
Minimizing Application-Level Delay of Multi-Path
TCP in Wireless networks: A Receiver-Centric

Approach
Se-Yong Park∗, Changhee Joo†, Yongseok Park‡, and Saewoong Bahk∗

Deparment of ECE and INMC, Seoul National University, Korea∗

Ulsan National Institute of Science and Technology, Korea†

Digital Media & Communication R&D Center, Samsung Electronics, Korea‡

Email: psy@netlab.snu.ac.kr, cjoo@unist.ac.kr, yongseok.park@samsung.com, sbahk@snu.ac.kr

Abstract—Multi-Path TCP (MPTCP) has attracted much at-
tention as a promising technology to improve throughput per-
formance of wireless devices that support multi-homed heteroge-
neous networks. Although MPTCP provides significant increase
in network capacity, it may suffer from poor delay performance
since the delay tends to be aligned with the worst-performing
path: packets delivered through a short-delay subflow have to
wait in the reordering buffer for packets being transmitted over
a long-delay subflow. In this paper, we investigate the application-
level delay performance of streaming traffic over MPTCP, and
develop an analytical framework to take into account non-
negligible network queuing delay and the interplay of congestion
control between multiple subflows. We design a simple threshold-
based subflow traffic allocation scheme that aims to minimize
user-level delay and develop a receiver-centric traffic splitting
control (R-TSC) that can be tuned to user preferences. The client-
side R-TSC solution facilitates incremental deployment of low-
delay streaming service over MPTCP. Through simulation and
testbed experiments using commercial LTE and WiFi networks,
we demonstrate significant performance gains over the standard
MPTCP protocol.

I. INTRODUCTION

Multi-Path TCP (MPTCP) is an emerging technology for
multi-homed wireless devices to exploit multiple communica-
tion paths in parallel. Many mobile smart devices already have
multiple network interfaces such as Bluetooth, WiFi, and cel-
lular (3G/LTE). MPTCP has attracted significant attention as a
promising transport-layer solution in smart devices to provide
seamless handover and to exploit path diversity through oppor-
tunistic transmissions over heterogeneous wireless networks.
We consider a high-quality live streaming service scenario
where MPTCP has been adopted for real-time applications
in multi-homed wireless environments. TCP has been widely
used for real-time applications such as Skype, Facetime and
online games or high quality video streaming service [25]–
[27] by establishing two-way communication channels in the
presence of network address translation (NAT) device and
firewalls. By exploiting multiple paths, high-quality streaming
services will be provided through MPTCP.

A key performance metric of real-time applications is delay.
It has been reported in [7]–[10] that TCP often suffers from

large delays in wireless networks due to excessively large
buffer installation at access points (APs) to compensate for
capacity fluctuation of wireless channels. In MPTCP, long-
delay paths can aggravate the delay performance since packets
arriving at the receiver through short-delay paths may need
to wait for out-of-order packets arriving through long-delay
paths.

A number of works on MPTCP have mainly focused on
throughput performance and fairness between MPTCP sub-
flows, and developed congestion control schemes that or-
chestrate subflows to coexist with conventional single-path
TCPs [14]–[17]. In [14] and [15], MPTCP congestion control
was studied and the Linked Increases Algorithm (LIA) was
proposed, which has been standardized by IETF [13]. In [16],
an extension of TCP-Vegas for MPTCP is considered to exploit
RTT variations as a congestion signal. In [17], the possibility
that MPTCP-LIA hurts the throughput of other competing
connections has been noticed, and the authors propose a con-
gestion control scheme, named O-LIA, which aims to achieve
pareto-optimal fairness. In other works, session management
schemes for MPTCP to support mobility have been proposed
in [18], and MPTCP performance has been evaluated in real
wireless networks [19].

Recently, several works have studied the delay aspect of
MPTCP. In [20], it has been shown that round-robin packet
allocation over subflows can lead to large delays at the receiver
that impact packet reordering. Least-RTT-First (LRF) alloca-
tion has been proposed as a solution to address the problem.
However, although LRF allocation removes the long-term
delay mismatch between subflows, the interplay between LRF
allocation and MPTCP-LIA congestion control can produce
large delays [21]. In [22], the authors investigated application-
level delay of MPTCP and developed subflow rate allocation
at the sender to mitigate the problem.

The aforementioned works do not take into account the
interplay with congestion control that lead to complications
and unexpected results. The proposed solutions also require
control at the sender (i.e., server) side. In client-server systems,
it is hard for server-centric solutions to accommodate diverse

client preferences [28]–[30].
In this paper, we develop an analytical framework to

understand subflow behavior of MPTCP-LIA under time-
varying RTT conditions, and design receiver-centric subflow
rate allocation schemes that aim to minimize application-level
delay of MPTCP. Our main contributions are:
• We show that fixed RTT models fail to adequately capture

TCP dynamics, and develop a time-varying RTT model
to account for TCP transmission rate control.

• We formulate an MPTCP delay minimization problem
and solve it through subflow rate allocation. We design a
simple threshold-based solution that takes into consider-
ation both time-varying RTTs and the interplay between
subflows.

• We extend our solution to the receiver-side algorithm. We
develop subflow performance estimation method at the
receiver, and modulate the subflow rates by exploiting
three duplicate acknowledgments (3-dup-ACKs).

• Through simulation and testbed experiments in commer-
cial LTE and WiFi networks, we evaluate our model
and demonstrate significant performance gains of our
receiver-centric approach.

The rest of this paper is organized as follows. Section II
describes our system model for application-level delay of
MPTCP. In Section III, we develop an analytical framework
for MPTCP delay dynamics accounting for the time-varying
RTTs. In Section IV, we formulate an application-level
delay minimization problem and develop a threshold-based
server-centric MPTCP solution. We extend it to a receiver-
centric solution that does not require any modification at the
server. We verify our proposed scheme through experimental
measurements and simulations in Section VI.

II. SYSTEM MODEL

We consider an MPTCP connection with a set R of sub-
flows with non-zero rate that deliver traffic generated from
a multimedia streaming application. The packet arrival from
the application can be modeled as a stochastic process with
an arbitrarily distribution with mean rate f . We assume that
each subflow r has a fixed two-way path, and each path has
a single bottleneck link over the forward data path and no
bottleneck link over the backward path. At the bottleneck link,
the capacity share of subflow r is denoted by cr and we assume
drop-tail queueing.

We denote the network delay, i.e., round-trip time (RTT),
of subflow r at time t as TRr (t) , which equals the sum of
a time-constant component T pr and a time-varying component
T qr (t). The former accounts for any fixed delays including
signal propagation, packet processing, and signal transmission,
and corresponds to the minimum round-trip time. The latter
may be dominated by the queueing delay T qr (t) at the bot-
tleneck queue. Thus, the RTT delay of subflow r is given as
TRr (t) = T pr + T qr (t).

Let xr(t) denote the transmission rate of subflow r. Since
MPTCP adopts the sliding window technique for the conges-
tion control, we have xr(t) = wr(t)

TR
r (t)

, where wr(t) denotes the

Send buffer
queuing delay

Network delay
Reordering delay1

2
3
4

567

sender receiver

Fig. 1. Application-level end-to-end delay of MPTCP is modeled as three
components; send buffer queueing delay, network delay, and reordering buffer
delay at the receiver.

congestion window size at time t. Each subflow r changes
its own congestion window wr(t) in an Additive Increase
and Multiplicative Decrease (AIMD) manner for compatibility
with conventional single-path TCP flows [4]. AIMD has been
shown to be stable operation under a variety of network
environments [6], and we assume that the subflow transmission
rate converges to an equilibrium point, denoted by x̂r. Let x̂
denote its vector.

