
ADVANCED TOPICS SECTION

The Advanced Topics Section is meant for articles that deal with physics more advanced than is typical of

regular articles in AJP. Though advanced, these articles have been judged to give clear presentations of

material useful to a segment of AJP readers.

Electric field lines of an arbitrarily moving charged particle

S. G. Arutuniana)

Alikhanyan National Scientific Laboratory, 0036 Yerevan, Armenia and CANDLE Synchrotron Research
Institute, 0040 Yerevan, Armenia

M. A. Aginian and A. V. Margaryan
Alikhanyan National Scientific Laboratory, 0036 Yerevan, Armenia

M. Chungb)

Ulsan National Institute of Science and Technology, 44919 Ulsan, South Korea

E. G. Lazareva
Alikhanyan National Scientific Laboratory, 0036 Yerevan, Armenia

(Received 6 September 2022; accepted 16 July 2023)

Electromagnetic fields of relativistic charged particles have a broad frequency spectrum and a

sophisticated spatial structure. Field lines offer a visual representation of this spatial structure. In

this article, we derive a general set of equations for the field lines of any moving charged particle.

The electric field lines are completely determined by the unit vector from the retarding point to the

observation point. After proper transformations, the field line equations describe the rotation of this

vector with an angular velocity coinciding with Thomas precession. In some cases, including all

planar trajectories, the field line equations reduce to linear differential equations with constant

coefficients. We present a detailed derivation of these equations and their general analytical

solution. We then illustrate this method by constructing field lines for the “figure eight” motion of

an electric charge moving under the influence of a plane wave, including complex field lines in

three dimensions. # 2023 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0124544

I. INTRODUCTION

Electric field lines provide a way to visualize the radiation
of a relativistic particle, giving insight into the structure of
the field. To understand the formation of the radiation field,
it is useful to observe the field lines, starting from the
Coulomb region and extending into the radiation zone.

The present work is motivated by a recent paper in the
American Journal of Physics that analyzed electromagnetic
fields of relativistic point charges by constructing electric
field lines.1 The electromagnetic field of a charge moving
along the trajectory ~r0ðtÞ is derived from the
Lienard–Wiechert potentials, in which the retardation
equation plays a key role. This equation relates the observa-
tion point~r to a point on the trajectory~r0ðt0Þ at the retarded
time t0,

t� t0 ¼ j~r �~r0ðt0Þj=c; (1)

where c is the speed of light. Electrodynamics textbooks
often state that the point~r0ðt0Þ is connected to the point~r by
a “light signal” or “light dot” that originates at the retarded
time from the point ~r0ðt0Þ and reaches the point ~r at the
observation time.2–4 Light dots move at the speed of light,
and their directions of motion are characterized by a unit
vector ~n ¼ ð~r �~r0ðt0ÞÞ=j~r �~r0ðt0Þj. At the moment of

observation, t, all light dots emitted at some retarded
moment of time t0 form a sphere with radius cðt� t0Þ and
center ~r0ðt0Þ. Such spheres (hereinafter referred to as “light
spheres”) created for a given t at different retarded instants t0

are nested within each other without intersecting because the
velocity of the charge is always less than the speed of light.
Figure 1 shows sections of light spheres in the plane of a
charged particle moving in a circle with a speed of 0:8c. It
also shows lines connecting light dots emitted along the tan-
gents to the trajectory (Fig. 1(a)) and along the radii directed
to the corresponding retarded positions (Fig. 1(b)).

The variation of ~n with respect to the retarded time t0

defines a curve in space that begins at ~r0ðtÞ. Electric field
lines were constructed from such a parametrization in the
1980s.5–8 The differential equations defining electric field
lines, after a remarkable transformation, reduce to linear dif-
ferential equations with variable coefficients. These coeffi-
cients depend on one parameter b ¼ 1=cj (where 1 is the
torsion of the trajectory, j is the curvature of the trajectory,
and c is the Lorentz factor of the particle). If the value of b is
constant, these equations are differential equations with con-
stant coefficients.

