a system to underlie
perception, position and motion should be perceptually coupled in
predictable ways. Signatures of such a coupling appear in a number
of known phenomena. On one hand, local motion signals can
predictively bias position percepts (3–8). On the other hand, we can
perceive motion solely from changes in object position (9–12). For
example, motion can be perceived in stimuli with no directional
motion signal by tracking position changes along a specific di-
rection (10). These phenomena, however, are currently regarded as
arising from independent mechanisms (11–14).

Given the interdependency of motion and position and the in-
herent noisiness of sensory signals, it is advantageous for vision to
exploit the redundancy between motion and position signals and
integrate them into coupled perceptual estimates. This is com-
plicated by the fact that local motion signals can result from a
combination of motions (of which object translations are only one)
(15, 16). A flying, rotating soccer ball provides a prototypical ex-
ample of this problem (Fig. 1A). Because the ball rotates as it flies
through the air, the local retinal motion signals created by ball
texture are sums of two world motions: translation and rotation of
the ball. Relating local motion signals to object motion requires
the solution of the “source attribution” problem (17, 18)—
determining what part of a local retinal motion pattern is due to
object translation and what part is due to object-relative motion of
the texture pattern. To solve this attribution problem, the brain
can exploit the redundant information provided by the changing
stimulus position. Moreover, integrating motion and position in-
formation over time with an internal model of motion dynamics
can mitigate both the uncertainty created by ubiquitous sensory
noise (19) and that created by the motion source attribution
problem. Although object-relative pattern motion is not a prop-
erty of all moving objects, understanding how pattern motion in-
teracts with object motion and position can help elucidate how the
brain integrates motion and position signals into coherent per-
ceptual estimates—a problem associated with all moving objects.
Here, we propose and test a computational framework in which

motion and position perception derive from a common mechanism
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that integrates sensory signals over time to track objects and infer
their generative causes. The consequence of this process is a strong,
bidirectional coupling between motion and position perception that
provides a unifying account for a range of perceptual phenomena.
These include motion-induced shifts in perceived position (3–6),
perceptual speed biases (20), slowing of motions shown in visual
periphery (21, 22), and the curveball illusion (16). The presented
model also makes novel predictions about interactions between
position and motion perception—predictions confirmed here. Im-
portantly, we do not fit the model to each experiment, but fit the
parameters to data from experiment 1 and show that the resulting
model accurately predicts subjects’ performance in qualitatively
different and more complex tasks (experiments 2 and 3).

Results
The Tracking Model. To understand the computational principles
that underlie human object tracking, we modeled it using a
Bayesian system that optimally inverts a generative model of
sensory signals to infer the causes of motion and position signals in
the world (Fig. 1 A and B). The model is fully specified by the
generative model that it inverts—a statistical model of world mo-
tions and corresponding sensory measurements. The world model
includes two sources of motion (Fig. 1A): (i) translation of an object
through a scene and (ii) motion of the texture within the object,
which we will refer to as “pattern motion.” Because motions in the
world generally vary smoothly over time, both object and pattern
velocities are correlated over time. We modeled this by assuming
that both velocities follow a stationary Gaussian process (discrete
Ornstein–Uhlenbeck process; Eq. 1 and Supporting Information).
The observer is assumed to have noisy sensory measurements of
(i) object position, (ii) retinal object velocity, and (iii) retinal
velocity of the texture pattern within the object boundaries (which
is equal to the sum of object and pattern velocities) (Fig. 1A). A
simple stochastic model that embodies these constraints (Fig. 1B)
is given in discrete form by the time update equations as follows:

The first term in the motion model simply updates object position
by integrating object velocity over time. The other two terms rep-
resent stationary Gaussian processes that characterize object and
pattern velocities. α and β determine velocity correlations over time
(see Discussion for more details). σv obj and σv pattern specify SDs of
changes in object and object-centered pattern velocities (Ωt repre-
sents unit variance, Gaussian white noise). These parameters
modulate how strongly the model weights new sensory signals vs.
predictions derived from previous signals and the world motion
model. yxt , y

v obj
t , and yv pattern

t represent sensory measurements of
retinal stimulus position on the retina, retinal object velocity, and
retinal velocity of the texture pattern within the object’s boundary.
These are corrupted by Gaussian noise with SDs given by ηx, ηv obj,
and ηv pattern. Because we assume the sensory noise to be Gaussian,
the optimal tracker, which continuously updates its estimates of the
objects’ state variables (xt,v

obj
t , and vpatternt ) from the noisy sensory

measurements (yxt , y
v obj
t , and yv pattern

t ), is known to be a Kalman filter
(19, 23).
Here, the Kalman filter addresses two estimation problems.