We define application-level delay of MPTCP as the delay
from the time when a packet is injected into MPTCP, to the
time when the packet is delivered to the peer application
at the receiver. The network delay is only a component of
the application-level delay. We classify delay into three sub-
components as illustrated in Fig. 1.

• Sender buffer queuing delay: When an MPTCP packet
is injected by the application at the sender, it first enters
the send buffer and waits for a transmission opportunity
over a subflow. We assume that there is some randomness
in the network and the inter-service time of the send
buffer follows a random process with the exponential
distribution of mean rate

∑
r∈R x̂r. Since packet arrivals

to the send buffer have an arbitrary distribution with mean
rate f , we model the send buffer queueing delay as a
G/M/1 queueing system. Let T s denote the expected send
buffer queueing delay. From Kingman’s formula [24], we
obtain

T s(x̂) ≤
f/
∑
r∈R x̂r∑

r∈R x̂r − f
·
(

1 + Ca
2

2

)
, (1)

where Ca denotes the ratio of the standard deviation of
the inter-arrival time to the mean. Thus, the send buffer
queueing delay is a function of the sum of subflow rates
and decreases with the sum rate.

• Network delay: Since packets in subflow r follow a
fixed path, we model the sliding window mechanism
of the subflow as a closed-loop queueing system in a
virtual circuit network [22], [23]. In particular, from our
assumption of network randomness, we model it as an
M/M/1 closed-loop system with mean x̂r1.

1We assume that the distribution of inter-arriving time and service follow
the exponential distribution. The empirical reason is described in Section VI-A

Let Tnr denote the expected network delay over the
forward path, i.e., Tnr = TRr −

Tp
r

2 . From x̂r = wr

TR
r

and

the closed-loop result TRr =
wr+cr·Tp

r

cr
, we obtain

Tnr (x̂r) =
crT

p
r

cr − x̂r
− T pr

2
. (2)

Thus, the network delay of subflow r decreases as its
transmission rate x̂r decreases.

• Reordering buffer delay: Packets from different sub-
flows are likely to experience different network delays
and they may arrive out of order at the receiver. As shown
in Fig. 1, some packets (e.g., packets 2, 3, 4 in Fig. 1)
have to wait in the reordering buffer at the receiver until
next-expected packets (e.g., packet 1 in Fig. 1) arrive.
Let T or denote the expected reordering buffer delay for
packets of subflow r at the receiver. Since it comes from
the mismatch in network delay between subflows, we can
express its upper bound by their maximum difference

T or (x̂) ≤ max
i∈R

Tni (x̂i)− Tnr (x̂r). (3)

Let T (x̂) denote the application-level delay of MPTCP
given the subflow transmission rate x̂. In our model, from
(1), (2), and (3), we obtain the delay bound

T (x̂) ≤ max
r∈R

(T s(x̂) + Tnr (x̂r) + T or (x̂)),

≤ T s(x̂) + max
r∈R

Tnr (x̂r).
(4)

Note that the send buffer delay is a monotonically decreasing
function of the subflow rate sum, and the network delay of
each subflow is an increasing function of its subflow rate.
Hence, there is a trade-off relationship between the send buffer
delay and the network delays.

In this work, we aim to minimize the application-level delay
bound (4) through subflow rate allocation of MPTCP. To do so,
we develop a practical threshold-based solution that controls
each subflow rate, complying with MPTCP congestion control.
Furthermore, we are interested in a receiver- or client-side
solution to facilitate incremental deployment by end users.

III. UNDERSTANDING TCP DELAY DYNAMICS

Application-level delay performance of MPTCP depends
on the subflow transmission rate x̂ as shown in (4), where
each subflow rate is under control through the congestion
window size. There are several different MPTCP congestion
controllers [14]–[17]. Among those, Linked Increase Algo-
rithm (MPTCP-LIA), viewed as a de facto standard [13], is
known to achieve high throughput and fair coexistence with
conventional single-path TCP flows [14], [15]. In this section,
we investigate the performance of MPTCP-LIA with respect
to subflow congestion windows.

A. Inapplicability of simple fixed-RTT model

In analysis of TCP performance, it is often assumed that
RTT is fixed and the network queueing delay is negligible
(i.e., TRr (t) = T pr) [15]. Under the fixed RTT assumption, the
network delay Tnr and the maximum reordering delay become

constant, and the application-level delay is determined by the
send buffer delay. Hence, from (4), the optimal solution is
to set each subflow rate to its maximum (i.e., x̂r = cr).
MPTCP always achieves optimal delay performance since the
per-subflow AIMD controller consumes available bandwidth
in a greedy manner.

However, our experimental results in real wireless networks
demonstrate that greedy subflow rate allocation is not delay-
optimal, and application-level delay performance significantly
depends on the transmission rate of each individual subflow.
We establish an MPTCP connection with two subflows 0
and 1, which are connected through LTE and WiFi networks,
respectively. The application generates VBR traffic with mean
rate 35 Mbps, and the minimum RTT values of each subflow
are T p0 = 30 ms and T p1 = 15 ms, respectively. We
measure application-level packet delay under different values
of bottleneck capacity.

In the first experiment, we vary the LTE link capacity c0
between 40 and 60 Mbps, and fix the WiFi link capacity c1
to 15 Mbps. From measurements of application-level packet
delay, we found that the delay distributions for different LTE
link capacities remain similar. In the second experiment, we
fix the LTE link capacity c0 to 40 Mbps and vary the WiFi link
capacity c1 between 8 Mbps to 23 Mbps. In contrast to the first
experiment, we observe significant performance difference as
a function of WiFi link capacity. Increasing the rate of small-
rate subflow is much more effective in delay performance
improvement than increasing the rate of large-rate subflow.
From these results we conclude that the fixed-RTT model is
not suitable for understanding the MPTCP delay performance.
This motivates us to investigate the delay dynamics of MPTCP
and develop a model that takes into account the impact of
time-varying RTT.

B. Single-flow model with time-varying RTT

We first investigate the RTT dynamics of a single subflow
and its effect on the transmission rate. Subsequently, we extend
the result to multiple subflow scenarios. We build a simple
RTT model as a function of the (subflow) window size, where
we introduce two phases to estimate transmission rate under
the time-varying RTT.

