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Because of uncertainty and noise, the brain should use accurate
internal models of the statistics of objects in scenes to interpret
sensory signals. Moreover, the brain should adapt its internal
models to the statistics within local stimulus contexts. Consider
the problem of hitting a baseball. The impoverished nature of the
visual information available makes it imperative that batters use
knowledge of the temporal statistics and history of previous pitches
to accurately estimate pitch speed. Using a laboratory analog of
hitting a baseball, we tested the hypothesis that the brain uses
adaptive internal models of the statistics of object speeds to plan
hand movements to intercept moving objects. We fit Bayesian
observer models to subjects’ performance to estimate the statistical
environments in which subjects’ performance would be ideal and
compared the estimated statisticswith the true statistics of stimuli in
an experiment. A first experiment showed that subjects accurately
estimated and used the variance of object speeds in a stimulus set to
time hitting behavior but also showed serial biases that are subop-
timal for stimuli that were uncorrelated over time. A second exper-
iment showed that the strength of the serial biases dependedon the
temporal correlations within a stimulus set, even when the biases
were estimated from uncorrelated stimulus pairs subsampled from
the larger set. Taken together, the results show that subjects adap-
ted their internal models of the variance and covariance of object
speeds within a stimulus set to plan interceptive movements but
retained a bias to positive correlations.
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Many sensorimotor tasks involve active interactions with mov-
ing objects and therefore, require accurate estimates of object

velocity. Because sensory motion signals are noisy, the visual system
should use knowledge of the statistics of object velocities to in-
tegrate sensory motion information with the velocity predicted by
the history of previously observed stimuli. The fact that stimulus
history biases perceptual judgments is well-known. Broadly speak-
ing, it appears in two ways—biases to (or away from) the mean of
a stimulus distribution (1–9), referred to as central-tendency biases,
and biases to (or away from) recently observed stimuli (10–16),
referred to as n − 1 biases.
It has been proposed that central-tendency biases reflect the

behavior of a perceptual system that optimally integrates noisy
sensory measurements with prior knowledge of the distribution of
stimulus values to make perceptual judgments (2, 4, 7–9). Evi-
dence for this hypothesis comes from studies showing that central-
tendency biases in perceptual judgments increase when the sensory
uncertainty of a stimulus increases (4) or the variance of a stimulus
set decreases (2, 7–9). It also has been suggested that observers
learn the mean and variance of a stimulus distribution in a statis-
tically optimal fashion (8) and continuously update internal esti-
mates of mean and variance (7). However, n − 1 biases in
perceptual judgments, perhaps because they are clearly sub-
optimal when stimulus sequences are independent, have typically
been regarded as a sensory fusion between consecutive stimuli
(16) (for example, as might be caused by short-term adaptation or
priming mechanisms). Like central-tendency biases, however, n− 1
biases may also be a consequence of statistical inference, albeit

using an incorrect assumption that successive stimuli are corre-
lated with one another.
Although one can always retrofit a statistical model to account

for observed perceptual biases (as had been done for speed judg-
ments) (17), the strong prediction of the probabilistic model of
human perceptual inference is that observed biases (both to the
mean and the preceding stimulus) will adapt to changes in the
global statistics within a stimulus set. We tested this prediction for
perceptual estimates of object speed used to plan handmovements
to intercept a moving object (6, 14–16). Most previous studies of
perceptual biases have used some form of perceptual report of the
stimulus dimension of interest. Although simple and direct, this
approach confounds response biases with perceptual biases, and it
is unclear whether the reported biases generalize to the perceptual
computations embedded in behavior. We, therefore, measured
biases in subjects’ estimates of object speed indirectly through their
performance on a sensorimotor task requiring subjects to extrap-
olate the motion of a briefly viewed target object. Subjects viewed
a target object moving at constant speed before it disappeared
behind an occluder. They were asked to hit the target with their
finger when it reached an impact zone located at variable distances
from the edge of the occluder (see Fig. 1). We used the timing of
subjects’ hitting movements to infer the statistical properties of
their speed estimates.
Although it complicates the data analysis and modeling, this

approach has two advantages over previous studies that used direct
perceptual reports of a stimulus parameter. First, it probes the
perceptual computations embedded in a natural sensorimotor
task. Second, it sidesteps the potential confound between per-
ceptual and response bias that is inherent in studies that use direct
perceptual report. In particular, the sensorimotor paradigm allows
us to experimentally disassociate the statistics of the response
variable (time that the object reaches the impact zone) from the
statistics of the signal that we are studying (object speed). By
manipulating the statistics of the distance to the target zone, we
can keep the statistics of time-to-impact zone constant across
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experimental conditions in which we vary the statistics of object
speeds, ensuring that differences in subjects’ behavior across
conditions truly reflect perceptual adaptations to the statistics of
object speed.
In a first experiment, we tested whether subjects adapted their

central-tendency biases to stimulus statistics by testing subjects in
stimulus contexts with different speed variances. In a second ex-
periment, we tested whether n − 1 biases adapted to changes in
the trial-to-trial correlations within a stimulus set. To measure
how well subjects adapted to the statistics of the experimental
stimulus sets, we fit subjects’ data using a Bayesian observer model
that incorporated an internal model of the temporal statistics of
stimulus speeds. The internal model fit to subjects’ data provides
a characterization of the environment in which subjects’ perfor-
mance would be optimal. As such, it provides a quantitative
characterization of the statistical environment to which subjects’
estimations strategies are tuned in any given experimental con-
dition and allows us to measure how well their estimation strat-
egies adapted to the statistics within a stimulus set.

Results
Fig. 1 illustrates subjects’ task. A virtual ball moved along a ta-
bletop before disappearing behind an occluder. Subjects were
told to hit the ball when it passed under an impact zone painted
over the occluder (Fig. 1B). If successful, the ball reappeared and
exploded. If not, it simply reappeared in its position at the time
that the subjects’ fingers made contact with the table (providing
quantitative error feedback). In a first experiment, the speed of
the ball and the position of the impact zone were drawn ran-
domly and independently from fixed probability distributions
across trials. We ran three groups of subjects in conditions with
low, medium, and high variances in target object speeds. The
distribution of distances from the front edge of the occluder to
the center of the impact zone was set to correspondingly high,
medium, and low variances to equate the variance in the time
that it took the ball to reach the center of the impact zone across
the three conditions. To maximize the variance of target speeds
across trials while maintaining reasonable upper and lower bounds

on the speeds, we used uniform distributions in log space for
both velocity and distance (Fig. 1C).
Twenty-four subjects (eight subjects in each variance condi-

tion) ran in one session of six blocks of 100 trials each. Another
set of 24 subjects ran in two sessions on different days to explore
possible long-term learning effects. We first analyzed data from
only the first session for all 48 subjects. We treated the first two
blocks of a session as training trials and discarded those blocks
from the analysis, in accord with previous results showing that
adaptation to changes in mean occurs very fast, whereas ad-
aptation to changes in variance takes 100–200 trials (8).
Subjects’ timing performance could have been influenced by