First, to optimally track current object states (e.g., position), it

provides optimal weights on the current and past sensory signals.
When sensory signal uncertainty is low, estimates of objects’
states are largely determined by the current signals, showing little
dependence on past signals. Simply stated, sensory history is of
less use when the current sensory signal is accurate. However,
when signal uncertainty is high, the estimates of objects’ states
are strongly influenced by past signals. In this case, integrating
over past signals reduces the effects of sensory noise (19, 23).
Second, the Kalman filter optimally attributes the measured retinal
velocity of texture pattern to (i) object motion and (ii) pattern
motion (Fig. 1A). The optimal solution of the attribution problem
again depends on signal uncertainty. When positional uncertainty is
low, the system can accurately attribute the retinal texture motion to
the actual source(s) of the motion signal. However, when positional
uncertainty is high, pattern motion and object motion should
strongly interact (as detailed next).
To illustrate the model’s behavior, we simulated it on a stan-

dard motion perception stimulus: a translating texture pattern
presented within a stationary contrast envelope. This stimulus is
also used to demonstrate striking perceptual effects of motion on
perceived position: such stimuli appear as shifted in the direction
of the pattern motion [motion-induced position shift (MIPS);
Movie S1] (3–6). The model’s estimates evolve over time from
initial stimulus onset but asymptote to stable values in ∼200 ms
(Fig. S1; also see Fig. 3). The model distributes responsibility for
the measured texture motion (Fig. 1A) to a combination of ob-
ject and pattern motion. Notably, the model attributes more of
the measured texture motion to the object motion when position
uncertainty is high (Fig. 1C, Right)—a reasonable outcome given
the predominance of object motions in the natural world. Conse-
quently, this leads to estimates of object position that are gradually
shifted in the direction of pattern motion as position uncertainty
increases, i.e., the well-known MIPS phenomenon. This model also
provides a novel account of perceptual slowing of pattern motion.
In stimuli with weakly specified boundaries, most of the perceptual

slowing results from attributing some of the pattern motion to
object motion (Fig. 1C, Right) rather than from a stationary slow
speed prior (20) (see Discussion for more details).
These observations lead to several testable predictions. First,

because MIPS magnitude depends on the degree to which the
model assigns responsibility for the texture motion to the object
itself, any change in the stimulus that increases MIPS magnitude
should also decrease the perceived pattern speed. That is, MIPS
magnitude should be negatively correlated with perceived pattern
speed (Fig. 1C; prediction tested in experiment 1). Second, the
model predicts a counterintuitive inconsistency between perceived
position and motion speed. The model’s estimate of object speed
remains nonzero even after the object position estimate has sta-
bilized (prediction demonstrated and tested in experiment 2). This
violation of classical physics derives from the iterative structure of
the model. The tracker uses its estimates of object motion and
position at time t − 1 to predict the object position at time t. It
then integrates the predictive estimate with new sensory position
signals measured at time t to derive the new position estimate.
When the tracker’s speed estimate is nonzero, the predicted

Model  of  motions  in  the  world
xt = xt�1 +Δt · vobjt�1

Observation model
yxt = xt + ηxΩyx

t

vobjt = αvobjt−1 + σv objΩvo
t ; 0≤ α< 1

0≤ β< 1 yv obj
t = vobjt + ηv objΩyo

t

v pattern
t = βv pattern

t−1 + σv patternΩvp
t yv pattern

t = vobjt + v pattern
t + ηv patternΩyp

t

. [1]
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position is shifted in the direction of motion, but is then “pulled
back” by the sensory position signal. The position estimate stabi-
lizes when the two effects exactly balance each other.
To provide a strong test of the model, we used model parameters

fit to the subjects’ perceptual judgments for simple MIPS stimuli
(experiment 1) to predict perceptual judgments for the more dy-
namic stimuli where either stimulus position changed over time
(experiment 2), the pattern motion changed over time (experiment
3; see Fig. 4) or both types of signals changed (see Fig. 5).