In this paper, we derive these equations and their general
analytic solution. The class of trajectories with constant b
includes all planar trajectories (1 ¼ 0). We exploit this fact
to construct the electric field lines of a charge moving in an
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electromagnetic plane wave, including the construction and
visualization of three-dimensional field lines outside the
orbital plane.

II. ELECTROMAGNETIC FIELD LINES

OF AN ARBITRARILY MOVING CHARGE

The electric field ~E of an arbitrarily moving charged
particle at time t is2

~E ¼ � e

R2c2 1� ~n �~b
� �� �3

� ~b �~n � Rc2 ~n � ð~n �~bÞ � d~b
cdt0

� �� �� �
; (2)

where R ¼ j~r �~r0ðt0Þj, ~bc ¼ d~r0ðt0Þ=dt0, b ¼ j~bj, and c ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
is the Lorentz factor of the charged particle. The

time t0 is defined by Eq. (1). As noted above, the variation in
~n with respect to the retarded time t0 determines the field
lines.

A trajectory with several retarding points (R) and corre-
sponding observation points (P) at the time of observation is
shown in Fig. 2.

The field at any observation point is determined by a sin-
gle retarded position defined by Eq. (1). The equation yield-
ing the retarded position of the particle for a given
observation point~r and an arbitrary trajectory~r0ðtÞ is a tran-
scendental algebraic equation that cannot be solved analyti-
cally, in general. On the other hand, the variation of the unit
vector ~n with respect to the retarded time defines a curve in
space that begins at~r0ðt0Þ,

~Lðt0Þ ¼~r0ðt0Þ þ cðt� t0Þ~nðt0Þ: (3)

Equation (3) defines the geometrical locus of light dots at
time t, which were emitted from the trajectory at instant t0 in
the direction of the vector ~nðt0Þ. Using this parametrization,
the retardation equation may be solved by construction:

~r ¼ ~Lðt0Þ. Equation (1) imposes a condition on the magnitude

of ~nðt0Þ, but not its direction. Any curve defined by Eq. (3)
penetrates all light spheres originating at ~r0ðt0Þ, and Eq. (2)

implies that electric field lines have the property ~n � ~E ¼ e=

ðRcð1� ð~n �~bÞÞ2 > 0 everywhere. Therefore, Eq. (3) is suit-
able for finding field lines, as long as we can find functions

~nðt0Þ such that the tangent to ~Lðt0Þ coincides with the direction
of the electric field at each point.

The tangent to the curve defined by Eq. (3) at time t0 is

d~L

cdt0
¼~b �~n þ ðt� t0Þ d~n

dt0
: (4)

Requiring this to be parallel to the electric field in Eq. (2),
we obtain a differential equation for~nðt0Þ,

d~n

dt0
¼ �c2 ~n � ð~n �~bÞ � d~b

dt0

� �� �
: (5)

It is convenient to rewrite Eq. (5) in the Frenet–Serret frame,
which describes the geometric properties of the curve itself

Fig. 1. A charged particle moves in a semi-circle with a speed of 0:8c. (The trajectory is marked in blue, and the direction of motion is from bottom to top.) The

red lines are cross sections of seven light spheres, which are formed by the light dots emitted at retarded moments of time. The corresponding retarded positions

of the particle on the trajectory, centers of light spheres, are marked by green squares. (a) The line formed by the light dots emitted in the particle’s direction of

motion is marked in dark red. The magenta squares indicate the positions of these dots on the corresponding light spheres; the trajectories of the light dots are

drawn in green. (b) The same as (a), except the light dots emitted along the radii directed to the corresponding retarded positions of the particle are shown.

Fig. 2. Particle trajectory in the laboratory coordinate system is drawn in

violet. At the observation time, the particle is at the point R0 (red sphere).