separate biases in estimates of target speed and distance traveled
behind the occluder or simple timing biases. To provide an initial
insight into which of these biases affects subjects’ performance,
Fig. 2A shows subjects’ average timing biases in each of the three
experimental conditions as a function of target speed and dis-
tance to impact zone. The brightness of each pixel represents the
log ratio of subjects’ hitting time and the time-to-impact zone
computed from the stimulus speed and distance. Dark pixels
represent early hits, and light pixels represent late hits. Both axes
and time values are given in log units, because the relationship
between the time-to-impact zone, speed, and distance is linear in
log space (log T ¼ log D− log V ). The raw data show that sub-
jects’ behavior does not reflect a simple timing bias, which would
appear as 45° iso-bias lines in Fig. 2 (because stimuli with equal
times-to-impact zones are given by lines with a slope =1 in
Fig. 2). Rather, the apparent iso-bias lines appear slanted slightly
away from vertical, suggesting that subjects’ timing behavior is
more heavily influenced by speed biases than distance biases.
Moreover, the size of the biases for any particular stimulus speed
depends on the distribution of speed in the stimulus. For in-
stance, the biases are stronger for a log speed of 2.3 in the low-
speed variance condition (gray scales are darker in that column)
than the same speed in the high-speed variance condition.
To quantify the influence of sensory signals on subjects’ hitting

behavior, we regressed subjects’ hitting times against the speed
and distance presented in the current trial and previous trials (in
log space). The regression equation becomes:

Lti ¼
 
wd
0 Ldi þ

XN
j¼1

wd
j Ldi−j

!
−

 
wv
0 Lvi þ

XN
j¼1

wv
j Lvi−j

!
þ k; [1]

where i is the trial number, k is a constant bias, and Lt, Ld, and
Lv are log-hitting time, log distance, and log speed, respectively.
We performed the regression in log space, because the relation-
ship between true time, distance, and speed is linear in log space.
By doing so, we implicitly assumed that perceptual uncertainty in
speed and distance estimation as well as production noise in
motor timing are constant in log space. This assumption is con-
sistent with psychophysics showing that variance in these percep-
tual and motor quantities at least approximately follows Weber’s
law (18–20). Fig. 2B shows the results of the regression analysis.
A cross-validation test (SI Text, section 1) showed that including
only the immediately preceding target speed in the regression
and none of the preceding target distances provided the best fit
to subjects’ data. Thus, subjects’ behavior is influenced by the
speed of the target on the previous trial but not the distance to
the impact zone on the previous trial.
What is immediately apparent from Fig. 2B is that the weights

to the speed and distance terms differ markedly from each other;
in particular, speed biases are significantly larger than distance
biases. To visualize the biases more directly, we can reexpress the
regression equation to include an explicit term for subjects’ biases,
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Fig. 1. The schematic illustration of experimental setting (A) and the ar-
rangement of target, occluder, impact zone, and starting cross in the
working space (B). The starting position of the target was chosen so that the
time that it was visible before disappearing behind the occluder was 400–
600 ms. A hit was recorded if a subject’s finger touched the red impact zone
at any position touching on the hidden target. (C) Histograms of target
speed, distance to impact zone, and time to impact zone in each of the three
conditions. The variances of time to impact zone were equivalent across
conditions in log space and had exactly equivalent distributions in the low-
and high-speed variance conditions.
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Lti ¼
h
wd
μμLd þ

�
1� wd

μ

�
Ldi
i

�
h
wv
μμLv þ wv

1Lvi�1 þ
�
1� wv

μ � wv
1

�
Lvi
i
þ k′; [2]

where μLd and μLv are the standard distances and speeds to
which subjects’ estimates are biased. We have written Eq. 2 to
represent the best-fitting model derived from the cross-validation
analysis, which has no n − 1term for distance and contains no
speed terms for trials preceding the n-first trial. One cannot
estimate the values of μLd and μLv from timing data alone, but
inspection of Eqs. 1 and 2 shows that we can calculate the values
of the bias weights, wd

μ and wv
μ, from the weights in the original

regression as wd
μ ¼ 1−wd

0 and wv
μ ¼ 1−wv

0 −wv
1. Fig. 2C replots the

regression weights in this form, where the weights can now be
interpreted as subjects’ biases to an internalized standard and the
previous stimulus.
Both the biases to a standard speed and the speed of the

previous target were significantly greater than zero [t(47) =
10.06, P < 0.001; t(47) = 7.31, P < 0.001], and both differed
significantly across speed variance conditions [F(2,45) = 17.04,
P < 0.001; F(2,45) = 7.78, P = 0.001]. The results of the

regression analysis bear out the qualitative prediction of the
hypothesis that subjects use a statistical strategy to combine
sensory information with prior knowledge of speed statistics—
that biases to an internalized estimate of the mean should de-
crease with increasing speed variance. The bias to the speed of
the previous stimulus, however, is clearly suboptimal, because
target speeds were uncorrelated from trial to trial.
The distance bias term from the regression, wd

μ, although sig-
nificantly greater than zero [t(47) = 2.90, P= 0.006], did not differ
significantly across variance conditions [F(2,45)= 2.79, P=0.072],
which would be expected from a strategy that computes time using
a statistically biased estimate of distance. When we include n − 1
distance term in the regression, subjects’ hitting times were
not significantly biased by the distance in the previous stimulus
[t(47) = 1.00, P = 0.32], a result supported further by the cross-
validation analysis. Both the central-tendency and n− 1 bias terms
for distance were significantly different from the same bias terms
for speed [central tendency: t(47) = 6.97, P < 0.001; n − 1: t(47) =
3.94, P < 0.001]. The difference conclusively shows that subjects’
biases did not result from biases in hitting time, because biases in
hitting time would predict equal bias terms for speed and distance
(because Lt = Ld − Lv). Moreover, the pattern of distance biases
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Fig. 2. Results of experiment 1. (A) Subjects’ timing biases as a function of stimulus velocity and distance in log space (aggregated over all subjects). The
brightness of each pixel represents the log ratio of subjects’ average hitting time to the hitting time predicted by the true stimulus speed and distance. Dark
bins represent early hits, and light bins represent late hits. (B) Weights derived from the regression averaged across 16 subjects in each of the three variance
conditions. (C) The weights for speed derived from the rearranged regression (Eq. 2), including the weight to an internalized standard speed and the weight
to the speed of the previous stimulus. Blue curves show the regression results derived by simulating the best-fitting Bayesian observer models for each subject
in the exact experimental and stimulus conditions used in the experiment.
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across variance conditions is inconsistent with the behavior of a
statistically optimal estimator of distance, because even if we treat
the results of the t test as significant, it decreases with decreasing
variance in stimulus distances. This inconsistency suggests that
the biases in speed and distance derive from qualitatively differ-
ent processes, a point that we return to in Discussion.
The results provide seemingly mixed evidence for the hypothesis

that subjects’ use an adaptive internal model of stimulus statistics to
estimate target speed in this task.On the plus side, central-tendency
biases decrease as speed variance increases within a stimulus set, as
predicted. On the negative side, the observed n − 1 biases do not
match the statistics of the stimuli in the experiment, which were
uncorrelated from trial to trial.We hypothesized that subjects’ n− 1
biases do, in fact, result from an adaptive statistical estimation
process but one that is biased to a prior belief that stimuli are
correlated from trial to trial. The strong prediction of the adaptive
estimation hypothesis is that, even if their behavior is suboptimal in
an absolute sense, subjects will adapt their n − 1 biases to the cor-
relations within a stimulus set. Experiment 2 tested this prediction.
In experiment 2, one group of subjects was tested using target

speeds with a strong positive trial-to-trial correlation (ρ ¼ 0:6—
positive-correlation condition), and another group was tested
using target speeds with a strong negative trial-to-trial correla-
tion (ρ ¼ 0:6—negative-correlation condition). Target speeds
were generated as samples from a stationary random walk (a
discrete form of Ohrnstein–Uhlenbeck process) given by the
state update equation