Experiment 1: The Interdependency of Motion-Induced Position Shifts
and Speed Perception. To test the prediction that the MIPS magni-
tude should be negatively correlated with perceived pattern speed,
we measured psychometric functions for subjects’ judgments of
position and pattern speed in conventional MIPS stimuli. Test
stimuli contained translational motion moving either up or down
(10°/s) within a stationary envelope. We manipulated the un-
certainty of contour position by (i) using either sharp or fuzzy
contrast envelopes (pillbox or Gaussian) and (ii) presenting stimuli
at different eccentricities (5°, 10°, 15°) (Fig. 2 A–C). Subjects’ po-
sition biases (Fig. 2D) qualitatively replicate previous results (3)—

MIPS magnitude increased with eccentricity. It was also greater
for Gaussian envelopes than for pillbox envelopes. In contrast,
perceived pattern speed was lower for Gaussian envelopes and
decreased with eccentricity (Fig. 2E). Moreover, there was a strong
negative correlation between MIPS magnitude and perceived pat-
tern speed in all subjects (Fig. 2F; all r > 0.89, all P < 0.016). The
best-fitting tracking model (see Supporting Information for model
fitting) exhibited a highly similar pattern of perceptual biases (Fig. 2
D–F; blue data points) and also provided a good fit to subjects’
psychometric functions (Fig. S2). More importantly, we will use
model parameters from this experiment to directly predict percep-
tion for more complex stimuli in experiments 2 and 3. As a notable
aside, the tracker model provides a novel, computationally groun-
ded account of the well-known phenomenon of peripheral slowing
(prominent in Fig. 2E), in which motion stimuli appear slower in the
periphery than near the fovea (21, 22) (Movie S2).

Experiment 2: A Conflict Between Estimated Object Speed and Changes
in Object Position. Velocity is classically defined as a change in po-
sition over time. It seems intuitive, therefore, that a tracker’s esti-
mates of object velocity should match the rate at which its estimate
of object position changes over time. As noted above, a rational
tracker using noisy sensory signals violates this simple physical in-
tuition; when simulated on the MIPS stimulus, even when the
tracker’s object position estimate stabilizes (i.e., the derivative of
position estimates is 0), its estimate of object speed is nonzero.
Using the MIPS stimulus to test this prediction is problematic

because to measure perceived object speed a moving reference
stimulus should be used. This creates a matching ambiguity—
should subjects match perceived object speed or changes in object

A

D E F

B

C

Fig. 2. Experiment 1 stimuli and results. (A) Two types of spatial envelopes.
(B) In the position task, subjects judged whether the right stimulus was
above or below the left stimulus. For the two stimuli to be perceived at the
same vertical locations, the physical location of the downward moving
stimulus has to be higher than the position of upward moving stimulus (as
depicted). (C) In the speed task, subjects judged whether the test stimulus
pattern motion was faster or slower than the reference speed. For the two
pattern speeds to be perceived as equal, the physical speed of the stimulus in
the far periphery has to be faster than the reference stimulus (as depicted).
(D) The position shift increases with increasing eccentricity [F(2,8) = 147.3, P <
10−15] or when the envelope boundary is blurred [F(1,4) = 68.3, P = 0.001]. (E) In
contrast, the perceived speed decreases with increasing eccentricity [F(2,8) =
17.1, P = 0.001] or the envelope boundary is blurred [F(1,4) = 10.4, P = 0.032].
(F) The strong negative relationship between MIPS magnitude and changes in
the perceived speed. The best-fitting model (blue symbols and lines in D, E, and
F) closely fits the data (see Fig. S2 for models fits to the entire dataset).