Let us assume that the bottleneck capacity cr and the
minimum RTT T pr of subflow r are known. Let WBDP

r denote
the minimum bandwidth-delay product (BDP) of subflow r,
i.e., WBDP

r = cr · T pr . Let WLoss
r denote the maximum

number of in-flight packets allowed for subflow r, which
equals the sum of WBDP

r and the maximum available buffer
space for subflow r along the path. Practically, it can be
regarded as the (average) window size wr(t) when a packet
loss occurs. Note that WBDP

r can be considered as the
window size when the bottleneck link queue starts to build
up. When the congestion window increases beyond (i.e., when
wr(t) > WBDP

r), packets of subflow r will experience
queueing delay that equals wr(t)−WBDP

r

cr
. Hence, we can write

0 500 1000 1500
0

500

1000

1500

2000

2500

R
TT

 (m
s)

window (Kbyte)

 cr = 22 Mbps in WiFi
 cr = 3.1 Mbps in WiFi

(a) WiFi network

0 500 1000 1500 2000
0

100

200

300

400

R
TT

 (m
s)

window (Kbyte)

 cr = 75Mbps in LTE
 cr = 55Mbps in LTE

(b) LTE network

Fig. 2. Experimental measurements of the RTT and the window size of TCP
in commercial WiFi and LTE networks.

the RTT delay as

TRr (t) = T pr +
max [0,wr(t)−WBDP

r]
cr

= max [T pr ,
wr(t)
cr

]. (5)

We verify our simple RTT model (5) through experiments
in WiFi & LTE networks. We measure the RTT of each packet
(using the TCP timestamp option) and the window size wr(t)
when its corresponding ACK is received at the sender. We
conduct the experiments with different wireless bottleneck link
capacities. In all the cases, the last-hop wireless link is set as
the bottleneck, i.e. wired links always have larger capacities
than 100 Mbps and the wireless link capacity of smaller than
100 Mbps is controlled by using background traffic through
other devices. Fig. 2 shows our measurement results, where the
network delay estimated based on our model (5) is represented
as a solid line for each bottleneck capacity cr. We observe that
T pr ≈ 20 ms for the WiFi network and T pr ≈ 40 ms for the
LTE network. The measurement results match well with our
analysis and show a linear relationship between the RTT and
the congestion window where the slope is determined by cr.
In the LTE network, we observe the impact of the minimum
delay T pr when the window size is small.

Using (5) we estimate the transmission rate x̂r of subflow
r. Let us consider typical cycles of the window evolution of
TCP between packet losses as shown in Fig. 3. Since Eq. (5)
is piecewise linear, we divide each cycle into two phases: the

constant RTT phase for TRr (t) = T pr (or for wr(t) ≤WBDP
r),

and the linear RTT phase for TRr (t) = wr(t)
cr

(or for wr(t) >
WBDP
r).
• Constant RTT phase: The RTT is constant and the win-

dow size inflates at a fixed rate of one segment per T pr .
In Fig. 3, it is the dark gray shaded area starting from tr1.

• Linear RTT phase: The increase of the window size
decelerates, because, as RTT increases, it takes longer for
the receiver to return an ACK to the sender [19]. From (5)
and the fact that the window inflates by one segment per
TRr (t), the trace of the window size has a concave shape
as shown in Fig. 3 which results in a longer cycle period
than in the fixed-RTT model. When the window size
reaches WLoss

r , a packet will be dropped and the window
size is reduced to βWLoss

r by the AIMD algorithm. In
Fig. 3, the linear RTT phase happens between tr2 and tr3.

௥ܹ
஻஽௉

Constant RTT phase Linear RTT Phase

ݐ

௥ܹሺݐሻ

௥ܹ
௟௢௦௦

ߚ ௥ܹ
௟௢௦௦

τ௥,ଵ τ௥,ଶݐଵ௥ ଶ௥ݐ ଷ௥ݐ

Fig. 3. Window evolution cycle of a single subflow.

Let τr,1 and τr,2 denote the duration of the constant RTT
phase and the linear RTT phase, respectively, which can be
calculated from (5) by summing the RTTs during each phase:

τr,1 =
∑WBDP

r

w=βWLoss
r

T pr = T pr · (WBDP
r − βWLoss

r),

τr,2 =
∑WLoss

r

w=WBDP
r

w
cr
.

(6)

Let x̂r,1 and x̂r,2 denote the expected transmission rate during
τr,1 and τr,2, respectively. The average transmission rate x̂r
can be written as their weighted sum, i.e.,

x̂r =
τr,1

τr,1 + τr,2
· x̂r,1 +

τr,2
τr,1 + τr,2

· x̂r,2, (7)

where

x̂r,1 =

∑WBDP
r

w=βWLoss
r

w

τr,1
=
WBDP
r + βWLoss

r + 1

2T pr
,

x̂r,2 =

∑WLoss
r

w=WBDP
r

w

τr,2
=

∑
w∑

w/cr
= cr.

(8)

From βWLoss
r ≤ WBDP

r ≤ WLoss
r and the default β of

TCP Reno (β = 1
2), the average transmission rate of a single

subflow can be calculated as

x̂r =
3/4 · cr

1− (WBDP
r /WLoss

r) + (WBDP
r /WLoss

r)2
. (9)

We verify (9) through simulations with a single-path TCP
(TCP-Reno) in a saturated network (i.e., the sender always
has data packets to send). We measure the average trans-
mission rate of the TCP flow by varying the bottleneck link

capacity and the amount of the buffer space. The results are
shown in Fig. 4 where the x-axis represents the (normalized)
buffer space: there is less buffer space as WBDP

r /WLoss
r

increases, and zero buffer space when WBDP
r /WLoss

r = 1.
We observe that i) our analysis (9) is accurate and provides
good estimation under different network conditions, ii) when
there is a sufficient amount of the buffer space, packet loss
hardly occurs and the transmission rate is bounded by the
link capacity cr, iii) the setting around WBDP

r /WLoss
r = 0.5

would be sufficient to fully exploit the link capacity, and
iv) previously simplified models for TCP transmission rate
under the fixed RTT assumption [1]–[3] do not take into
consideration the time-varying queueing delay and provide
inaccurate estimation (dash line) when a large amount of the
buffer space is available.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

10

20

30

40

50

60

A
ve

ra
ge

 tr
an

sm
is

si
on

 ra
te

 (M
bp

s)

W BDP
 r / W Loss

 r

 cr = 40 Mbps (Analysis)

 cr = 40 Mbps (simulation)

 cr = 40 Mbps (Fixed RTT model)

 cr = 20 Mbps (Analysis)

 cr = 20 Mbps (simulation)

 cr = 20 Mbps (Fixed RTT model)

 cr = 15 Mbps (Analysis)

 cr = 15 Mbps (simulation)

 cr = 15 Mbps (Fixed RTT model)

 cr = 10 Mbps (Analysis)

 cr = 10 Mbps (simulation)

 cr = 10 Mbps (Fixed RTT model)

Fig. 4. Average transmission rate of single TCP over various link capacities.

IV. MINIMIZING APPLICATION-LEVEL DELAY OF MPTCP

From Eqs. (1), (2), and (5), the application-level delay of
MPTCP is a function of subflow transmission rates, and the
problem can be rewritten as

minimize
f/
∑

x̂r∑
x̂r−f

·
(

1+Ca
2

2

)
+ max

{
crT

p
r

cr−x̂r
− Tp

r

2

}
subject to

∑
x̂r ≥ f

x̂r ≤ cr for all r ∈ R.

(10)

Note that the first term of the objective function depends on
the sum of subflow rates (instead of individual subflow rates).
Provided that the sum rate is fixed, the second term can be
minimized when all the subflows with non-zero x̂r have the
same network delay

(
crT

p
r

cr−x̂r
− Tp

r

2

)
. Further, the function is

a convex function of x̂ and thus its solution can be easily
obtained, e.g., by an iterative solution such as the gradient
descent method.