Lviþ1 ¼ μLv þ αvðLvi − μLvÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1− α2v

q
ωLv; [3]

where μLv is the mean speed of targets, αv is set equal to the
desired correlation in target speeds from trial to trial, and ωLv is
a white noise process with variance that is equal to the variance of
target speeds. The variance of target speeds was equated across
conditions. Fig. 3A shows example time courses of target speeds
in each of the conditions. In both conditions, the same process
was used to generate occluder distances but with trial-to-trial
correlations set opposite to the correlations of target speeds. This
manipulation guaranteed that stimuli contained no trial-to-trial
correlations in the predicted times to impact zone for the targets.
To test whether subjects adapted to the different correlations

in the two conditions, we applied the same regression analysis as
in experiment 1 to the data from experiment 2. Fig. 4 shows the
regression weights for the speed terms. The results for distance
were similar to experiment 1 (little bias to the mean and no bias

to the previous stimulus). To avoid possible sampling artifacts
created by the fact that the difference between successive stim-
ulus speeds was very different in the two conditions, we used a
Monte Carlo subsampling technique (Methods and Fig. 3B) to
select successive pairs of trials for which the joint statistics (both
in speed and distance) were the same in the two correlation
conditions. For the subsampled pairs of trials used in this analysis,
the mean and variance of trial-to-trial differences in both speed
and distance were the same in both stimulus conditions. Similarly,
the pairs of trials used in the analysis contained no correlations
between target speeds or distances to the impact zone. Sub-
sampling eliminated 60% of trials from the analysis. As shown in
Fig. 4, the results of the regression analysis did not change
when only the subsampled trial pairs were used. The regression
applied to the subsampled data shows that subjects’ biases to
the mean speed did not change across correlation conditions
[F(1,29) = 0.30, P = 0.588], but subjects’ biases to the previous
target speed were significantly lower in the negative-correlation
group than the positive-correlation group [F(1,29) = 5.31, P =
0.029]. Results confirm the prediction of our hypothesis that
subjects adapt their n − 1 biases to the correlations within
a stimulus set.

Modeling
To understand the computational basis for subjects’ performance,
we fit an observer–actor model that combined a Bayesian esti-
mator of target speed with a model that mapped the speed esti-
mate and the occluder distance to a hitting time. The Bayesian
estimator model treats subjects as ideal observers for a stimulus
environment with well-specified statistics for trial-to-trial varia-
tions in target speed and the sensory noise on speed estimates. The
parameters of the model fit to each subjects’ data specify the sta-
tistical environment in which each subject’s behavior, at least in
regards to speed estimates, would be optimal. Unlike previous
approaches using Bayesianmodeling, the goal of our analysis is not
to test whether subjects are Bayesian but rather, to assume that
they are (a weak assumption, because Bayesian models are fairly
general) and use modeling analysis to understand what kind of
statistical model that subjects use to estimate speed, test whether
subjects adapt appropriately to the statistics of stimuli, and eluci-
date where their performance is maladaptive.
Although we are most interested in the observer model for

speed estimation, fitting that model to subjects’ data requires the
second component of the full observer–actor model—how speed
estimates and occluder distance map to hitting time. Existing ev-
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idence suggests that, when performingmotion prediction tasks like
the one used here, humans attentively track objects after they dis-
appear behind an occluder (21). A tracking model would account
for the observed differences between the speed and distance bias
terms derived from the regression analysis. Unfortunately, fitting
a tracking model to subjects’ data is computationally intractable.
We, therefore, fit a simplified model to subjects’ data that is based
on the expected behavior of a suboptimal generalization of a per-
fect, noiseless tracking system.
A perfect tracker will hit the impact zone at the time that its

internal estimate of target position reaches the center of the
impact zone. Assuming a noiseless tracker, the equation for
hitting time is given in log space by

L̂ti ¼ Ldi −Lv̂i; [4]

where L̂ti is the log-hitting time on trial i, Ldiis the true occluder
log distance on that trial, and Lv̂i is the estimate of log-target
speed derived from sensory speed signals on that trial and pre-
vious trials. Because it is unrealistic to assume that subjects are
perfect trackers, we fit subjects’ data using a generalized linear
model that assumes that the tracking system induces both biases
and noise in the timing of subjects’ hitting movements. The gen-
eralized model is given by

L̂ti ¼ wdLdi þ k−Lv̂i þ ηi; [5]

where wd and k are multiplicative and additive bias terms (in log
space) and ηi is additive white Gaussian noise. Modeling the re-
sponse (timing) noise as additive in log space is done here for
computational convenience; however, in SI Text, section 3, we
show that a linear tracker that integrates a noise-corrupted inter-
nal estimate of target speed over time produces hitting times with
biases and noise characteristics that are well-approximated by
this model.
We model subjects’ estimates of log speed as the outputs of

a Bayesian estimator that computes the mean of a posterior
probability density pðLvijLvsensei ;Lvsensei−1 ; :::Þ computed using a par-
ticular statistical model of target speeds. Themodel operates in log
space and assumes that target speed variations from trial to trial
are generated by the same model used to generate the stimuli in
experiment 2—a discrete form of an Ohrnstein–Uhlenbeck pro-
cess (Eq. 3). Unlike a simple random walk model, the Ohrnstein–
Uhlenbeck process has the desirable property that it is stationary
with finite variance (given by the variance of the noise process

ωLv). Sensory observations are modeled as noisy versions of the
true target speed on each trial

Lvsensei ¼ Lvi þ ηLv; [6]

where ηLv is constant-variance Gaussian white noise. The sensory
noise model, because it is constant variance in log space, displays
Weber law behavior in speed discrimination, which has been
shown experimentally (18).
The optimal estimator for target speed is given by the standard

Kalman filter equations. The posterior mean speed for a given
trial is given by a weighted sum of the mean speed in the stimulus
set, the estimate of speed from the previous trial, and the noisy
sensory speed signal measured on that trial:

Lv̂i ¼ wμμLv þ w1Lv̂i−1 þ
�
1−wμ −w1

�
Lvsensei : [7]

The weights in the update equations are determined by the
variance of sensory noise, the assumed variance in the stimulus
set, and the assumed trial-to-trial correlation between stimulus
speeds (αv). Given the long delays between the beginnings of
each trial (∼5 s), it is likely that the internal estimate of the
previous target speed used to estimate the target speed on any
given trial is corrupted by memory noise. We, therefore, included
in the model a term for internal memory or state noise. The
resulting recursive estimator equations are given by