A

B

C

Fig. 1. Schematic illustration of the object-tracking model and its behavior.
(A) An example of an object with both object boundary motion and pattern
motion. (B) A generative model of the Bayesian observer. White nodes in-
dicate hidden variables and gray nodes indicate observable variables that
are noisy measurements of the connected hidden variables. Arrows indicate
causal links. (C ) Model behavior for a typical MIPS stimulus containing a
moving pattern within a static envelope. The steady-state estimates of the
three object states (position, object velocity, and pattern velocity) are plotted
for different positional uncertainties. At low positional uncertainty, most of
the retinal texture motion is correctly attributed to the pattern motion. Con-
sequently, illusory object motion and MIPS are negligible. At high positional
uncertainty, much of the texture motion is attributed to object motion
(reflecting a prior that object motion is more likely than pattern motion). This
results in relatively low estimated pattern velocity and large MIPS.
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position? To avoid this ambiguity, we adapted the well-known
“curveball illusion” in which a translating object containing a
moving pattern (as in a spinning baseball) appears to follow a
curved trajectory (16) (Movie S3). The experimental stimulus was
shown in visual periphery and contained a pattern moving hori-
zontally and embedded in a circular envelope, the combination of
which moved directly downward at a constant speed (Fig. 3A).
Despite its straight motion path, this stimulus is perceived to follow
a curved trajectory. It initially appears to move obliquely in a di-
rection given by the local retinal motion but ultimately curves back
closer to vertical (although remaining somewhat oblique). The
tracking model accounts for the curveball illusion in much the same
way as it accounts for MIPS. The downward physical motion of the
stimulus trivially generates the downward component of object
velocity. The horizontal pattern motion induces a horizontal shift in
perceived position that grows over time but quickly stabilizes. At
the same time, the model attributes some of the horizontal pattern
motion to the object motion, so that the asymptotic estimate of
object velocity has a nonzero horizontal component, giving it the
appearance of moving obliquely. This leads to a counterintuitive
prediction—subjects should see the object moving obliquely even
after the object’s horizontal position stops changing. This occurs
because the model stabilizes at a point where the attractive pull of
the sensory position signal is balanced by the horizontal position
shift predicted by the model’s estimate of horizontal speed.
To test this prediction, we measured subjects’ final percepts of

object position and motion direction for stimuli with varied dura-
tions (25–500 ms). Fig. 3B contrasts subjects’ estimates of hori-
zontal object speed derived either from (i) their judgments of
motion direction or (ii) their position estimates. As predicted, the
perceived horizontal component of object motion asymptoted at a
positive nonzero value (i.e., subjects continued to perceive the
ball moving obliquely), whereas subjects’ estimates of horizontal
position stabilized after ∼250 ms. That is, there is a sizeable in-
consistency between object speed derived from motion direction
and object speed derived from changes in position. This same in-
consistency is found in the behavior of the tracking model derived
from experiment 1. Despite having no free parameters, the model
matches subjects’ perceptual judgments remarkably well (Fig. 3C).

Experiment 3: Object Tracking vs. Weighted Vector Sum. The existing
explanation of the curveball illusion assumes that pattern and
object motion are erroneously integrated in visual periphery (16, 24).
Thus, the oblique object trajectory (Fig. 3A) is a result of a weighted
vector sum of pattern and object motion signals. Indeed, the oblique
object velocity at a given stimulus duration (Fig. 3B) can be predicted
by the weighted vector sum as long as the perceived object motion
direction is between pattern and object motion directions. The
tracking model, however, produces both the oblique object motion
and matches its temporal dynamics (Fig. 3C) by relying on a general
process that decomposes motion signals into their physical causes.
To further differentiate these two frameworks, we developed

stimuli where the predictions of the tracking model are quali-
tatively different from the weighted vector sum. Specifically,
within a static object envelope, we showed pattern motion that
changed direction at a continuous rate (rotating around the clock
face; Fig. 4A, Top). Both models predict constant-speed, circular
trajectory of object motion, which is consistent with human
percepts (Movies S4 and S5). However, the two models give dif-
ferent predictions about the phase difference between the

A B C

Fig. 3. Experiment 2 stimuli and results. (A) Left panel is a schematic illus-
tration of the curveball illusion stimulus. Thin red line represents pattern
motion, and bold black line represents object motion. Right panel shows the
temporal dynamics of the model’s estimates of object position and velocity
(bold black line). (B) Subjects’ perceived horizontal object velocity as indicated
by two different estimates: by object motion direction (dashed line) and by the
change in object position over time (full line). The results reveal a large conflict
between the perceived horizontal velocity and the change in perceived posi-
tion. (C) Predictions of the object-tracking model closely matches subjects’
estimates of perceived horizontal velocity. The model predictions are derived
from subjects’ data in experiment 1 (i.e., the model has no free parameters).