However, although the optimal subflow rate allocation,
denoted by x̂∗, is found, there remains the difficulty in
controlling the rate of each subflow. In practice, we cannot
simply fix the transmission rate of subflow r to x̂∗r due to other
advantages of TCP congestion control such as adaptability
to system dynamics, stability under a wide range of network
environments, fairness, etc [5]. Further, the MPTCP fairness

criteria2 and the coupled control between subflows make the
problem more challenging.

To this end, we keep the window-based congestion control
of MPTCP-LIA with the AIMD algorithm, and introduce
the per-subflow threshold such that the sender shrinks the
subflow window wr(t) by β when wr(t) grows over the
threshold. This controls the average transmission rate around
the target value x̂∗ by restricting the number of in-flight
packets in each subflow. The approach makes our solution
attractive as a practical one to improve the streaming delay in
MPTCP, because it can be easily implemented without losing
the other advantages of TCP congestion control. Let W̄Loss

r

denote the window threshold of subflow r. Then we need
to find the threshold vector W̄Loss = {W̄Loss

r } such that
x̂(W̄Loss

r) = x̂∗. It is not straightforward since the subflow
window control of MPTCP-LIA are coupled with each other.
In the following, we investigate the MPTCP-LIA congestion
control in detail and develop a practical approximate solution.

Let wtot(t) :=
∑
r∈R wr(t). MPTCP-LIA controls the

window wr(t) of subflow r as follows.

• On receipt of a valid ACK, subflow r increases the
congestion window wr(t) by min

{
a

wtot(t)
, 1
wr(t)

}
, where

a(t) := wtot(t) ·
maxi∈R (wi(t)/(T

R
i (t))2)

(
∑
i∈R wi(t)/T

R
i (t))2

. (11)

• On detection of a loss, subflow r decreases the congestion
window wr(t) by a factor of β(= 1/2).

If there is only one subflow, it is equivalent to the TCP-Reno
congestion control, and we can directly use (9) to estimate x̂r
from W̄r.

We now assume that there are at least two subflows with
non-zero window size. From (11), it can be easily seen that
a(t)
wtot

< 1
wr(t) for all r ∈ R. Then the fluid model [2] of

MPTCP-LIA window control can be written as

ẇr(t) = wr(t)
Tr(t)

(
a(t)

wtot(t)
· (1− qr(t))− wr(t)

2 · qr(t)
)
, (12)

where qr(t) denotes the packet loss probability of subflow r,
and the terms describe the increase and decrease rates of
the window size. Let αr(t) denote the amount of window
increment per RTT provided no packet loss. From (11) and
(12), we have

αr(t) =
wr(t)a(t)

wtot(t)
=
wr(t) ·maxi∈R

wi(t)

(TR
i

(t))2(∑
i∈R

wi(t)

TR
i

(t)

)2 . (13)

Let b denote the maximum rate divided by RTT, i.e., b :=
argmaxi∈R

wi(t)

(TR
i

(t))2
. We assume that b remains unchanged

for a long time, which commonly occurs when a subflow

2In [15], each subflow of MPTCP should increase its window size no faster
than the single-path TCP would, and should decrease as quickly as the single-
hop TCP. As a result, each subflow of MPTCP should not get more than the
transmission rate of a single-path TCP.

dominates the other in both capacity and delay. Under this
assumption, we can rewrite (13) as

αr(t) =
wr(t) · xb(t)

TR
b

(t)(∑
i∈R xi(t)

)2 . (14)

This implies that when subflow i (6= b) reduces its transmission
rate (e.g., due to temporal wireless fading), subflow r (6= i)
will have a larger αr(t), increase its transmission rate more
quickly, and compensate the performance loss of subflow i.

In order to understand the delay dynamics of MPTCP
subflows, we have to take into account time-varying RTT
and divide the period into two phases (per subflow) as in
Section III-B. Due to the coupling of MPTCP-LIA window
control across the subflows, the complete analysis needs to
divide the time into 2|R| phases, where | · | denotes the
cardinality of the set. Thus, the complete analysis will result
in high computational complexity, which makes our solution
hardly scalable for many subflows and causes significant en-
ergy consumption that needs to be avoided in mobile devices.

We circumvent the difficulty by iteratively calculating the
window evolution of subflow r under the assumption that the
transmission rates of other subflows are fixed. Specifically, in
(14), xi(t) is replaced with x̂i for i 6= r, and TRb (t) with
its long-term average T̂Rb . In the following, we estimate the
transmission rate of subflow r for two disjoint cases: r 6= b
and r = b.
• When r 6= b: we can rewrite (14) as αr(t) =(
wr(t) · x̂b

T̂R
b

)
/
(
wr(t)
TR
r (t)

+
∑
i∈R′

r
x̂i

)2

, where R′r := R\{r}.
We consider a typical cycle of the window evolution of
subflow r and divide it into two phases as before. Let τr,1
and τr,2 denote the duration of each phase, respectively. Let
αr,1(t) and αr,2(t) denote the window increment rate in each
phase, respectively. Since TRr (t) = T pr in the constant RTT
phase and wr(t)

TR
r (t)

= cr in the linear RTT phase, we obtain

αr,1(t) =
wr(t)· x̂b

T̂R
b

(
wr(t)

T
p
r

+
∑

i∈R′
r
x̂i)2

, αr,2(t) =
wr(t)· x̂b

T̂R
b

(cr+
∑

i∈R′
r
x̂i)2

,

(15)
In the constant RTT phase, we have αr,1(t) <
wr(t)·wb(t)/(TR

b (t))2

wr(t)·wr(t)/(TR
r (t))2

≤ 1 from (14) and the definition
of b, which implies that the window size increases more
slowly than in TCP-Reno. On the other hand, in the linear
RTT phase, the window inflates at rate αr,2(t)/TRr (t), which
is constant since both αr,2(t) and TRr (t) are a linear function
of wr(t) from (5) and (15).
• When r = b: we have TRb (t) = T pb in the constant RTT
phase and wb(t)

Tb(t) = cb in the linear RTT phase. Under the
assumption of the constant rates of the other subflows, we
obtain the window increment rate of subflow b at each phase
as

αb,1(t) =

wb(t)
2

(T
p
b

)2

(
wb(t)

T
p
b

+
∑

i∈R′
b

x̂i)2
, αb,2(t) =

c2b
(cb+

∑
i∈R′

b

x̂i)2
,

(16)

respectively. The above result implies that the window of
subflow b evolves following a concave function in the linear
RTT phase. Since subflow b often achieves the best throughput,
MPTCP-LIA let the best-performing subflow stay at a higher
transmission rate, i.e., in the linear RTT phase, for a longer
time.

From (6), (15) and (16), we calculate the average transmis-
sion rate of subflow r in each phase as

x̂r,1 =

∫ tr
2

tr
1

wr(t)dt

τr,1
=

WLoss
r

2 +

∫ tr
2

tr
1

αr,1(t)dt

τr,1
, (17)

x̂r,2 =

∫ tr
3

tr
2

wr(t)dt

τr,2
= WBDP

r +

∫ tr
3

tr
2

αr,2(t)dt

τr,2
, (18)

respectively, where

τr,1 =
∫ tr2
tr1

Tp
r

α(t)dwr(t), τr,2 =
∫ tr3
tr2

wr(t)/cr
α(t) dwr(t).