Lv̂i ¼ wμμLv þ w1Lv̂
mem
i− 1 þ �1−wμ −w1

�
Lvsensei

Lv̂mem
i ¼ Lv̂i þ ωmem

; [8]

where ωmem is the internal Gaussian memory noise source. The
optimal weights for an estimator with memory noise in the in-
ternal state estimates are given in SI Text, section 2. Eq. 8, com-
bined with Eq. 5, describes the full observer–actor model for
hitting times on each trial.
We used a hierarchical Bayesian model to estimate population

means of the observer–actor model parameters that best charac-
terize each subject’s performance. The model assumes that the
observer–actor parameters characterizing each subject are drawn
from population distributions with unknown parameters (e.g.,
means and SDs).WeusedMarkov ChainMonteCarlo technique to
compute the posterior probability density functions on the ob-
server–actor model parameters that characterize individual sub-
jects’ performance (Methods). Themeans of these posteriors can be
thought of as the best-fitting observer–actor model parameters to
each subject’s data. We also used the results of Markov Chain
Monte Carlo sampling to compute posterior probability density
functions for the population means of observer–actor parameters.
The means of these posteriors serve as best estimates of the pop-
ulation means of observer–actor parameters characterizing all po-
tential subjects’ performance in the task, whereas the ranges of
values that contain 95% of the posterior density around the mean
provide uncertainty bounds on these estimates, referred to in
Bayesian data analysis as credible intervals. Like confidence inter-
vals in classical statistics, credible intervals form the basis for testing
for differences between populations in Bayesian data analysis.
We simulated the performance of observer–actor models fit to

each subject’s data in experiment 1 (using the actual sequence of
stimulus values presented to each subject) and performed the same
regression analysis on the model observers’ timing behavior in the
task. Fig. 2C plots the model observers’ weights for comparison
with subjects’ weights. As can be seen in Fig. 2C, the model
observers’ regressionweights fit subjects quite well. Themodel also
captured the variability in subjects’ performance. Fig. 5A shows
scatter plots of the hitting time on each trial as a function of the
stimulus-specified time to impact zone for both model and human
observers. Fig. 5B plots the SD of the residual errors for the model
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observers against the SD of the residual errors for the matched
human subjects.
The best-fitting sensory noise SD was 0.14 in log units (95%

credible interval = 0.12, 0.17), equivalent to the same Weber
fraction. This value is higher than most psychophysical estimates
of the Weber fraction for speed discrimination derived from
experiments using fixation (between 0.05 and 0.1 for similar
stimulus conditions) (18); however, it is very close to the Weber
fraction estimated from one study (22) that had subjects track
moving targets (mean Weber fraction = 0.15), which subjects are
likely to have done in the current experiment. The SD of memory
noise fit to subjects’ data was significantly greater than zero (95%
credible interval = 0.06, 0.16), justifying its inclusion in themodel.
Fig. 6 shows estimates of the population means for the statistical

model parameters effectively used by subjects to estimate target
speed, with 95% credible intervals for all parameters. The results
are consistent with what would be, on average, optimal adaptation
to the variance of target speeds in a stimulus set (the true speed
variances are within the 95% credible intervals for the population
mean of that parameter fit to subjects’ data) (Fig. 6A). However,
the population mean for the assumed trial-to-trial correlation in
target speeds was significantly greater than zero (95% credible
interval for μα = 0.40, 0.54) (Fig. 6B). Thus, on average, subjects
performed near-optimally with regard to their internalized models
of speed variance but suboptimally with regard to their in-
ternalized models of trial-to-trial speed correlations.
Twenty-four subjects ran in the experiment for 2 d (eight sub-

jects in each variance condition). To examine the effect of learning
over the two sessions, we calculated the population mean of sub-
jects’ fitted observer–actor model parameters separately for the
two sessions and estimated the population mean changes in the
variance and correlation parameters for subjects from session 1 to
session 2. As can be seen in Fig. 6C andD, the changes in subjects’
internal models of speed variance were in the right direction
(compare with the average changes needed to match the true
speed variance in each condition) but not significantly different
from zero (95% credible interval = −0.19, 0.06). The changes in
subjects’ internal models of trial-to-trial correlations were also in
the right direction (decreasing from session 1 to session 2) and
marginally significant (95% credible interval = −0.31, 0.02).
We applied the same analysis to the data in experiment 2.

First, we simulated the performance of observer–actor models fit
to each subject’s data. Fig. 4 plots the model observers’ weights
for comparison with subjects’ weights. The model observers’
regression weights fit subjects quite well.
Fig. 7 shows the results of fitting the Bayesian model to sub-

jects’ data in experiment 2. Although subjects’ internal models of
speed variance were not significantly different between groups

(95% credible interval on the difference in speed variance = −2.90,
0.73), their internal models of trial-to-trial correlations were
significantly different (95% credible interval on the difference in
speed trial-to-trial correlation = −0.68, −0.16). Subjects’ internal
estimates of trial-to-trial correlations were lower in the negative-
correlation condition than the positive-correlation condition,
showing that subjects adapted their internal model of stimulus
correlations in the right direction to match the stimulus statistics.
The model estimates of subjects’ Weber fractions for speed and
their internal memory noise were very similar to the parameters
estimated in experiment 1. The Weber fraction for speed fit to
subjects’ data in experiment 2 was 0.14 (95% credible interval =
0.11, 0.16), and the SD of the memory noise on internal esti-
mates of speed was 0.16 (95% credible interval = 0.08, 0.20).

Discussion
The Bayesian model fit to subjects’ data shows that their per-
formance is consistent with the true statistics of target speeds in
two aspects. First, the close match between the true variances
within a stimulus set and the fitted models’ estimates of speed
variance shows that subjects internalize accurate estimates of
speed variance. Second, the fitted levels of noise on sensory
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speed signals closely approximate the Weber fractions measured
in an experiment using similar viewing conditions (in which
subjects were asked to track targets) (22). This pair of observa-
tions lends credence to the hypothesis that subjects use adaptive
internal models of speed statistics to estimate object speed to
plan motor actions.
The finding that subjects accurately adapt their central-tendency

biases to the statistics of the stimulus set mirrors the results of sev-
eral recent studies showing similarly optimal central-tendency biases
in a number of perceptual and sensorimotor domains—estimating
time intervals between sequentially presented stimuli (4) and judg-
ing distance and direction traveled fromoptic flow (23), coincidence
timing (9), pointing (7), and more cognitive judgments of hidden
target location (8). Thus, the current results add to the growing
body of evidence that the brain continuously adapts and uses in-
ternal models of the first-order statistics of scene parameters (mean
and variance) to estimate those parameters from sensory data.
The current results on central-tendency biases differ from ear-

lier studies in two important ways. First, previous studies used tasks
that directly measured subjects’ estimates of a stimulus parameter,
potentially confounding response biases with perceptual biases.
The current study, largely because subjects showed different biases
in speed and distance, dissociated biases in perceptual estimates of
speed from simple response biases on the time to hit the target.
Second, the current study estimated subjects’ central-tendency
biases in the context of a model that also incorporated n− 1 biases,
thus separating the effects of the two on subjects’ responses. To the
extent that subjectsmay have shown similar n− 1 biases in previous
studies, the weights given to internal models of stimulus means
would have been overestimated. To illustrate this point, consider
the extreme case of an observer whose internal statistical model for
a stimulus parameter was that it follows a simple random walk
from trial to trial. Such an observer would show no central-ten-
dency bias (the variance of a random walk is infinite) but rather,
would use an exponential weighting of the previous sensory signals
to estimate the value for a current stimulus. The observer, pre-
sented with a sequence of finite-variance, independent stimulus
values, would seem to be biased to the mean of the stimulus in
a regression that did not include the previous stimulus history.
Moreover, the apparent central-tendency bias would be larger
when sensory noise was increased, which has been shown in
a number of the reported studies.
A final consideration that affects the current study as well as