A B

C

Fig. 4. Experiment 3 stimuli and results. (A) Schematic illustration of the il-
lusory rotation stimulus and models’ estimates of object motion. The upper
image is the actual stimulus—a static envelope with a translating pattern
motion whose direction changes (i.e., rotates) at 1 Hz (Movies S4 and S5). Red
arrows show changes in pattern motion direction. The vector sum model
(middle image) predicts that the estimated object motion direction (black ar-
rows) should be identical to the actual pattern motion direction (red arrows).
The tracking model (bottom image) predicts that the estimated object motion
direction should lead the physical pattern motion direction. In both models,
object trajectory converges to a circular path. (B) Psychophysical data (Left) and
object-tracking model predictions (Right) for the radius of the illusory object
motion. The perceived motion radius increases with increasing eccentricity
[F(2,8) = 26.8, P = 0.0003] or when the boundary of envelope is blurred [F(1,4) =
16.1, P = 0.016]. The same pattern is exhibited by the object-tracking model (as
fitted in experiment 1). (C) Psychophysical data (Left) and object-tracking
model predictions (Right) for the phase difference between the perceived
object motion and the actual pattern motion direction. The phase difference
decreases as the eccentricity increases [F(1,4) = 18.1, P = 0.013], with no signif-
icant effects of the boundary type [F(1,4) = 0.77, P = 0.43]. The object-tracking
model closely matches the human data. We could not measure the phase
difference for the hard boundary condition at 5° eccentricity because observers
did not perceive illusory object motion rotation [the model predicts a very small
rotation radius (0.07°), which is likely below the perceptual threshold].
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physical pattern motion direction and the estimated object
motion direction (Fig. 4A, Middle and Bottom). In the weighted
vector sum model, the estimated object motion direction is identical
to the pattern motion direction. That is because the rotating pattern
motion is the only physical motion stimulus, and thus solely de-
termines the object motion direction. In contrast, the tracking model
predicts that the perceived object direction leads ahead of pattern
motion, and the size of this phase lead depends on the eccentricity
and boundary conditions (Fig. 4C, Right; all model parameters un-
changed from experiment 1). This is because the model’s estimate of
object motion is determined not only by the current pattern motion
but also by the forward prediction from previous state estimates.
To test the model predictions, we presented the same stimuli

used in experiment 1 to the same subjects, but with the direction of
motion within the static envelope changing at 1 Hz (Fig. 4A, Top).
Subjects adjusted the radius and phase of a circularly moving
comparison disk presented at the same eccentricity in the opposite
hemifield to match the perceived motion of the test stimulus. The
radius of perceived illusory object rotation gradually increased
with increasing eccentricity (Fig. 4B, Left) and was also larger for
soft than for sharp boundaries. More importantly, we found a
significant phase difference between comparison and test stimuli,
magnitude of which decreased with eccentricity (Fig. 4C, Left).
The tracking model, without any free parameters, reproduces the
same pattern of results (Fig. 4 B and C, Right). If the basic vector
sum model is amended with three MIPS-related parameters (two
for the eccentricity dependency; one for the envelope effect), it
can also account for the perceived rotation radius (R2 = 0.93).
However, even with those extra parameters, the vector sum model
cannot predict the observed phase lag (Fig. 4C, Left).
To further test the predictive ability of the tracking model, we

modified the rotating pattern motion stimulus by rotating the
entire object in the direction opposite to the pattern motion (Fig.
5A). The tracking model predicts that these two motions combine
to create nontrivial motion percepts that depend on the stimulus
eccentricity. When viewed near foveally, the model’s estimate of the
object’s trajectory is like a soft-cornered diamond with the rotation
direction matching the actual object motion (Fig. 5B). However, as
the stimulus is moved further into the visual periphery, the model’s
estimate of the object trajectory transitions through a near-linear
motion to a near-elliptical motion, now rotating in the opposite
direction from the actual object motion. The reader can test this
illusion predicted by the model by viewing Movie S6.