The retarded positions of the particle (R1, R2, R3, R4, and cyan) are con-

nected to the corresponding observation points (P1, P2, P3, P4, and magenta)

by trajectories of light dots propagating in the direction of particle’s velocity

at retarded instants (black straight lines).
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(the particle trajectory).9 In this frame, the following unit
vectors are introduced: the unit vector ~e2 tangent to the
curve, the unit vector ~e1 directed opposite to the normal of
the curve, and the binormal unit vector ~e3 ¼ ½~e1 �~e2�.
Frenet–Serret frames at several points of a trefoil trajectory
are shown in Fig. 3. This trajectory has a significant curva-
ture and torsion.10

In this coordinate system, we write

~n ¼ n1~e1 þ n2~e2 þ n3~e3: (6)

Using the Frenet–Serret derivations9 of the tangent, normal,
and binormal unit vectors with respect to the arc length, we
reduce Eq. (5) to the following component equations:

dn1

cdt0
¼ bc2jn2 � b1n3 � b2c2jð1� n2

1Þ �
db
cdt0

c2n1n2;

(7)

dn2

cdt0
¼ �bc2jn1 þ b2c2jn1n2 þ

db
cdt0

c2ð1� n2
2Þ; (8)

dn3

cdt0
¼ þb1n1 þ b2c2jn1n3 �

db
cdt0

c2n2n3: (9)

These equations for electric field lines were obtained in Refs.
5 and 6.

To solve Eqs. (7)–(9), we use a Lorentz transformation. If~�c
is the velocity of the light dot in the reference frame of the parti-
cle and~nc is its velocity in the laboratory frame, then

~nðt0Þ ¼
~b 1þ ~b �~�ðt0Þ

	 

1� c�1
� �

=b2
	 
	 


þ~�ðt0Þc�1

1þ ~b �~�ðt0Þ
	 
 :

(10)

The transformation (10) for solving the equations of electric
field lines was first applied in Ref. 7.

Substituting transformation (10) in Eqs. (7)–(9), we obtain
the following vector equation for~vðt0Þ:11

d~�

dt0
¼ � c� 1

b2
~b � d~b

dt0

� �
�~�

� �
: (11)

Equation (11) describes the rotation of the vector ~� in the
laboratory frame of reference with angular velocity

~X ¼ � c� 1

b2
~b � d~b

dt0

� �
: (12)

This value coincides with the angular velocity of Thomas
precession (see, for example, Refs. 12–14). Thomas preces-
sion has a purely kinematic origin. It represents an observa-
tion in the laboratory coordinate system of a vector~� that is
bound to the particle in the instantaneous rest frame of the
particle.

It is also evident that for rectilinear motion, the vectors ~b
and d~b=dt0 are parallel, such that the right-hand side of Eq.
(11) is zero. In this case, the functions ~� become constant,
and this case corresponds to the results of Ref. 1.

Let us solve vector equation (11) by introducing a change
of variables

du ¼ cbcjdt0: (13)

Equation (11) can now be rewritten as a system of equations
as follows:

d�1

du
¼ �2 � bðuÞ�3; (14)

d�2

du
¼ ��1; (15)

d�3

du
¼ bðuÞ�1; (16)

where

bðuÞ ¼ 1ðuÞ=cðuÞjðuÞ (17)

is a known function of u for a given trajectory. Thus, Eqs.
(14)–(16) represent a system of homogeneous linear differ-
ential equations with variable coefficients. In general, such
equations can be solved numerically, for example, by the
method of successive approximations.15

Equations (14)–(16) have an integral of the motion:
�2

1 þ �2
2 þ �2

3 ¼ const. (The constant should be set equal to
unity to ensure j~� j ¼ 1 and j~nj ¼ 1.)

Let us analyze Eqs. (14)–(16) for the case of bðuÞ
¼ const. The formula defining bðuÞ contains the torsion of
the trajectory 1ðuÞ in the numerator. Thus, for all planar tra-
jectories, 1 ¼ 0 and b ¼ 0. An example of a trajectory with
constant bðuÞ is a particle moving around a helix with con-
stant speed: The torsion, curvature, and Lorentz factor are
constant.