previous studies purporting to show optimal adaptation to first-
order stimulus statistics is that one cannot estimate from a study
like the current one the absolute mean value to which subjects’
percepts are biased. Observers can use feedback to correct any
differences between the internal standard to which their percep-

tual estimates are biased and the true mean by compensatory
biases in their responses. In the current experiment, subjects could
have corrected errors in their internal estimates of the mean by
appropriately adding a timing bias in their response to minimize
error. This consideration holds for any study that measures the
mean to which subjects’ responses are biased using an experi-
mental paradigm in which error feedback is provided. Thus, the
most significant feature of the results of the current and other
studies of central-tendency biases is not that subjects’ responses
are biased to the true mean but that the strength of the bias, as
measured by the weight given to the putative internal estimate of
mean, changes with either the variance of stimulus values or the
noise in sensory signals (or both). In terms of empirical measures,
this weight is given by oneminus the weight given to the observable
stimulus value incorporated into a regression analysis. Having said
that, it seems implausible that subjects would adapt their central-
tendency biases to match the variance of target speeds within
a stimulus set without similarly biasing those estimates to an esti-
mate of the mean within the stimulus set.
Themost notable failure of optimality in subjects’ behavior is the

influence of the previous target speed on subjects’ estimates of the
current target’s speed on each trial. Although suboptimal, subjects’
biases do adapt to the correlations in the stimulus sequences pre-
sented to them; n − 1 biases decrease almost to zero when target
speeds are negatively correlated from trial to trial. This result sug-
gests that n − 1 biases reflect subjects’ estimates of the correlations
in stimulus sequences but that subjects’ estimates of stimulus cor-
relations are positively biased. The positive-correlation bias ob-
served in subjects’ perceptual estimates of target speed is consistent
with the literature on temporal dependencies in more cognitive
binomial decision-making tasks (24–26). Kareev (24), for example,
presented a sequence of binary items (Xs and Os) to subjects and
asked them to predict the next item on each trial. As in the current
study, subjects’ performance was systematically altered by the tem-
poral correlation of the sequences presented; however, subjects’
predictions showed a consistent bias to positive correlations.
It is not clear why the human sensorimotor system erroneously

assumes positive temporal correlations when none exist in stimulus
sequences. One proposal is that it reflects a strong prior on the
statistical structure of the world, in which strong positive temporal
correlations between events may be ubiquitous (26). The current
study has shown that the brain can adapt its internal model of
temporal correlations to more closely match the correlations of
stimulus sequences in the proximal environment, although only
partially on the short time scale used here (1 h).
Another intriguing possibility is that the brain may be able to

switch between different models, given cues about the generative
process creating the stimuli in the environment. In support of this
idea, Green et al. (26) have shown that subjects’ betting behaviors
on the outcomes of independent sequences of random binary
events reflected an assumption of positive correlations when the
outcomes were generated by a hidden random process in the en-
vironment. When subjects actively generated the outcomes them-
selves using motor behaviors that necessarily led to independence
of outcomes, subjects correctly assumed independence.
An alternative account for the n − 1 bias is that it results from

a process that continuously adapts its internal estimate of themean
of the stimulus set, assuming that themean continuously drifts over
time and that trial-to-trial deviations from the current mean are
independent (7). We will refer to this model as an adaptive mean
model. Such an account is similar to Kalman filter models of sen-
sorimotor adaptation, which rely on error feedback from hand
movements to adapt an internal estimate of calibration parameters
mappingmotor commands to the end results of handmovements—
typically simple shifts in the mapping (27). In such models, errors
in the endpoints of pointing movements are created by motor noise
(assumed to be independent from trial to trial) superimposed on a
randomly drifting shift in the mapping from efferent signals to
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hand endpoints. Sensorimotor adaptation in such models is con-
ceived of as estimating this shift—akin to estimating a drifting
mean in the adaptive mean model. Just as strong temporal cor-
relations in the parameters determining sensorimotor mappings
induce positive correlations inmovement errors (28), strong serial
correlations in a drifting mean process would induce positive
correlations in estimated target speeds from trial to trial; thus, an
adaptive mean model will seem to show n − 1 biases, resulting
from tracking the drifting mean.
To test the hypothesis that subjects’ n − 1 biases result from an

adaptive mean process, we fit a second-order Bayesian model that
assumed that the mean speed follows a simple random walk and
that trial-to-trial deviations from the drifting mean are indepen-
dent. All aspects of the observer–actor model and fitting pro-
cedure were the same as used for the correlated speed model,
with the exception of the generative model assumed for target
speeds. Themodel had the same number of free parameters as the
correlated speed model, with the variance of the random walk on
the mean replacing the correlation term in the correlated speed
model (details in SI Text, section 4). We simulated the best-fitting
observer–actor model for each subject on the stimuli used in the
experiment and performed the same regression on the model
observer’s data as we did for the human subjects. The best-fitting
adaptive mean model emulated the observed central-tendency
bias and the n − 1 bias fairly closely; however, Bayesian model
comparison revealed that the correlated speed model fits the
empirical data better by a largemargin in both the first and second
experiments (SI Text, section 4). The difference in model fits arises
from the fact that the adaptive mean model gives more weight to
target speeds farther back from the current trial than the corre-
lated speedmodel. To examine theweights onmore than one-back
trials, we regressed the hitting time on the current to eight previous
speeds and the current distance. The regression was applied to
human subject data and the simulated behavior of the best-fitting
versions of the two candidate models. As shown in Fig. 8, the
weights decrease sharply after the n-first trial for both the human
observers and the correlated speed model, whereas they decrease
much more slowly for the adaptive mean model. The results of ex-
periment 2 further argue against the hypothesis that the n − 1 bias
results primarily from an adaptive mean process. For such an ac-
count to fit the results of experiment 2, one would have to assume
that subjects adapt to the change in stimulus correlations by de-
creasing the rate withwhich they adapt their internalmean estimate.

Our data do not permit fine tracking of subjects’ learning
process in the current experiment from trial to trial, partly be-
cause of the large number of free parameters in the regression
needed to account for subjects’ performance (four). For a simple
localization task, a recent study has shown that subjects learn the
value of the mean of a prior distribution within 10–20 trials and
adapt the central-tendency bias (the weight to the mean) to
a nearly asymptotic value within 100–150 trials (8). Assuming
similarly fast learning in the current experiment, subjects’ per-
formance should have been relatively stable over the four blocks
that we used to fit model data (throwing out the first two blocks,
or 200 trials, as learning trials). Berniker et al. (8) showed that
subjects’ performance in both the early trials of an experiment
and after a discrete change in variance are well-fit by a Bayesian
model that learns the mean and variance from noisy stimuli but
assumes that those parameters are fixed in the stimulus set (un-
like the adaptive mean model proposed above as a possible ac-
count for n − 1 biases).
Recent work has suggested that the visual system uses a prior