Suppose that the MPTCP sender has knowledge of
WBDP = {WBDP

r }, c = {cr} and T̂R = {T̂Rr } and
obtains an optimal solution x̂∗ to (10) using a numerical
method. From (17) and (18), the sender finds W̄Loss

r such
that x̂(WLoss = W̄Loss,WBDP , c, T̂R) that is sufficiently
close to x̂∗. Then, MPTCP-LIA achieves x̂∗ by halving wr(t)
whenever wr(t) becomes greater than W̄Loss

r .
Since the search algorithm for W̄Loss has various types

of implementation, we employ a simple exhaustive search as
follows: We first limit the search range to [WBDP

r , 2WBDP
r]

for each subflow r, since the AIMD operation suggests that a
smaller window wr(t) < WBDP

r leads to link underutilization
and a larger window wr(t) > 2WBDP

r causes an additional
delay without increasing the throughput. In this range, we
sequentially search until

|x̂∗r − x̂r(W̄Loss,WBDP , c, T̂R)| < ε, (19)

for some small ε > 0 and all r ∈ R. Our exhaustive
search finishes quickly when the number of subflows is small.
However, the search space will exponentially increase with the
number of subflows, and thus finding good W̄Loss with low
complexity remains as an interesting open problem.

V. RECEIVER-CENTRIC TRAFFIC SPLITTING

Our threshold-based solution in Section IV requires the
information on the application (i.e., f) and the subflow paths
(i.e., {T pr }, WBDP , c, T̂R), and controls the subflow rate
x̂ to minimize the application-level delay of MPTCP. Since
all the information can be easily obtained at the sender,
one can implement the solution at the sender. However, the
sender is often agnostic to the user preferences like quality of
experience and network preference. Further, it often takes long
for the innovation to be adopted at the sender due to service
provider policies, computation load at the server, etc [28]–
[30]. To accelerate the innovation without intervention from
service providers and facilitate deployment from end users,
we develop a receiver-centric solution that does not require
any change at the sender.

Wireless
network 1

…

Subflow 1 Subflow 2 … Subflow n

Subflow parameter
estimation

traffic rate
estimation

Optimal
transmission rate

R-TSC

݂

ܿ௥, ௥ܶ
௣, ௥ܹ

௅௢௦௦, ௥ܹ
஻஽௉

௥ܶ
ோሺݐሻ, ௥(t)ݓ

Application layer

Subflow traffic
control ௥ܹ

஽௨௣

ACK
/DupACK

Wireless
network 2

Wireless
network n

Fig. 5. System structure for receiver-centric traffic splitting control (R-TSC).

In developing the receiver-centric MPTCP solution that
minimizes the application-level delay bound (4), the receiver
should be able to

• collect necessary information on the application and the
subflow paths, and

• control the transmission rate of each subflow.

The receiver estimates the information for each subflow path
(TRr (t), T pr , cr,W

BDP
r ,WLoss

r), by observing incoming pack-
ets. The application information on streaming rate (f) is
estimated from the play-back buffer progress. From these,
we can calculate the optimal subflow transmission rate x̂∗ as
before. However, since the receiver cannot directly control the
congestion window size, we induce the window reduction by
letting the receiver intentionally generate 3-dup-ACKs, which
will trigger a retransmission and halve the window size at the
sender. The overall system structure for our R-TSC is shown
in Fig. 5, and the detailed procedures to collect the information
and the condition to invoke the 3-dup-ACKs are given below:

1) Estimate the subflow path information: For each subflow
r, the receiver takes an adaptive approach to estimating
WBDP
r , the bottleneck link capacity cr, and the average

RTT T̂Rr , since they may change across time according
to the system dynamics. From the RTT measurements
TRr (t) with the TCP timestamp option, we choose
the minimum RTT T pr as the lowest RTT value ever
observed. Also, the receiver estimates the window size
wr(t) by counting the number of incoming packets
during an RTT period TRr (t) and sets the transmission
rate x̂r(t) = wr(t)

TR
r (t)

. The subflow bandwidth cr is set to
wr(t)
TR
r (t)

if TRr (t) > T pr . Then, we have WBDP
r = cr ·T pr ,

and obtain the maximum of in-flight packets WLoss
r as

the window size wr(t) when a packet loss is detected.
2) Estimate the application rate information: The receiver

estimates the streaming rate f using the play-back
buffer. To elaborate, letting db(t) denote the amount of
multimedia streaming data in the application play-back
buffer at time t, the receiver can obtain the estimation

f̂ on the application rate as net buffered data per unit
time plus the sum of subflow rates as

f̂ = db(t)−db(t−∆t)
∆t +

∑
r∈R x̂r(t), (20)

where ∆t is the interval between play-back buffer mea-
surements.

3) Find an optimal solution x̂∗: Since the receiver has all
the necessary information about the application and the
subflow paths, it can find an optimal solution x̂∗ to (10)
using the numerical method, e.g., the gradient method.

4) Control subflow rates by generating intentional 3-dup-
ACKs: To achieve the target subflow rate allocation
x̂∗, the receiver effectively sets the window threshold
W̄Loss
r of subflow r. Note that W̄Loss

r has been used
in our sender-centric solution to halve the window size
wr(t) when it becomes greater than W̄Loss

r . The receiver
induces the window reduction by intentionally generat-
ing 3-dup-ACKs when the estimated wr(t) is greater
than W̄Loss

r . To highlight the receiver-side operation, we
denote the threshold by W̄Dup

r . As before, it is obtained
from the exhaustive search with (19) at the receiver.
The sender reacts to this (fake) loss event by halving
its window size, and as a result, we achieve the subflow
traffic allocation x̂∗ that minimizes the application-level
delay (4).

The overall algorithm at the receiver is described in Algo-
rithm 1.

VI. PERFORMANCE EVALUATION

In this section, we verify our TCP queuing delay model
in modern wireless network through the experiment in LTE
networks, and the transmission rate model of MPTCP-LIA
using ns-3 [11]. After all we evaluate the performance of our
solutions through testbed experiments using Android devices.

A. TCP queueing model verification

In real wireless network, the bursty transmission and re-
ception of TCP breaks the assumption of Sec.II. (i.e. Expo-
nential distribution of arrival & service interval). According
to measurement result, there are several reasons for packet
burst. In LTE networks, MAC layer operation (or channel
state) of wireless networks often transmits 7 or 8 packets
at a time. We conjecture that this is due to channel-aware
scheduling and packet aggregation policy of LTE provider. In
WiFi network, similar traffic patterns are observed due to A-
MPDU and block ACK. Fig. 6-(a) shows the distributions of
inter-arrival time at the receiver, and about 82% packets arrive
with 0 interval(i.e., arrive as a burst). The inter-arrival time at
the receiver also affects the ACK inter-arrival time at the server
shows as shown in Fig. 1-(b), since the receiver generates
an ACK upon a packet reception. A notable difference is
the mean rate, which is halved because the delayed ACK
option causes one ACK to be generated per 2 received packets.
The delayed ACK, which is commonly used in most smart
phones, makes the traffic burstier since an ACK leads to two
or more packet transmissions. Fig. 6-(c) shows the distribution

Algorithm 1 Algorithm of R-TSC
On receiving a packet in subflow r:

1: subSeqNumr : subflow seq. no. of the received packet
2: nextSeqNumr : next expected subflow seq. no.
3: if subSeqNumr = nextSeqNumr then
4: Update variables TRr and T pr
5: EstimateSubflowPath() /* see below */
6: Calculate x̂∗ by solving (10)
7: Search for W̄Dup (= W̄Loss) that satisfies (19)
8: if wr ≤ W̄Dup

r then
9: nextSeqNumr ← nextSeqNumr + 1

10: end if
11: /* when wr > W̄Dup

r , duplicate ACKs will be gener-
ated by not increasing nextSeqNumberr */

12: end if
13: Transmit an ACK with nextSeqNumr

14: Put the packet in the reordering buffer

EstimateSubflowPath() :
1: δt : fixed time duration for updating wr, xr and cr.
2: tnow : current time, tlast : time of the last update.
3: db(t) : data amount in the play-back buffer at time t.
4: if tnow − tlast ≥ δt then
5: wr ← α · wr + (1− α) · pkts · TR

r

(tnow−tlast)

6: x̂r ← β · x̂r + (1− β) · pkts
(tnow−tlast)

7: f̂ ← db(tnow)−db(tlast)
(tnow−tlast)

+
∑
r∈R x̂r

8: if TRr ≥ T pr then
9: cr ← x̂r

10: end if
11: pkts← 0
12: tlast ← tnow
13: else
14: pkts← pkts+ 1
15: end if

of packet inter-departure time at the server. About a half of
packets are transmitted with 0 interval at server, and it shows
large variance compared to exponential distribution at same
transmission rate.

TABLE I
THE RATIO OF VARIANCE AND THE SQUARE OF AVERAGE

c2a in receiver
Measurement 15.602

MA - 2 samples 8.091
MA - 4 samples 3.877

MA - 10 samples 1.182

c2s in server
Measurement 33.984

MA - 3 samples 12.490
MA - 7 samples 5.147
MA - 37 samples 1.194

Nonetheless, we found that the interval distributions can
be approximated to an the exponential distribution by taking
several packets as a unit. We evaluate the similarity of interval
distributions of TCP with exponential distribution through the
ratio of variance and the square of average (c2a, c

2
s and in

M/M/1 queueing model, c2a = c2s = 1). As shown in Table. I,
as the number of sample of unweighted moving average (MA)

gets larger, the inter-departure time at the server and the
inter-arrival time at the receiver get closer to the exponential
distribution. Also in Fig. 6 the distributions of MA shows
the little difference from the exponential distribution of the
same mean rate, when the numbers of MA samples are 10
and 37, respectively. It is quite small compared to BDP and
transmission window size.

B. Transmission rate model evaluation

We evaluate our model by comparing the numerical results
with simulation results. We consider a multi-homed mobile
scenario, where an MPTCP connection is established through
LTE and WiFi networks. Subflow 0 is established over LTE
network with wireless capacity c0 and subflow 1 over WiFi
network with capacity c1. In both networks, the last-hop
wireless link is the bottleneck and the propagation delay is
T p0 = T p1 = 50 ms. To focus on the impact of MPTCP-LIA
congestion control, we maintain the send buffer always full
such that the transmission rate of each subflow is determined
by its congestion window. For different bottleneck link rates,
we measure the transmission rate of each subflow varying
the maximum number of in-flight packets WLoss

r , which is
done by changing the buffer size at the bottleneck link. The
simulation results will be compared with the numerical results
from (19).

Fig. 7 shows the results with three different network set-
tings. In the first simulation with (c0, c1) = (20, 5) Mbps
(which results in (WBDP

0 ,WBDP
1) = (127, 32) Kbytes) and

WLoss
1 = 41 Kbytes, we change WLoss

0 . Fig. 7(a) shows
that the simulation results and the analytical results are well
matched. As we increase WLoss

0 , the rate x̂0 of subflow
0 increases linearly up to WLoss

0 = WBDP
0 and saturates

the capacity c0 when WLoss
0 ≥ 2WBDP

0 . Note that when
WLoss

0 ≥ 2WBDP
0 , the numerical results are a bit higher than

the simulation results, which is due to the overhead that is not
taken into account in the analysis (i.e., header length, ACK,
etc).

In the second simulation, we fix WLoss
0 to 142 Kbytes and

vary WLoss
1 from 10 to 100 Kbytes. Fig. 7(b) shows the similar

results. The results of the two simulations demonstrate that
our analysis results are also well matched with the simulation
results under the rate changes of either the large-rate subflow
or the small-rate subflow. The high accuracy in the subflow
transmission rate estimation is the advantage of our model
over the fixed-RTT model.

In the third simulation, we consider the scenarios when
the capacity of one subflow changes. We set WLoss

0 =
273 Kbytes, WLoss

1 = 68 Kbytes, and c0 = 40 Mbps while
varying c1 from 10 to 40 Mbps. Fig. 7(c) shows the results.
Again, unlike the fixed-RTT model in [14], [15], our model
provides accurate estimation on the transmission rates for
different rates of the small-rate subflow.

C. Evaluation through testbed experiments

For experimental evaluation, we developed a testbed with an
MPTCP server connected to an MPTCP client. The MPTCP

0.000 0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

P
er

ce
nt

ile
s

Inter-arrival time (s)

 Experiments (56.4Mbps)
 MA-10
 Exp. Dst (56.4Mbps)

(a) Distribution of packet inter-arrival time
at the receiver

0.000 0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

 Experiments (56.4Mbps)
 MA-10
 Exp. Dst (28.2Mbps)

P
er

ce
nt

ile
s

Inter-arrival time (s)

(b) Distribution of ACK inter-arrival time at
the server

0.000 0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

P
er

ce
nt

ile
s

Inter-departure time (s)

 Experiments (56.4Mbps)
MA-37
 Exp. Dst (56.4Mbps)

(c) Distribution of packet inter-departure
time at the server

Fig. 6. The capacity of LTE network is about 56.4 Mbps and minimum RTT is about 50ms. The BDP of the path is about 244.8 packets and the transmission
window is over 1000 packets.

0 100 200 300 400
0

5

10

15

20

25

Av
er

ag
e

tra
ns

m
is

si
on

 ra
te

 (M
bp

s)

W0
Loss (kbyte)

 x0(simlulation)
 x1(simlulation)
 x0(analysis)
 x

1
(analysis)

(a) c0 = 20Mbps, c1 = 5Mbps, WLoss
1 =

41.02 Kbyte

0 20 40 60 80 100
0

5

10

15

20

25
Av

er
ag

e
tra

ns
m

is
si

on
 ra

te
 (M

bp
s)

W1
Loss (kbyte)

 x
0
(simlulation)

 x
1
(simlulation)

 x
0
(analysis)

 x
1
(analysis)

(b) c0 = 20Mbps, c1 = 5Mbps, WLoss
0 =

140.22 Kbyte

0 10 30 40
0

10

20

30

40

A
ve

ra
ge

 tr
an

sm
is

si
on

 ra
te

 (M
bp

s)

c1 (Mbps)

 x0 (simulation)
 x1 (simulation)
 x0 (analysis)
 x1 (analysis)

20

(c) WLoss
0 = 273.43 Kbyte, WLoss

1 = 68.35
Kbyte, c0 = 40 Mbps

Fig. 7. Comparison of simulation and numerical results: subflow transmission rates x̂ = (x0, x1) and the maximum number of in-flight packets W̄Loss.
Results predicted by analysis (19) are well matched with the simulation results.

server runs Ubuntu 14.04 in a desktop computer with MPTCP
implemented in the kernel [12]. The server has two Ethernet
interfaces, each of which is connected to the client through
LTE and WiFi networks, respectively. We use commercial LTE
networks (SK telecom, South Korea), and a self-configured
WiFi network with a home access point (Cisco Air-SAP-
1602I). We separate their routing paths such that there is no
overlap. The client is an Android smart phone (Nexus 5) that
runs Android 4.4.2 with MPTCP kernel implementation [12].