When b is constant, Eqs. (14)–(16) are reduced to a system
of linear homogeneous equations with constant coefficients,
which can be solved easily as follows:16,17

�1 ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
sin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
ðu� u0ÞÞ; (18)

�2 ¼ H cos ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
ðu� u0ÞÞ6b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ b2Þ � H2

p
;

(19)

Fig. 3. Vectors of the Frenet–Serret frames at several points of the trefoil

trajectory. The red vectors are directed along ~e1 (opposite to the normal),

the green vectors are directed along ~e2 (tangent), and the blue vectors are

directed along~e3 (binormal).
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�3 ¼�bH cos
	 ffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p

ðu�u0Þ



6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ b2Þ�H2

p
:

(20)

The solutions depend on two integration constants u0 and H
(u0 varies within (0, 2p), and H varies within (0, 1=ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p

)).
When b is constant, Eqs. (15) and (16) yield another inte-

gral of the motion as follows:

b�2 þ �3 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2ð1þ b2Þ

p
: (21)

Equation (21) defines a set of straight lines in the ð�2; �3Þ
plane that are parallel to the line b�2 þ �3 ¼ 0. This line cor-

responds to the condition H ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2
p

. The lines of the
electric field correspond to the motion of a point along
circles in the space ð�1; �2; �3Þ. These circles are defined by
the intersection of the unit sphere having its center at the ori-
gin with the set of planes defined by Eq. (21). The condition

H ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2
p

corresponds to a great circle of the sphere,
and when H ¼ 0, the planes touch the unit sphere at the
opposite ends of a diameter (see Fig. 4).

For the class of arbitrary planar trajectories,

�3 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2
p

¼ const: (22)

The class of electric field lines in the plane of motion of the
particle is defined by H ¼ 1. Equations (18)–(20) become

�1 ¼ sinðu� u0Þ; (23)

�2 ¼ cosðu� u0Þ: (24)

To summarize, we construct each electric field line as fol-
lows: First, for a given particle trajectory, the velocity,
Lorentz factor, curvature, and torsion are computed. (For
planar trajectories, the torsion is zero.) Next, u is computed
using Eq. (13). Then, bðuÞ is computed using Eq. (17). (This
vanishes for planar trajectories.) Next, ~vðt0Þ is computed by
solving Eqs. (14)–(16) or Eqs. (23) and(24) for planar
motion. The Lorentz transformation in Eq. (10) is used to
find~nðt0Þ. Finally, the field line is constructed using Eq. (3).

III. ELECTRIC FIELD LINES OF A CHARGE

MOVING IN A LINEARLY POLARIZED PLANE

WAVE

Let us consider the electric field lines of a charged particle
moving in a linearly polarized plane wave. We will compare
the field with synchrotron radiation and the radiation from
linear oscillation in the appropriate limits.

A. Trajectory of a particle

The trajectory of a charged particle in a plane monochro-
matic linearly polarized wave is solved in a general form
(see, e.g., Ref. 2). The electric field ~E in the wave is chosen
in the direction of the axis Y: Ey ¼ E cos ðxðt� x=cÞÞ, and
the wave propagates in the direction of the axis X. In a refer-
ence frame in which the particle is at rest on the average, the
parametric representation of motion is written in the follow-
ing form:

x ¼ � e2E2c

8C2x3
sin 2g; (25)

y ¼ � eEc

Cx2
cos g; (26)

Fig. 4. Unit sphere cut by planes b�2 þ �3 ¼ const. (a) 3D view. (b) View in the ð�2; �3Þ plane. The numbers 0, 1, 2, 3, 4, and 5 label several values of the con-

stant H in Eq. (21). The plane 5 corresponds to H ¼ 0 and touches the sphere.