to slow speeds to interpret motion patterns, providing an expla-
nation for a number of illusory 2D motion percepts (29, 30).
Stocker and Simoncelli (17) have evenmeasured the shape of this
purported prior psychophysically using simple speed discrimi-
nation data for patterns with different contrast levels (i.e., dif-
ferent effective encoding noise levels). This work implicitly
assumes that the visual system uses a fixed prior for interpreting
the speeds of noisy sensory motion signals. It is not clear whether
the prior measured by Stocker and Simoncelli (17) and pur-
portedly underpinning our percepts of simple 2D motion pat-
terns reflects neural processing at the same level as the priors
used to plan movements in the current task. Onemight argue that
a prior to slow speeds is implemented in the motion-pooling
networks in early visual motion processing areas like macaque
middle temporal and medial superior temporal areas and that the
prior statistical model on object speeds affecting subjects’ motor
planning is implemented in later stages of neural processing that
integrate motion information to make decisions and guide motor
behavior. Psychophysical results like the current ones cannot re-
solve this question; however, it is intriguing to note that, after
viewing stimuli with relatively highmean speeds, biases in subjects’
percepts of the directions of moving, oriented texture patterns
shift away from the direction predicted by a prior peaked at zero to
a direction predicted by a prior with a peak at higher speeds (31).
This result suggests that even supposedly low-level motion per-
cepts are affected by adaptation to the statistical context of stimuli.
In summary, subjects in our experiments adapted their biases in

object speed estimates to the statistics of object speeds within
a local temporal context. Central-tendency biases seem to be near
optimal, in that they are consistent with an optimal Bayesian ob-
server tuned to the speed variances in a stimulus set and the sen-
sory noise within an observer. Biases to the speed of preceding
stimuli are suboptimal but nevertheless, adapt to the correlational
structure within a stimulus set. These results support the hypoth-
esis that the brain uses adaptive internal models of scene statistics
to estimate object speed from noisy visual motion signals.

Methods
Experiment 1. Subjects. Subjects volunteered to take part in the experiment
for payment ($10/h). They were naïve with respect to the purpose of the
experiment and had never participated in similar experiments before. The
present study is part of an ongoing project that had been approved by the
local ethics committee.
Apparatus. Subjects performed the task in a virtual environment with their
head in a head-and-chin rest as illustrated in Fig. 1A. They viewed the ex-
perimental environment displayed on a monitor through a mirror. The
mirror obscured the table and the moving hand. The distance between the
eyes and the table was ∼55 cm. A virtual finger was rendered at the position
of the subject’s active index finger, over which they wore a steel tube with
three infrared markers attached to it. The markers were tracked by an
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optotrak 3020 system at 120 Hz. Subjects viewed the display stereoscopically
through liquid crystal display shutter glasses. A steel plate was on the right
side of the table where the impact zone was projected. The plate was
connected to a 5-V source, and the steel tube worn over the index finger
acted as a ground; therefore, by measuring the voltage of the plate, we
acquired a precise measurement of the timing of hitting.
Stimuli. Fig. 1B shows the schematic arrangement of target, occluder, impact
zone, and starting cross in the working space. The target was a red circle of
1.6 cm (1 cm ∼ 1° visual angle) in diameter presented against a black
background. The position at which the target first appeared was randomly
chosen on each trial so that the visible duration of the target was distributed
uniformly between 400 and 600 ms. The occluder was a red rectangle 5.0 cm
in height. The impact zone was a green rectangle 5.0 cm in height and
3.2 cm in width. On the right side of the impact zone was another occluder
that had the same color and height as the first occluder. The left side of the
occluder, where the target disappeared, was fixed, and the center of the
impact zone within the red occluder varied randomly from trial to trial
following a log-uniform distribution. The starting cross was positioned
6.0 cm below the center of the impact zone on each trial. The starting cross
was 3.0 cm in width and height.
Procedure. Each trial started when a subject positioned his or her index finger
on the starting cross. At the moment that the index finger contacted the
starting cross, the occluder and impact zone were presented; 1,000 ms later,
a target appeared on the left side of working space, moved horizontally
rightward, and disappeared behind the occluder. Subjects were instructed to
hit the target when the target was behind the impact zone. A trial was
counted as a hit if the distance between the finger at the time of impact and
the center of target was less than 1.2 cm and the finger hit the table within
the impact zone. When subjects hit the target, the target visually exploded.
When subjects missed the target, the position of target at the moment of
impact was displayed. Each experimental session consisted of six blocks of 100
trials each. At the end of each block, subjects were informed of the total
number of hits in the block.

Fifty subjects were in the experiment. Two subjects’ data were excluded
from additional analysis because of the high error rate (more than 2.5 SD
above the group mean). Consequently, 16 subjects ran in one of three stim-
ulus conditions (low-, medium-, and high-speed variance conditions). Target
speeds had a log-uniform distribution between 9.6 and 13.5 cm/s in the low-
speed variance condition, between 8.6 and 15.2 cm/s in the medium-speed
variance condition, and between 7.2 and 18.2 cm/s in the high-speed variance
condition. Distributions for the distance to the impact zone were also log
uniform and set to equate the variance of times to the target zone across
conditions. The distributions of distances were 8.7, 19.7; 9.2, 18.6; and 11.2,
15.1 in the low-, medium-, and high-speed variance conditions, respectively.

Eight subjects in each condition ran for one session. The other eight
subjects ran for two sessions on separate days.

Experiment 2. The apparatus, stimuli, and procedure used in experiment
2 were identical to the settings of experiment 1. Only the statistics of the
target speeds and distances to the impact zone differed. Subjects were run
in one of two conditions—a positive-correlation condition and a negative-
correlation condition. Target speeds on each trial were generated using
a discrete form of an Ohrnstein–Uhlenbeck process in log space (Eq. 3). The
autocorrelation function for the trial-to-trial sequence of target speeds (in
log space) is given by ρðτÞ ¼ ατv , where τ is the delay between trials. In the
positive-correlation condition, αv was set equal to 0.6; in the negative-cor-
relation condition, it was set equal to −0.6. The SD of log speeds in the
stimulus set was 0.23 in both experimental conditions. Distances to the im-
pact zone were generated using the same stochastic process but with α set
to have a sign opposite to the value used for target speeds.

Thirty-two subjects (sixteen subjects in each condition) ran in the exper-
iment. One subject’s data were excluded from the analysis because of the
high error rate (more than 2.5 SD above the group mean).

Modeling. To model subjects’ hitting times, we assumed that observers
computed a Bayesian estimate of target speed based on noisy sensory sig-
nals and an internal model of the statistics of real target speeds. Based on
previous studies (21), we assume that subjects attentively track the object
behind the occluder based on their initial estimate of target speed. This
strategy would require subjects to apply some form of decision rule (un-
known to us) to select a time to initiate a hitting movement. Assuming that
both the tracking and motor output are noisy, these processes would lead to
a hitting time that depends on the initial estimate of target speed and the
distance to the impact zone. We assumed that the output of this process can
be described by a generalization of an ideal tracker that includes bias terms

on distance and simple additive noise in log space (Eq. 5). In SI Text, section
3, we show that a noisy tracker that integrates an internal model of target
position and speed and applies a simple decision rule to initiate a noisy
hitting movement shows near-equivalent statistics to this model (both in its
mean and variance).