Discussion
We present an object-tracking model that provides a unifying ac-
count of both motion and position perception and, significantly, of
interactions between these two key visual features. The strongest
evidence for the object-tracking framework is that a model fit to

one aspect of perception (a conventional MIPS stimulus) easily
generalizes to predict perception in qualitatively different tasks
(more complex stimuli in experiments 2 and 3).
Although it is well accepted that motion influences position

percepts (e.g., MIPS), computational models of underlying mech-
anisms have been lacking. The tracking model explains how sensory
position and motion signals are integrated, an account that predicts
quantitative features of MIPS. The tracking model also makes novel
predictions about interactions between position and speed percep-
tion. These predictions, confirmed in experiments 1 and 2, run
counter to a naïve model where subjects’ percepts of object position
and speed should maintain internal consistency. Namely, once one’s
percept of object position stabilizes, no motion should be attributed
to the object (i.e., detected motion should be attributed to pattern
motion within the object). Moreover, the perceived object speed
should be zero, and the pattern speed should be independent of the
MIPS magnitude. Instead, subjects’ percepts of object motion re-
main biased in the direction of pattern motion even after their
percepts of object position stabilize (Fig. 3) and their percepts of
pattern speed decrease with increasing position biases (Fig. 2).
What is perhaps most surprising in the results is the strong in-

fluence of position signals on the perceived motion speed—a result
that can be considered a mirror image of the MIPS effects. Notably,
this indicates that motion perception cannot be isolated from po-
sition signals. Even in the simple displays with no changes in object
position, we show perception is driven by the output of an object-
tracking system.
The tracking model extends the notion of a prior toward slow

speeds (20, 25) into the temporal domain. Two properties of the
model contribute to slow-speed biases in perception. First, the
model distributes responsibility for sensory motion signals to ob-
ject and pattern motion, such that noisy position signals lead the
model to attribute more of the motion signal to object motion
(Fig. 1C). This results in slower pattern speed for blurred and
peripherally presented stimuli (Fig. 2E). Second, for the motion
model to be stationary (i.e., to reflect the fact that the distribution
of velocities in the environment does not diverge over time), the
parameters α and β must be less than 1. The result is a prior on
motions that, on average, tend to decelerate over time (objects
may accelerate or decelerate, but, on average, they eventually slow
down). This slowing prior predicts perceptual slowing that in-
creases with increasing motion uncertainty—conditions normally
used to estimate the conventional slow speed prior (20, 25).
The model provides a rational account of how the visual

system estimates both pattern and object motion. We addressed
this question by investigating distortions in object motion per-
cepts. These distortions are conventionally explained as the
result of processes that integrate local and global motion sig-
nals (pattern and object motion, respectively). For example,
accounts of the curveball illusion reason that local and global
motion signals are integrated in the periphery, but not in the
fovea, where the visual system can segregate conflicting motion
signals (16). In the current model, the transition between in-
tegration and segregation depends not on eccentricity per se,
but on a process that makes rational inferences about the
causes of motion in the world—a process affected by both the
uncertainty of motion signals and the uncertainty of object
position. When object position signals are uncertain, the model
naturally attributes more of the pattern motion to object mo-
tion. This bias is consistent with the higher prevalence of object
motions in the world. When object position signals are reliable,
the model resolves conflicts between position and motion sig-
nals by attributing more of the motion to object-relative pattern
motion. The former appears as “integration” and the latter as
“segregation” (26). Thus, the current model can be taken as a
computational formulation of the transition between motion
integration and segregation. One factor not considered by the
model is whether these computations are taking place in retinotopic