Fig. 5. (a) Figure eight trajectories for different a: 0.3 for the innermost tra-

jectory, and 0.5; 0.7; 1; 2; and 5 moving outward. For a > 10, trajectories

practically coincide. (b) Dependence of Lorentz factor c and scaled curva-

ture v on scaled time for a¼ 1.
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z ¼ 0; (27)

t ¼ g
x
� e2E2

8C2x3
sin 2g; (28)

where x is the frequency of the wave, g ¼ xðt� x=cÞ is the
wave phase, and C2 ¼ m2c2 þ ðe2E2=2x2Þ (m is the mass,
and e is the charge of the particle). Equations (25)–(28)
define planar trajectories, so Eqs. (23) and (24) can be used
to construct field lines.

To simplify the representation of the trajectory, we intro-
duce the following dimensionless parameters: nx ¼ x=k�,
ny ¼ y=k�, and s ¼ xt, where k�¼ c=x. Let us also introduce
a dimensionless parameter characterizing the wave

a ¼ eEffiffiffi
2
p

mcx
¼ eEk�ffiffiffi

2
p

mc2
¼ 1ffiffiffi

2
p E

E0

� �
k�
r0

; (29)

where E0 ¼ e=r2
0 ¼ 1:813393� 1018 V/cm, and r0 ¼ e2=mc2

¼ 2:8179403262� 10�15 m is the classical radius of an
electron. The physical interpretation of Eq. (29) is the ratio
of the work done by the electric field of the wave over dis-
tances of the order of a wavelength to the rest energy of the
charged particle. Hence, Eqs. (25)–(28) become

nx ¼ �
a2

4ð1þ a2Þ sin 2g; (30)

ny ¼ �
ffiffiffi
2
p

affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p cos g; (31)

s ¼ g� a2

4ð1þ a2Þ sin 2g: (32)

Equations (30)–(32) describe a characteristic figure eight
motion because the frequency of motion along the axis X is
twice the frequency along the axis Y. The characteristic fea-
tures of the trajectories are determined by a single parame-
ter a.

The size of the trajectory along the axis Y is proportional

to a, and the size along the axis X is proportional to a2; thus,
for small values of a, the figure eight gradually approaches a
straight line segment. For large values of a, the trajectory
ceases to depend on a, tending to the limiting figure eight

described by the formula 16n2
x þ n4

y � 2n2
y ¼ 0. A set of tra-

jectories for different a is shown in Fig. 5(a). The top points
of the figure eight are passed at g ¼ p 6 2pk; k ¼ 0;61;…,
and the center of the figure eight is passed at g ¼ p=2 6 2pk;
k ¼ 0;61;…. The outer figure eight corresponds to a¼ 100.

In this case, the value nmax
y is close to the limit value of

ffiffiffi
2
p

.

As the charge moves along the figure eight, its velocity and
acceleration change, and the highest speeds are reached at
the center (Fig. 5(b) for a¼ 1). Figure 5(b) shows plots of
the particle’s Lorentz factor and normalized curvature of the

Fig. 6. Plots of uðs0Þ for (a) large values of a: 100, 50, and 10 and (b) small values of a: 0.25, 0.05, and 0.01 (the observation time is set as zero).

Fig. 7. Comparison of (a) the field lines for a charged particle moving in the field of a plane wave with a ¼ 5 and (b) synchrotron radiation for a charged parti-

cle moving along the circle contiguous to the trajectory in (a) at s ¼ 0 with speed b ¼ 0:926.
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trajectory v ¼ k�j, which is maximum at the top points of the
figure eight and changes sign while crossing the center.