The Bayesian speed estimator assumed that the logs-target speeds
follow an Ohrnstein–Uhlenbeck process (Eq. 3) and that the measurement of
true speed in each trial was corrupted by additive Gaussian sensory noise
(Eq. 6). It was also assumed that, because of the long time delays between
trials, the internal estimate of the previous speed used to estimate the
current speed would be corrupted by memory noise. Including a memory
noise term, the recursive update equations for internal estimates of
speed become

Lv̂iji ¼ Lv̂iji−1 þ Ki

�
Lvsensei − Lv̂iji−1

�
Lv̂iþ!ji ¼ αv

�
Lv̂iji þ ωmem

v − μLv

�
þ μLv ;

[9]

where Lv̂iji is the estimate of the speed on trial i given all of the sensory
measurements up through trial i. Lv̂iþ!ji is the predictive estimate of the
speed on the next trial given the sensory information up through trial i.
ωmem
v is white Gaussian noise that represents additive memory noise. The

choice to model memory noise as additive in the log domain was purely for
computational convenience. The Kalman gain (Ki) is calculated on each trial
taking into account the uncertainty in Lv̂iþ!ji added by the memory noise (a
derivation is in SI Text, section 2).

The observer–actor model has four free parameters for the generative
model for speed, representing the variance of speed in the stimulus set, the
trial-to-trial correlations between target speeds (αv ), the variance of sensory
noise, and the variance of memory noise. It also has free parameters for the
additive and multiplicative biases and the variance of the additive noise in
the mapping from speed estimates to hitting time. To fit the parameters, we
need to compute the posterior density function

p
�
~PjL~t

�
∝p
�
L~tj~P; L~v; L~d

�
p
�
~P
�
; [10]

where ~P is a vector of model parameters, L~t is a vector containing sub-
ject’s hitting times in an experimental session (in log space), and L~v and L~d
are vectors containing the true stimulus velocities and distances in a session
in log space.

Because the model is linear and Gaussian, the likelihood function
pðL~tj~P; L~v; L~dÞ is a multidimensional Gaussian distribution with a mean vec-
tor given by ~μLt̂ ¼ wdL~d −~μLv̂ þ k and covariance matrix ΣLt̂ ¼ ΣLv̂ þ Σoutput .
L~d is a vector containing the log of the true occluder distances on each trial,
and μLv̂ is a vector containing the mean estimates of log target speed on
each trial conditioned on the true stimulus speeds. ΣL~v is the error covariance
of the log-speed estimates, and Σoutput is the covariance of the noise in
hitting time induced by attentive tracking and the motor response (a di-
agonal matrix containing the variance of the noise in Eq. 5 in every entry
along the diagonal). The model parameters determine both the model’s
mean log hitting time on each trial, μLt̂ , and the covariance of log hitting
times across trials, ΣLt̂ (both conditioned on the true stimulus conditions).

By merging the two lines of Eq. 9 into one equation and simplifying the
notation Lv̂iji to Lv̂i , we obtain

Lv̂i ¼ αv
�
Lv̂i−1 þ ωmem

v − μLv

�
þ μLv

þ Ki

�
Lvsensei − αv

�
Lv̂i−1 þ ωmem

v − μLv

�
þ μLv

�
: [11]

This equation can be divided into two independent-state update equations
representing a deterministic component (Lv̂deti ) and a random component
(Lv̂randomi ),

Lv̂i ¼ Lv̂deti þ Lv̂randomi ; [12]

where

Lv̂deti ¼ αv
�
Lv̂deti− 1 − μLv

�
þ μLv þ Ki

�
Lvsensei −

�
αv
�
Lv̂deti− 1 − μLv

�
þ μLv

��
Lv̂randomi ¼ αv

�
Lv̂randomi− 1 þ ωmem

i

�
þ Ki

�
ωsense
i − αv

�
Lv̂randomi −1 þ ωmem

i

��
:

[13]

Lvsensei is the true log speed, and ωmem
i and ωsense

i are the memory and sen-
sory noise on log speed, respectively. The random component is a zero-
mean Gaussian process; therefore, the deterministic part is the mean
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[~μLv̂ ¼ ðLv̂det1 ; Lv̂det2 ; :::; Lv̂detn Þ] of the speed estimates ,and the covariance of
Lv̂randomi is the error covariance of the estimates. The variance of Lv̂randomi

is computed recursively as follows:

var
�
Lv̂randomi

�
¼ ðαv − αvKiÞ2

�
var
�
Lv̂randomi− 1

�
þ σ2mem

�
þ K2

i σ
2
sense; [14]

where σ2mem is the variance of memory noise and σ2sense is the variance of
sensory noise. The covariance between Lv̂randomi and Lv̂randomiþ1 is given by

cov
�
Lv̂randomi ; Lv̂randomiþ1

�
¼ ðαv − αvKiÞivar

�
Lv̂randomiþ1

�
: [15]

Using Eqs. 14 and 15, we can compute the full covariance matrix for the
speed estimator, ΣL~v .

We assumed a hierarchical prior on model parameters, in which the model
parameters characterizing each subject were assumed to be drawn from
independent Gaussian distributions characterizing the population dis-
tributions of the model parameters. Priors on the means and SDs of the
population distributions were set to broad uniform distributions with ranges
large enough to cover the practically possible values of the parameters. We
used Markov Chain Monte Carlo sampling (using a Metropolis–Hastings al-
gorithm) to sample from the posterior density of the population parameters.
We used 1 million iterations as a burn-in period before using samples from
the chain to estimate the posterior density function. We further thinned the
samples by selecting only every 1,000 samples in the chain reducing corre-
lations in the samples to near zero.
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1. Regression Model Selection. We used K-fold matched cross-
validation (1) to determine the number of previous stimulus
terms in the regression model. Data for each subject were ran-
domly divided into 25 subsets; 24 subsets were used to find the
best-fitting (least square) parameters for the regression models,
each of which had different numbers of previous stimuli as
predictors (from zero to four). The process was repeated 25
times for each of the subjects, producing 25 × 48 results (mean
square errors) for each model. The mean of the mean square
errors across subjects was minimized when the regression model
includes the current speed and distance terms and the immedi-
ately preceding speed term. Fig. S1 shows the mean of mean
square errors of the regression models. The error bar represents
the SD caused by the random division of dataset. Although the
SD is relatively large, the order of the mean square error values
stays the same across repeated applications of analysis.

2. The Optimal Weights for an Estimator Formulated in Eq. 8.
The optimal updates of the internal speed estimates can be
achieved by applying a modified Kalman filter that takes into
account the presence of memory noise. The filter update equa-
tions are given by

Lv̂iji−1 = αv
�
Lv̂i−1ji−1 +ωmem

v − μLv

�
+ μLv; [S1]

var
�
Lv̂iji−1

�
= α2v

�
var

�
Lv̂i−1ji−1

�
+ σ2mem

�
+
�
1− α2v

�
σ2Lv; [S2]

Lv̂iji =Lv̂iji−1 +Ki

�
Lvsensei −Lv̂iji−1

�
; [S3]

and

var
�
Lv̂iji

�
= var

�
Lv̂iji−1

�
σ2sense=

�
var

�
Lv̂iji−1

�
+ σ2sense

�
; [S4]

where Ki = varðLv̂iji−1Þ=ðvarðLv̂iji−1Þ+ σ2senseÞ and σ2Lv is the vari-
ance of stimuli speeds. By plugging Eq. S1 into Eq. S3 and
rearranging it, we get

Lv̂iji =
�
1− α

��
1−Ki

�
μLv + α

�
1−Ki

��
Lv̂i−1ji−1 +ωmem

v

�
+KiLvsensei : [S5]