A B

Fig. 5. A novel illusion predicted by the tracking model. (A) We added
circular object motion (black arrows) to a stimulus whose pattern motion
(red arrows) rotates in the opposite direction (orange arrows). (B) The
tracking model predicts that the percept follows the object motion direction
at near eccentricities and pattern motion direction at far eccentricities, i.e.,
the direction of perceived object rotation changes. Notably, at an interme-
diate eccentricity, the object is predicted to oscillate along a nearly linear
trajectory. This prediction can be confirmed by viewing Movie S6.
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or spatiotopic coordinates (27). For simplicity, we assumed
that all computations are in a retinal reference frame. Future
work will need to determine, for example, whether the tracking
system state is maintained in retinotopic and/or spatiotopic
reference frame.
The tracking model encompasses what researchers have al-

ternately labeled attention-based motion (9, 12) or third-order
motion (10, 11) systems. These mechanisms are thought to
compute motion by tracking features, object boundaries, or
salience over time. This higher-level motion system is often
framed as a parallel motion pathway; however, the current
model suggests a somewhat different conceptualization. This
motion system is the integration locus of motion signals de-
rived from low-level motion systems with position signals for
object tracking. It only appears as a distinct system when
studied with stimuli that do not engage low-level motion
mechanisms (11, 28) or stimuli where motion direction is
ambiguous (9, 12). In the current model, such stimuli would
generate uninformative motion signals, but informative posi-
tion signals. Consequently, the model infers object motion
from position changes. Several lines of evidence, including
lesion (29) and functional MRI studies (30), indicate that the
inferior parietal lobule (IPL) is important for the perception of
motion stimuli that do not activate low-level motion detectors.
Thus, IPL may be critical for integrating sensory signals over
time to track objects, although interactions between motion
and position may also occur at earlier stages (6, 8).
In summary, we present and test a theoretical framework that

provides a unifying account of our ability to perceive both ob-
ject motion and object position. By conceptualizing these two
important aspects of our perceptual experience in the context
of object tracking, we show that the resulting model can explain a
number of seemingly independent phenomena. At a computational
level of description, the tracking model fits into the general class of
models that implement causal inference. In perception, the causal
inference framework explicitly recognizes that sensory signals
come from multiple generative causes and that our percepts are
shaped by processes that infer the generative causes of those sig-
nals. Although this approach has proven particularly fruitful in
explaining nonlinear features of sensory cue integration (17, 18)

and sensorimotor adaptation (31), it applies to numerous aspects
of visual perception that require distribution of responsibility for
sensory signals across different generative causes. Lightness per-
ception, for example, reflects the output of a process that takes into
account the contributions of surface shape and illumination on local
luminance gradients (32). The mechanisms by which the brain
solves these problems, here modeled using a Kalman filter, are
central to how humans integrate (or segregate) sensory signals to
perceive the world.

Materials and Methods
Extendedmaterials and methods may be found in SI 2: Materials andMethods.

Ten subjects participated in this study. The University of Rochester Re-
search Subjects Review Board approved all procedures. Written informed
consent was obtained from subjects. All experiments used the same base
stimuli: a moving, low-pass–filtered noise pattern shown in a circular contrast
envelope. Unless noted, stimulus speed was 10°/s. A 2° fixation window was
enforced with an eye tracker. In Experiment 1 position task, subjects viewed
pairs of stimuli presented along the horizontal midline at one of three
eccentricities (5°, 10°, 15°) with pattern motion in opposite vertical directions
and discriminated the vertical stimulus position (Fig. 2B). In Experiment 1
speed task, a test stimulus in a stationary envelope (pillbox or Gaussian) was
presented at one of three horizontal eccentricities (5°, 10°, 15°). A reference
pillbox stimulus was displayed in the opposite hemifield at 5° eccentricity (Fig.
2C; this stimulus leads to a minimal MIPS). Subjects indicated which stimulus
contained faster motion. For both tasks, a method of constant stimuli was used
(Fig. S2). In Experiment 2, the test stimulus (Fig. 3A) was a Gaussian envelope at
10° horizontal eccentricity that moved downward (4°/s) while the stimulus
pattern moved horizontally (10°/s). Subjects judged either the direction of
the “object” motion (direction task) or its horizontal position (position task)
at the end of the stimulus presentation. Results were fit with cumulative
Gaussian functions, from which we estimated subjects’ perceptual biases. In
Experiment 3, a test stimulus (Fig. 4A) and a comparison disk (r = 0.65°) were
presented at the same horizontal eccentricity (5°, 10°, or 15°) in opposite sides
of visual field (Movie S5). Subjects adjusted both the radius and the phase
of the comparison stimulus to match the perceived object motion of the
test stimulus.
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