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Abstract—A double-stacked nanocrystal (DSNC) flash memory
is presented for improvement of both program/erase (P/E) speed
and data retention time. Four combinations of nickel (Ni) and
gold (Au) (Ni/Ni, Au/Au, Ni/Au, and Au/Ni) are used as charge
storage DSNC materials and are compared from the perspective
of memory performance. Through experimental results for P/E
efficiency and retention time, the optimized energy band lineup for
faster P/E and longer charge retention is presented. A combination
of a deep potential well at the top and a shallow potential well
at the bottom exhibits optimized performance in P/E, and this
combination also shows the longest data retention characteristics.

Index Terms—Au and Ni, double-stacked nanocrystal (DSNC),
energy band lineup, flash memory, nanocrystal (NC), nanocrystal
floating-gate memory (NFGM), nonvolatile memory (NVM),
program/erase (P/E) speed, retention time.

I. INTRODUCTION

POLYCRYSTALLINE-SILICON floating gates have been
used as charge storage materials in nonvolatile memory

(NVM) for the past three decades [1]. Recently, flash memory
utilizing discrete charge storage nodes such as dielectric traps
and nanocrystals (NCs) has been considered as a candidate to
replace the conventional flash memory with a polycrystalline-
silicon floating gate due to its superior scalability stemming
from high dielectric defect immunity [2]–[5]. As dimensions
of these memory devices are aggressively scaled, the thickness
of the tunneling dielectric approaches its scaling limit. With
respect to utilizing a thinner tunneling dielectric, the NC flash
memory has attracted much attention, as a discrete storage node
can allow further dielectric scaling without sacrificing memory
properties such as endurance and data retention. Despite these
advantages, the NC flash memory also has three major issues
for the mass production. The first issue is to obtain well-ordered
high-density NCs. Considering this issue, the controllability
over the size, density, and ordering of NCs is crucial to increase
the cell-to-cell uniformity in terms of the mass-producible
devices. Thus, novel NC formation techniques were introduced
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such as thermal decomposition and polymeric self-assembly
using a nanotemplate [6]–[8]. The second issue is related to
metal NCs. The metal NC flash memory has an advantage
for the enhanced program efficiency through the high density
of energy states and asymmetrically enhanced electric field in
NCs [9]. However, its contamination problem can evoke the
degraded retention characteristic, and the lowered nonvolatility
hinders the dielectric scaling. To address this issue, the op-
timization of annealing conditions, the utilization of a high-
immunity insulator for metal diffusion, and the gate-last process
were reported [10]–[12]. The last issue is to overcome the
tradeoff between P/E efficiency and retention characteristics.
One breakthrough can be to adopt high-k dielectrics as gate
dielectrics [13].

This work is extended from the last issue of enhanced NVM
performance such as P/E and retention characteristics simulta-
neously. In order to fully utilize the advantageous properties of
NC flash memory, the tunneling dielectric must be extremely
thinned. In this case, the retention time and P/E efficiency be-
come important issues. Related to these issues, a multistacked
NC flash memory structure was introduced in terms of the
enhancement of program efficiency and retention characteris-
tics [14]–[16]. Also, a high-workfunction (WF) metal NC can
provide better retention characteristics and program efficiency.
However, it has a weakness with respect to erase speed due
to the increased potential barrier between the Fermi level of
metal NC and the conduction band of the substrate. In order
to achieve longer retention and a wider sensing window, the
combination of a multistacked NC flash memory structure and
WF engineering in the charge storage node via the use of
various metal NCs may be a practical approach [14]–[19].