Eq. 8 in the text is

Lv̂i =wμμLv +w1Lv̂
mem
i−1 +

�
1−wμ −w1

�
Lvsensei ; [S6]

where Lv̂mem
i−1 is the estimate of speed on trial i − 1 corrupted by

memory noise. Comparing Eq. S5 with Eq. S6, we have the
optimal weight:

wμ =
�
1− α

��
1−Ki

�
w1 = αð1−KiÞ�

1−wμ −w1
�
= 1−

�
1− α

��
1−Ki

�
− α

�
1−Ki

�
=Ki:

[S7]

3. Comparing a Tracking Model with the Bayesian Estimation Model.
When making judgments of a moving object’s position after it
disappears, subjects appear to track the target behind the occluder

using a combination of eye movements and attentional tracking
(2). Because fitting a noisy tracking model to subjects’ data is
computationally intractable, we fit an estimator model to sub-
jects’ data in the text. This model computes a best estimate of the
time that the target will reach the impact zone and uses the es-
timated time to plan a noisy hitting movement. Here, we compare
the performance of a noisy tracking model with the estimator
model. To do this comparison, we fit the parameters of a noisy
tracking model to best fit the behavior of the estimator model that
we fit to subjects’ data in experiment 1 and show that the per-
formance of the tracking model fit was nearly equivalent to the
performance of the estimator model.
The tracking model that we simulated propagates an internal

estimate of the target state as follows after the target disappears
behind occlude:�

positiont+1
speedt+1

�
=
�
1 Δt
0 β

��
positiont
speedt

�
+
�
0
1

�
ω;

where β represents systematic drift of estimated velocity over time,
ωrepresents random noise on the internal speed estimate, and Δtis
the duration of the time step used in Monte Carlo simulations
(0.01 s). The tracker uses the estimator described in the text to
initialize the speed estimate and simply propagates the state update
equation forward in time until the predicted time to the impact
zone computed from the tracker’s position and velocity estimates
reaches 500 ms, at which point it initiates a hitting movement. The
final hitting time is computed by adding 500 m plus additive motor
noise to the time at which the movement was initiated.
Becausewe cannot easilyfit the parameters of the trackingmodel

directly to subjects’ data, we used the following procedure to fit it.
For a given set of tracking model parameters, we ran Monte Carlo
simulations of the tracking model to generate data akin to real
subjects’ data. We then fit the estimator model to the simulated
data derived from the tracker. The hitting times of the resulting
estimator are multivariate Gaussian (in log space), with mean and
covariance determined by the model parameters. We used the
Kullback-Leibler divergence between this distribution and the
distribution derived from the estimatormodel fit to subjects’ data in
experiment 1 (using the populationmean parameters) as ameasure
of the fit between the tracking model and the estimator model fit to
subjects’ data. We used the fminsearch command in MATLAB
(Mathworks) to find the tracker model parameters (and associated
speed estimator parameters) that minimized this KL divergence.
Fitting results show that the best-fitting tracking model can

closely emulate the performance of the estimator model when the
performances are evaluated by the weights on the current and
preceding stimuli (Fig. S2 A and B) and the variance of hitting
times as a function of true hitting time (Fig. S2C andD). Table S1
shows that the parameters of the speed estimator used to initialize
the tracker are nearly equivalent to the parameters used in the
matched estimator model. The facts that the statistics of model
performance are the same for matched tracker and estimator
models and that the speed estimator parameters derived from
both are essentially identical justify using the estimator model as
a computationally tractable stand-in for a noisy tracking model.

4. Adaptive Mean Model. The adaptive mean model assumes that
the mean speed follows a simple random walk and that trial-
to-trial deviations from the drifting mean are independent. All
aspects of the observer–actor model and fitting procedure were
the same as used for the correlated speed model, with the ex-
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ception of the generative model assumed for target speeds. The
generative model can be formalized as a second-order system as
follows: �

Lvi+1
μLvi+ 1

�
=
�
0 1
0 1

��
Lvi
μLvi

�
+
�
1 1
0 1

��
ωv

ωμv

�
;

where μLvi is mean of speed in log space, and ωμv is a zero mean
Gaussian noise representing the drift rate of the mean.
As in the correlated speed model, the model observers’

measurements of true speed were corrupted by Gaussian sensory
noise, and the internal estimates of the previous mean speed
used to estimate the current mean speed were corrupted by
memory noise. Thus, the parameters of the drifting mean model
were analogous to the parameters of the correlated speed model
described in the text (and equal in number), except that the
drifting mean model has a drift rate parameter instead of the cor-
relation parameter of the correlated speed model. We fit the
adaptive mean model in the same way as the correlated speed
model using a similar hierarchical prior on the mean and SD of
the population’s parameters and the same Markov chain Monte

Carlo technique to sample from the posterior densities of the
model parameters. The central-tendency bias and the n − 1 bias
predicted by the best-fitting adaptive mean model closely match
the performance of human observer; however, regressing the
data derived from simulating each subject’s best-fitting model
against the speeds on the previous eight trials (rather than just the
previous trial) resulted in much higher weights to trials more than
one back from the current trial than subjects showed. As shown in
Fig. 8 in the text, subjects’ performances were much better fit by
the correlated speed model than the adaptive mean model.
To further test whether the correlated speed model or the

adaptive mean model best fits the data, we computed the marginal
likelihood of each model using the Gelfand–Day method. The
marginal likelihood of the correlated speedmodel was higher than
the marginal likelihood of the adaptive mean model by a large
margin given the data of the first (log Bayes factor = 182) and
second experiments (log Bayes factor = 87). The better fit of the
correlated speed model is because of the fact that the adaptive
meanmodel gives higher weights to themore than n− 1 back trials
than human observers.
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3066–3075.

2. DeLucia PR, Liddell GW (1998) Cognitive motion extrapolation and cognitive clocking
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Fig. S1. Results of cross-validation test. The regression model with the current speed, current distance, and immediately preceding speed terms shows the best
performance in cross-validation test.

Kwon and Knill www.pnas.org/cgi/content/short/1214869110 2 of 3

www.pnas.org/cgi/content/short/1214869110


Fig. S2. Comparison between tracking model and estimator model. (A and B) Results of regression analysis applied to the simulation data generated from the
tracking model and the estimator model. The parameters of the estimator model were the population mean parameters estimated from experiment 1. The
parameters of the tracking model were chosen to minimize the Kullback-Leibler divergence between the simulation performances of the tracking model and
the estimator model. (C and D) Simulation data generated from the tracking model and the estimator model. The parameters of the estimator model were the
population mean parameters estimated from experiment 1. The parameters of the tracking model were chosen to match the performance of the tracking
model to the estimator model.

Table S1. The parameters for the velocity estimation

Parameters Tracking model Estimator model (95% credible interval)

Weber fraction 0.142 0.146 (0.122, 0.169)
Temporal correlation (small variance) 0.547 0.548 (0.458, 0.687)
Temporal correlation (medium variance) 0.419 0.426 (0.330, 0.563)
Temporal correlation (large variance) 0.341 0.391 (0.272, 0.503)
SD of prior (small variance) 0.158 0.151 (0.086, 0.207)
SD of prior (medium variance) 0.223 0.208 (0.175, 0.235)
SD of prior (large variance) 0.367 0.342 (0.273, 0.431)
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