As the trajectories described by Eqs. (25)–(28) are flat,
expressions (23) and (24) can be used to construct electric
field lines in the same plane. Multiple field lines may be con-
structed by changing the retarded time parameter t0 � t and
computing u using Eq. (13),

u ¼ c

ðt0

t

bcjdt00 ¼
ðs0

s
bcvds00: (33)

Here, the integration variable is marked with double prime.
Figure 6 shows several plots of function u with respect to

the retarded time for different values of a.
It is evident that for large a (Fig. 6(a)), within one period

of the charge reversal on the figure eight, the parameter u
also reaches large values, which corresponds to the fact that
in Eqs. (23) and (24), the trigonometric functions make
many revolutions. As a! 0 (Fig. 6(b)), the function u tends
to a characteristic meander between two values: p=2 for
�p < s0 < 0 and �p=2 for �2p < s0 < �p. “Jumps” occur
from one value to another when the retarded time is a multi-
ple of p. In this case, the trajectory approaches that of linear
oscillation.

It is interesting to estimate the maximum value of the
parameter a for charged particles moving in existing laser
waves. Studies on laser acceleration are nowadays at the
forefront of research in physics (see, for example, Refs. 18
and 19). Extreme laser field intensities allow the exploration
of novel physical phenomena,20 and relativistic laser–plasma
interactions open the possibility of laser-driven particle
accelerators.21 For example, the Center for Relativistic Laser
Science (CoReLS) uses a 4-PW femtosecond, ultrahigh
power Ti: sapphire laser, based on the chirped pulse amplifi-
cation (CPA) technique.22,23 The laser field intensity of 1023

W/cm2 corresponds to an electric field strength on the order
of 8.7� 1012 V/cm. For a wavelength of 800 nm, this leads
to a ¼ 153 and c � 229, i.e., in such a field, the motion of
the charged particle is highly relativistic.

B. Field lines in orbit plane

The figures that follow were constructed using the applica-
tion in the supplementary online material.24

First, we draw lines near the section of the trajectory cor-
responding to the observation time s ¼ 0 for the parameter
a ¼ 5. In Fig. 7, we compare the field lines of the figure eight
with the synchrotron radiation field of a particle moving

Fig. 8. Electric field lines for (a) a ¼ 5 and (b) a ¼ 2. The trajectory (figure eight) is represented in black. At the moment of observation, the particle is at the

top of the figure eight and is moving from right to left.

Fig. 9. (a) Electric field lines for a figure eight trajectory. Blue arrows show the direction of the particle’s velocity at the extreme points of the trajectory. (b)

Electric field lines for linear oscillation. For (a) and (b), a ¼ 0:685 994 341 (bmax ¼ 0:8).
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Fig. 10. Electric field lines for (a) the figure eight and (b) linear oscillation when a ¼ 0:25.

Fig. 11. Electric field lines for the figure eight for (a) a ¼ 0:1 and (b) a ¼ 0:05.

Fig. 12. The surface H ¼ 0:6 (h ¼ 60�). (a) 90 electric field lines and trajectory without elimination of hidden fragments of the surface. (b) The same 90 lines

are depicted using the Z-buffer algorithm, by which hidden areas of the surface are eliminated.
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around a circle contiguous to the figure eight trajectory at
s ¼ 0. The radius of the circle is 0.167, and the speed of the
particle is b ¼ 0:926.

Figure 7 shows that the structure of the field lines for the
figure eight motion is similar to synchrotron radiation in the
region close to the charge position.

For values a ¼ 5 and 2, the field lines are presented over a
larger region in Fig. 8.

In both cases, the number of lines depicted is 18 and
they correspond to a uniform distribution of the initial
parameter u0 from 0 to 2p. The denser filling at (a) indi-
cates that at larger values of a, the trigonometric functions
(23) and (24) make more turns around the particle, as indi-
cated by Fig. 6(a).

At small a, the trajectory approaches a straight line seg-
ment along which the charge oscillates sinusoidally. This
case of rectilinear motion was analyzed in Ref. 1. In Fig. 9,
we compare the field patterns of figure eight and rectilinear
motions. We model the motion along a straight line segment
by the following equation:

ny ¼ �
ffiffiffi
2
p

affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p cos s; (34)

(see Eqs. (30)–(32) with nx ¼ 0 and s ¼ g).
The maximum velocity when the charge moves along the fig-

ure eight is reached at the center, which corresponds to the value
g ¼ p=2. The value b ¼ 0:8 is reached at a ¼ 0:685 994 341.