Between the server and the client, we establish an MPTCP
connection with two subflows, where subflow 0 passes through
the LTE network and subflow 1 through the WiFi network.
For the WiFi network, we control the link capacity c1 in
[6, 35] Mbps by fixing the modulation and coding rate (MCR).
For the LTE network, since we cannot directly control the
bottleneck link capacity c0, we generate the background traffic
using other devices and set c0 in [15, 100] Mbps. The minimum
RTT is T p0 ≈ 30 ms for the LTE network, and T p1 ≈ 15 ms
for the WiFi network.

Under the controlled bottleneck link capacity, we keep the
send buffer always full and measure the maximum number of
in-flight packets (WLoss

r) and the maximum RTT (maxTRr).
We show the results in Table II. In our experiments, wireless
loss rarely occurs and most packet losses are caused by buffer
overflow at the wireless link. In both LTE and WiFi networks,

TABLE II
NETWORK PERFORMANCE UNDER CONTROLLED BOTTLENECK LINK

CAPACITY

LTE networks
c0 WBDP

0 WLoss
0 maxTR

0
71.3 Mbps 273.8 Kbyte 7571.4 Kbyte 829.7 ms
55.1 Mbps 211.6 Kbyte 6983.6 Kbyte 991.5 ms
27.9 Mbps 107.1 Kbyte 7477.1 Kbyte 2092.0 ms
15.1 Mbps 57.9 Kbyte 6861.9 Kbyte 3545.1 ms

WiFi networks
c1 WBDP

1 WLoss
1 maxTR

1
33.50 Mbps 64.32 Kbyte 719.6 Kbyte 226.2 ms
21.99 Mbps 42.22 Kbyte 716.4 Kbyte 251.1 ms
15.76 Mbps 30.26 Kbyte 722.3 Kbyte 335.7 ms
4.72 Mbps 9.08 Kbyte 782.4 Kbyte 1167.8 ms

we observe that WLoss
r is much greater than WBDP

r , and
maxTRr significantly exceeds the minimum RTT TPr . This
implies that both networks have a large amount of buffer space
to accommodate the dynamics of wireless systems, which
often causes the well-known bufferbloat problem [7], [8].

We now set f = 35.85 Mbps, and evaluate the delay
performance of our solution in comparison with MPTCP-LIA.
We use the same setting with (c0, c1) = (40, 12) Mbps. We
test both MPTCP-LIA schedulers with a conventional receiver
(CR) and our R-TSC.

0 5 10 15 20
0

300

600

900

0 5 10 15 20
0

200

400

600

0 5 10 15 20
0

30

60

90

w
in

do
w

 (K
by

te
)

 w0 (LTE)
 w1 (WiFi)

D
el

ay
 (m

s)

Time (s)

 Send buffer queuing delay
 Network + reordering delay
 Application level delay

Tr
an

sm
is

si
on

 ra
te

(M
bp

s)

 Total transmission rate

(a) MPTCP-LIA with a conventional receiver

0 5 10 15 20
0

300

600

900

0 5 10 15 20
0

30

60

90

0 5 10 15 20
0

200

400

600

w
in

do
w

 (K
by

te
)

 w0 (LTE)
 w1 (WiFi)

Tr
an

sm
is

si
on

 ra
te

(M
bp

s)

 Total transmission rate

D
el

ay
 (m

s)

Time (s)

 Send buffer queuing delay
 Network + reordering delay
 Application level delay

(b) MPTCP-LIA with R-TSC receiver

0 5 10 15 20
0

1000

2000

3000

4000

0 5 10 15 20
0

300

600

900

0 5 10 15 20
0

30

60

90

D
el

ay
 (m

s)

Time (s)

 Send buffer queuing delay
 Network + reordering delay
 Application level delay

w
in

do
w

 (K
by

te
)

 w0 (LTE)
 w1 (WiFi)

Tr
an

sm
is

si
on

 ra
te

(M
bp

s)

 Total transmission rate

(c) MPTCP-LIA (LRF) with a conventional re-
ceiver

Fig. 8. Performance comparison of MPTCP-LIA with a conventional receiver (CR) and with our solution, in terms of congestion window, total transmission
rate, and delay performance, where the bottleneck link capacities (c0, c1) = (40, 12) Mbps and the application rate f = 35.85 Mbps.

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Application level delay (ms)

 MPTCP-LIA (LRF)
 MPTCP-LIA (RR)
 MPTCP-LIA with R-TSC

(a) (c0, c1) = (40, 15) Mbps, f = 35.85 Mbps

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Application level delay (ms)

 MPTCP-LIA (LRF)
 MPTCP-LIA (RR)
 MPTCP-LIA with R-TSC

(b) (c0, c1) = (40, 12) Mbps, f =
35.85 Mbps

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Application level delay (ms)

 MPTCP-LIA (LRF)
 MPTCP-LIA (RR)
 MPTCP-LIA with R-TSC

(c) (c0, c1) = (40, 8) Mbps, f = 35.85 Mbps

Fig. 9. Cumulative distribution of application-level delays of MPTCP-LIA with and without R-TSC.

Fig. 8 shows the window evolution, the total transmission
rate, and the delay of the two subflows. When MPTCP-LIA
distributes packets over the subflows in a round-robin manner,
the small-rate subflow often suffers from large queuing delay,
which leads to poor application-level delay performance as
shown in Fig. 8(a). In contrast, when R-TSC is used at the
receiver, the window sizes of the both subflows are under
control through 3-dup-ACKs to balance the transmission rates,
and the solution achieves low application-level delay as shown
in Fig. 8(b).

Thus far, we assumed that MPTCP-LIA uses the basic
round robin scheduler (RR) to distribute the packets in the
send buffer. An alternative method to reduce the application-
level delay at the sender is to use Least-RTT-First (LRF)
scheduler [20], i.e., allocate packets from the send buffer to the
subflow with the minimum RTT first. It has been shown that
MPTCP-LIA with LRF is effective to reduce the reordering
delay. However, our experiments show that it often creates
large delay during the initial period.

Fig. 8(c) shows the experimental results with MPTCP-LIA
(LRF) with the conventional receiver (CR): subflow 1 (WiFi)
initially increases the window size faster than subflow 0 (LTE)

owing to its short RTT. Once subflow 0 has a large window
size (i.e., b = 0), it hinders window inflation of subflow 1
under MPTCP-LIA congestion control as in (15). It takes about
10 seconds for subflow 1 to have a comparable window size.
Since the small window size results in low transmission rate,
it suffers from large delay (up to 4 seconds) that is incurred
at the send buffer. This is consistent with observations made
in [21]. Our R-TSC solution removes such long initial delay
when it is matched with MPTCP-LIA (LRF), in which case,
the experimental results are similar to Fig. 8(c). (They are
omitted due to space constraints.)