In this paper, a WF-engineered double-stacked NC (DSNC)
flash memory is presented. Combinations of two metals sepa-
rated by an interlayer (IL) dielectric form various potential well
structures, which can influence memory properties. Higher WF
(Au: 5.0 eV [17]) and lower WF (Ni: 4.5 eV [13], [17]) metal
NC layers are utilized as charge storage nodes. Thus, Au forms
a deeper potential well compared to Ni due to its higher WF. Us-
ing these two metal NC layers, four combinations of homometal
and heterometal DSNCs (type I: Ni/Ni, type II: Au/Au,
type III: Ni/Au, and type IV: Au/Ni [top NCs/bottom NCs])
are possible. As shown in Fig. 1, these four-split embedded NC
flash memories were fabricated and assessed in terms of P/E
efficiency and reliability. The differences in these memory char-
acteristics are explained through a simple energy band model.
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Fig. 1. Schematic of the DSNC-embedded NVM structure and four different
splits: type I (Ni/NI), type II (Au/Au), type III (Ni/Au), and type IV (Au/Ni).

Fig. 2. NC density dependence of Ni and Au on annealing temperature with
a fixed wetting layer thickness of 4 nm for both Ni and Au NCs. For Ni and Au
NCs, densities of 7 × 1011 and 1.1 × 1012 cm−2 were achieved and chosen
for the charge storage nodes in NVM DSNC devices.

The tradeoff property between P/E efficiency and retention time
is analyzed and verified by comparison of the measured data
and the analytically calculated tunneling probability.

II. FABRICATION

The DSNC flash memory was fabricated on a p-type (100)
silicon-on-insulator (SOI) substrate. The 100-nm top silicon
film was thinned to 50 nm by iterative oxidation and wet-etch
steps. In a metal nanocrystal floating-gate memory (NFGM)
device, one important issue is melting of the metal and metal-
induced contamination during high-temperature source/drain
(S/D) annealing. To circumvent related problems, a gate-last
process was applied. Thus, after defining the active region,
15P+ was first implanted over the photoresist mask layer to
form the S/D. After removal of the photoresist mask layer, tun-
neling oxide (tTun = 4 nm) was grown by a thermal oxidation
process. A 4-nm bottom metal wetting layer was then deposited
and annealed and subsequently transformed to discrete NCs by
thermal agglomeration. A scanning electron microscopy (SEM)
image and the temperature dependence on NC diameter and
density for Ni and Au are shown in Fig. 2. An IL dielectric
of HfO2 (tIL = 4 nm) was then deposited via atomic layer

Fig. 3. Cross-sectional STEM image of a DSNC SOI NMOSFET.

Fig. 4. EDS analysis for the Au/Ni nonvolatile DSNC device (type IV). The
other types are depicted in the inset.

deposition to separate the top and bottom metal NC layers,
and the upper metal NCs were formed by the aforementioned
thermal agglomeration method. As a control dielectric, a 25-nm
HfO2 (tCon = 25 nm) layer was deposited, and aluminum was
used as a control gate. For electrical measurement, the nominal
device dimensions are 2-μm channel width and 2-μm gate
length. As the temperature to induce thermal agglomeration
is increased, the NC size increases, whereas the NC density
decreases, as shown in Fig. 2. Because a smaller size and a
larger density of the NC are desirable for NFGM applications,
a 500-◦C annealing temperature was chosen for the metal ag-
glomeration step. The insets of Fig. 2 show the SEM images of
the two metal NC layers. The average radii are 8 and 6 nm, and
the densities are 7.0 × 1011 and 1.1 × 1012 cm−2 for Au and
Ni, respectively. In the case of homometal (Ni/Ni and Au/Au)
NC layers, two potential wells exhibit identical potential depth.
In contrast, the heterometal (Ni/Au and Au/Ni) NC layers have
different potential depths. This means that improvement of the
NVM characteristics can be expected by carefully designing
heterometal DSNCs. The cross-sectional scanning tunneling
electron microscopy (STEM) image of a fabricated DSNC
SOI NMOSFET is shown in Fig. 3. The double-layered NCs
separated by the HfO2 IL are observed. Also, judging from the
magnified inset of Fig. 3, thermally agglomerated top NCs are
formed in the valleys amid the bottom NCs. Fig. 4 shows the
results of an energy-dispersive spectroscopy (EDS) analysis for
each sample of the four different structures. The results of the
EDS analysis verify their DSNC structures.
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Fig. 5. Transfer characteristics for the Au/Ni sample (type IV) after
(a) programming and (b) erasing by 80-μs gate pulse.