Fig. 13. The nine surface areas corresponding to the parameter H ¼ 0:6 (h ¼ 60�) are presented. The ranges of the parameter u0: (a) ð0; 2p=9Þ; (b)

ð2p=9; 4p=9Þ; (c) ð4p=9; 6p=9Þ; (d) ð6p=9; 8p=9Þ; (e) ð8p=9; 10p=9Þ; (f) ð10p=9; 12p=9Þ; (g) ð12p=9; 14p=9Þ; (h) ð14p=9; 16p=9Þ; and (i) ð16p=9; 2pÞ are cho-

sen such that the whole surface is eventually filled. The trajectory of the particle is shown in black.
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A certain similarity is apparent in the images in Fig. 9, espe-
cially in the area near the charge. The field lines of the figure
eight are asymmetric relative to the vertical axis. This is because
at the top and bottom of the figure eight, the charge has horizon-
tal components of velocity, which are in the same direction.

In Fig. 10, the electric field lines for the figure eight and
linear oscillation are compared for a ¼ 0:25. The difference
is observable, but is significantly smaller than that in Fig. 9.

For smaller values of a, the electric field lines for the fig-
ure eight and linear oscillation practically coincide. Figure
11 shows only lines for the figure eight for a ¼ 0:1 and
a ¼ 0:05. It is evident that the field lines along the vertical
axis are less wavy than in the horizontal direction. This cor-
responds to Thomson scattering25 when the maximum dipole
radiation is observed in the plane orthogonal to the dipole
axis.

C. Field lines outside the orbital plane

In the case of nonplanar trajectories, all field lines have a
3D characteristic.26 The electric field lines have a rather
complex structure and form complicated surfaces.

Figure 12(a) shows a surface of lines for a charge with
parameter a ¼ 1 and constant H ¼ 0:3. The image plane
(XSC, YSC) is rotated with respect to the plane (X, Y) of the
laboratory coordinate system by an angle 60� about the X
axis. The surface is shaped with 90 lines corresponding to a
uniform distribution of the constant u0 between 0 and 2p.
The direct construction of field lines, without the analysis of
the distance from sections of lines to the observer, does not
present a clear picture of their locations in space. Caustics of
the field can be observed, but the three-dimensional structure
of the surface is difficult to identify, because the lines on hid-
den surfaces are plotted in Fig. 12(a). To eliminate these hid-
den surfaces, we used the Z-buffer or depth buffer method27

in Fig. 12(b). The picture is now clearer, but it is difficult to
see how the field is coupled to the trajectory of the particle.

In order to identify this structure with respect to the trajec-
tory, we have drawn nine surfaces, each corresponding to a
limited range of u0. Figure 13 shows the result for H ¼ 0:6.

The results in this section are preliminary, as it is difficult
to represent non-planar lines in three-dimensional space.
However, research in this direction should be continued. In
electrodynamics, there are many interesting problems in
which the trajectories of motion are non-planar. One of the
simplest cases is helical motion with nonzero constant b. The
field lines can be computed analytically. The motion of
charged particles in magnetic fields for high-temperature
plasma confinement is more interesting, as the particles
move in helices with a variable radius and pitch.28 Similar
problems arise in astrophysics.29 The method of representing
spatial field lines for planar motions developed in this study
can be adapted for such non-planar trajectories.

IV. CONCLUSION

We have shown that the equations of electric field lines of
an arbitrarily moving charge can be reduced to linear differ-
ential equations. These equations may be solved analytically
in some cases, including any planar motion. Visualization of
the field clearly indicates details of its structure, including
the spatial concentration of radiation.

This method of determining the electric field lines can
also be applied to construct magnetic field lines, which lie on

the light spheres.7 Another problem of interest is the devel-
opment of Lorentz covariant system of field lines30 and the
determination of the electromagnetic field tensor by such
lines.31
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