To investigate application-level delay distributions, we gen-
erate traffic at rate f = 35.85 Mbps, set the LTE link capacity
to 40 Mbps, so that the application rate is smaller than the
LTE link capacity. Under different WiFi link capacities, we
measure packet delay during the initial 20 second period.
Fig. 9 shows the cumulative distribution of packet delays.
We observe that MPTCP-LIA with R-TSC receiver achieves3

3When R-TSC is used at the receiver, both MPTCP-LIA (RR) and MPTCP-
LIA (LRF) achieve similar delay performance. In the paper, we only show
the delay distribution of MPTCP-LIA (RR) with R-TSC and omit that of
MPTCP-LIA (LRF).

significantly better delay performance than that with the con-
ventional receiver. For MPTCP-LIA (RR), the capacity c1 of
the small-rate subflow impacts greatly on the delay perfor-
mance. As c1 decreases, application-level delay increases due
to the mismatch between the network delays. When LRF is
employed, there exists an initial period of long delay of 5–
10 seconds which depends on the difference of the minimum
RTT.

VII. CONCLUSION

In this paper, we aimed at minimizing the application-
level delay of MPTCP through precise per-subflow trans-
mission rate allocation. To this end, we analyzed the re-
lationship between TCP transmission rate and time-varying
queueing delay, and we investigated the impact of the per
subflow maximum window threshold on its rate allocation.
The problem is challenging due to the strong coupling be-
tween subflows in MPTCP-LIA congestion control. We used
approximation methods to develop a sender-side subflow-rate
allocation scheme to minimize application-level delay. We
extended it to develop a receiver-side solution, named R-TSC,
which facilitates incremental deployment without any support
from the service providers. By generating “intentional” three
duplicate acknowledgments (3-dup-ACKs) as necessary, R-
TSC leads to a split of the streaming traffic into subflows
that significantly reduces application-level delay.

We evaluated our client-side solution through simulation and
testbed experiments in commercial LTE and WiFi networks.
The results show that R-TSC significantly improves the per-
formance of MPTCP-LIA.

ACKNOWLEDGMENT

This work was supported by the Samsung Electronics
DMC research center and IITP grant funded by the Korea
government (MSIP) (No. B0126-15-1064, Research on Near-
Zero Latency Network for 5G Immersive Service).

REFERENCES

[1] J Padhye, V Firoiu, D Towsley, and J Kurose, “Modeling TCP throughput:
a simple model and its empirical validation,” ACM SIGCOMM Computer
Communication Review, pp. 303-314, Oct. 1998.

[2] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal of
the Operational Research Society, vol. 49, pp. 237-252, 1998.

[3] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking, Aug.
1999.

[4] S. Floyd, M. Handley, and J. Padhye, “A Comparison of Equation-
Based and AIMD Congestion Control,” ACIRI Technical Report,[online]
Available : http://www.aciri.org/tfrc/aimd.pdf, May 2000.

[5] Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock,
“Host-to-Host Congestion Control for TCP,” IEEE Communications Sur-
vey & Tutorials, vol. 12, no. 3, 2010.

[6] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks,” Journal of Computer
Networks and ISDN, vol. 17, no. 1, Jun. 1989.

[7] H. Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee, “Tackling
bufferbloat in 3G/4G networks,” in Proc. of IEEE IMC, Nov. 2012.

[8] Jim Gettys, and Kathleen Nichols, “Bufferbloat: dark buffers in the
internet,” Magazine Communications of the ACM,Vol. 55, Issue 1, Jan.
2012.

[9] S. Alfredssonl, G. D. Giudice, J. Garcia1, A. Brunstrom, L. D. Cicco, and
S. Mascolo,“Impact of TCP congestion control on bufferbloat in cellular
networks,” in IEEE WoWMoM, 2013.

[10] H. Im, C. Joo, T. Lee, and S. Bahk, “Receiver-side TCP Countermea-
sure to Bufferbloat in Wireless Access Networks,” submitted to IEEE
Transactions on Moblie Computing, 2015.

[11] NS-3 module for MPTCP [online] Available : http://code.google.com/p/
mptcp-ns3/ .

[12] MPTCP - Linux Kernel implementation. [Online]. Available:
http://mptcp.info.ucl.ac.be/ .

[13] C. Raiciu, M. Handley, and D. Wischik, “Coupled congestion control
for multipath transport protocols,” IETF RFC 6356, Oct. 2011.

[14] D. Wischik, M. Handley and C. Raiciu, “Control of multipath TCP and
optimization of multipath routing in the Internet,” in Proc. NetCOOP
2009.

[15] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. of ACM NSDI, Jun. 2011.

[16] Y. Cao, M. Xu, and X. Fu, “Delay-based Congestion Control for
Multipath TCP,” in IEEE ICNP 2012.

[17] R. Khalili, N. Gast, M. Popovic, and J. L. Boudec, “MPTCP is not
pareto-optimal: performance issues and a possible solution,” IEEE/ACM
Transactions on Networking, vol. 21, no. 5, Oct. 2013.

[18] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, “Ex-
ploring mobile/WiFi handover with multipath TCP,” in ACM SIGCOMM
workshop on Cellular networks: operations, challenges, and future design,
2012.

[19] Y. Chen, Y. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D.
Towsley, “A measurement-based study of MultiPath TCP performance
over wireless networks,” in ACM IMC, 2013.

[20] C. Paasch, S. Ferlin, ö. Alay and O. Bonaventure, “Experimental
Evaluation of Multipath TCP Schedulers,” in ACM SIGCOMM Capacity
Sharing Workshop (CSWS’14), 2014.

[21] Y. Chen and D. Towsley, “Bufferbloat and Delay Analysis of Multipath
TCP in Wireless networks ,” in IFIP Networking, 2014.

[22] S. Park, C. Joo, Y. Park and S. Bahk,“Impact of Traffic Splitting on the
Delay Performance of MPTCP,” in IEEE ICC, 2014.

[23] M. Schwartz, “Telecommunication networks : protocols, modeling and
analysis,” Prentice Hall, Jan. 1987.

[24] P. G. Harrison, and N. M. Patel, “Performance modeling of communi-
cation networks and computer architecture,” Addison-Wesley, 1992.

[25] X. Zhang, Y. Xu, H. Hu, Y. Liu, Z. Guo, and Y. Wang, “Profiling Skype
Video Calls: Rate Control and Video Quality,” in IEEE INFOCOM, Mar.
2012.

[26] A. Finamore, M. Mellia, M. M. Munaf‘o, R. Torres, and S. G.
Rao,“Youtube everywhere: impact of device and infrastructure synergies
on user experience,” in ACM IMC, 2011.

[27] Lee, S., Roh, H., Lee, H., Chung, K. “ Enhanced TFRC for high
quality video streaming over high bandwidth delay product networks.”
Communications and Networks, Journal of, 16(3), 344-354.

[28] N. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. Bershad, “Receiver based management of low bandwidth access
links, in Proc. IEEE INFOCOM, Tel Aviv, Mar. 2000, pp. 245254.

[29] P. Mehra, A. Zakhor, and C. De Vleeschouwer, “Receiver-driven band-
width sharing for TCP, in Proc. IEEE INFOCOM, San Francisco, Apr.
2003.

[30] D. Ros, and M. Welz, “Less-than-Best-Effort Service: A Survey of End-
to-End Approaches,” IEEE Transaction on Communications Surveys and
Tutorials, vol. 15, no. 2, 2013.