III. DEVICE CHARACTERISTICS AND DISCUSSION

A. P/E Transient Characteristics

Data states for NC flash memory are distinguished by the
existence of charges in the NC floating gate. In this paper,
program/erase (P/E) was realized by a tunneling mechanism
(VG = VGPGM or VGERS, and VS = VD = 0 V with 80 μs).
Fig. 5 shows the transfer characteristics of Au/Ni (type-IV)
DSNC-embedded flash memory (W/L = 2 μm/2 μm) for
P/E operations. At VGPGM = 13 V and VGERS = −13 V, the
threshold voltage shift (ΔVth) shows a wide memory window
of 6.6 V, which is applicable to a multilevel-cell architecture.
Because inherently existing traps in bulky and interfaced HfO2

can contribute to a shift of Vth, the initial Vth shift by these
traps without metal NCs should be clarified. The control device
without metal NC floating gate displayed only 0.6-V hysteresis
in a ±11-V sweep range. Therefore, the influence of traps in
HfO2 is assumed to be negligible, and it can be concluded that
DSNCs play a major role as charge storage nodes.

Fig. 6 shows the P/E transient characteristics. P/E conditions
of VGPGM = 11 V for programming and VGERS = −13 V
for erasing were selected. The program speed at Au (top)/Au
(bottom) [type II] and Au (top)/Ni (bottom) [type IV] was
shown to be faster than that at Ni (top)/Au (bottom) [type III]
and Ni (top)/Ni (bottom) [type I], i.e., the program speed
is ordered, from fast to slow, as follows: Au/Au > Au/Ni >
Ni/Au ≈ Ni/Ni. According to [20], larger size NCs induce high

Fig. 6. Comparison of (a) program efficiency and (b) erase efficiency among
the four types of nonvolatile DSNC devices.

program speed. As shown in Fig. 2, Au NCs are larger than
Ni NCs. Thus, the better program speed at Au/Au than that at
Ni/Ni can be explained by the size effect of NCs [20]. However,
the size effect has difficulty in explaining the program speed
difference between Au/Ni and Ni/Au. In this paper, the WF
of the top metal NC more dominantly impacts the program
characteristics than the size effect can do. Depending on the
WF of the top NC, a fraction of charges flowing out from
the top NCs through the control oxide result in charge loss,
i.e., inefficient program operation. As shown in Fig. 7, when a
high-WF NC layer is embedded as a top floating gate, reduced
leakage and fast operation speed can be obtained [13]. In this
paper, the Au NC layer showed faster speed than the Ni NC
layer as a top floating gate. This means that the WF of Au
NCs is expected to be higher than that of Ni NCs, although
some ambiguity such as the Fermi-level pinning effects remains
regarding the WFs of Ni and Au NCs, as reported in [18].

It is worthwhile to note how the program behavior depends
on the bottom metal NC with Au NCs at the top. In the case
of higher WF metal (Au) at the top metal NC, the tunneled
charges from the channel are more easily captured in the deeper
potential well than in the case of utilizing Ni as a top metal.
Comparing Au/Au (type II) and Au/Ni (type IV), when a
deeper potential well is formed at the bottom layer, the program
speed becomes faster in type II than in type IV. However, the
difference among the four types is not greatly amplified due
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Fig. 7. Energy band diagram of control barrier/top NC/barrier by interlayer/
bottom NC/tunneling barrier/substrate with positively applied gate voltage for
program operation in the case of two different homometal DSNC materials of
(a) Au and (b) Ni.

Fig. 8. Retention characteristics for the cases of (a) Au/Au (type II) and Au/Ni
(type IV) and (b) Ni/Ni (type I) and Ni/Au (type III). The Au/Ni set (type IV)
revealed superior charge storability due to the two-step band barrier.

to the relatively thick control HfO2 (i.e., 25 nm). In the erase
case, the erase speed is ordered, from fast to slow, as follows:
Ni/Ni > Au/Ni > Au/Au > Ni/Au. This means that the bottom
metal WF dominates erase behaviors, which is different from

Fig. 9. Simplified energy band diagram of top NC/barrier by interlayer/
bottom NC/tunneling barrier/substrate for (a) Au/Au (type II) and (b) Au/Ni
(type IV) cases. (c) Calculated back-tunneling probability ratio of Au/Au to
Au/Ni.

program operation due to the increased tunneling probability by
the lower potential barrier of Ni NCs than that of Au NCs. As
a result, a combination of higher WF at the top and lower WF
at the bottom is the most optimized set (i.e., Au/Ni) in terms of
fast P/E.

B. Retention Characteristics

Fig. 8 shows the data retention characteristics for the four
different types. The degradation slope of the threshold voltage
shift reflects the charge retention capability. Au/Ni (type IV)
shows the best retention characteristics, whereas Ni/Ni (type I)
exhibits the worst retention characteristics. In the case of Ni/Ni,
because the top and bottom potential wells are shallow com-
pared to other arrangements, the charge retention characteristic
is the worst. In the case of Au/Ni (type IV), while the potential
barrier height difference between the Ni Fermi level and con-
duction band of Si is small, there exists a band offset due to
the difference between the top Au NC and the bottom Ni NC.
Therefore, as the band offset between two metals increases, the
back-tunneling probability of the stored charges at the top Au
and the bottom Ni is reduced relative to the other sets.

To verify the aforementioned tendency, the back-tunneling
probability from the top NC to the substrate should be com-
pared between Au/Au (type II) and Au/Ni (type IV). Thus, the
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TABLE I
TUNNELING PROBABILITY FOR THE TYPE II OF Au(TOP)/Au(BOTTOM) AND THE TYPE IV OF Au(TOP)/Ni(BOTTOM)

back-tunneling probability was analytically calculated with a
simplified 1-D energy band diagram to show the band offset
between the top and bottom NC layers, as shown in Fig. 9(a)
and (b). One is a single-step energy offset [Fig. 9(a)], and the
other is a double stairlike energy offset [Fig. 9(b)]. The calcu-
lated tunneling probabilities based on the Wentzel–Kramers–
Brillouin approximation for Au/Ni and Au/Au are summarized
in Table I. The tunneling probability was calculated as a func-
tion of the WF of the Ni NC from 4.5 to 4.9 eV due to the
variation of the WF of the Ni NC [10], [13], [17], while the WF
of the Au NC (5.0 eV) and the effective mass of electrons in
SiO2 and HfO2 (SiO2 : 0.55 m0 and HfO2 : 0.15 m0 [21]) have
been kept the same.

The Au/Au structure, which has single deep potential wells,
provides higher tunneling probability than the Au/Ni structure,
which has double stairlike potential wells, i.e., |T_Au/Au|2 �
|T_Au/Ni|2, as shown in Fig. 9(c). However, Ni/Ni shows the
poorest retention characteristics compared to other sets because
of having the shallowest potential well. Therefore, the WF-
designed heterometal DSNC device (Au/Ni: type IV) presents
superior retention characteristics as well as P/E efficiency. This
approach can be a breakthrough to overcome the tradeoff trend
between prolonged retention behaviors and fast P/E.

IV. CONCLUSION

A WF-designed DSNC flash memory was demonstrated for
simultaneous enhancement of both P/E efficiency and data
retention time. Four combinations of nickel and gold (Ni/Ni,
Au/Au, Ni/Au, and Au/Ni) were used for the top and/or bottom
metal as charge storage materials and were comparatively eval-
uated in terms of memory performance. It was found that the
top metal NC material governs the program efficiency, while
the bottom metal NC material dominates the erase property.
Furthermore, a deeper potential well at the top is desirable for
the program efficiency, and a shallower potential well at the
bottom is efficient for the erase property. Thus, the optimized
set is found to be Au/Ni. In addition, the WF-designed het-
erometal DSNC showed superior data retention compared with
the homometal DSNC. The heterometal having a lower WF at

the bottom showed the best charge retention characteristic, i.e.,
Au/Ni was the optimal combination in terms of both retention
and P/E.
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