

Overview of Accelerator Programs in Korea and Their Potential Contributions to Neutrino/Muon Physics

Department of Physics, UNIST Moses Chung* (정모세, 鄭模世)

NuFact 2023@Seoul National University

*mchung@unist.ac.kr

I. Backgrounds

II. Electron Accelerator (PAL-XFEL)III. Proton Accelerator (KOMAC)IV. Heavy Ion Accelerator (RAON)

V. Outlook and Summary

Backgrounds

Large Accelerators in Korea

RAON (Rare isotope Accel. complex for ON-line experiments)

SGCC-HITS (SNUH Gijang Cancer Center of Heavy Ion Therapy and Study)

KOMAC (Korea Multi-purpose Accelerator Complex)

Large Accelerators in Korea: Parameters

Parameter	PLS-II	KOMAC	PAL-XFEL	RAON	
Species	Electron	Proton	Electron	Proton ~ Heavy ion	
Energy	3 GeV	100 MeV	10 GeV	200 MeV/u for U ⁷⁹⁺	
Beam current	400 mA	20 mA (1.33 ms)	3 kA (0.2 nC/100 fs)	8 pμA U ⁷⁹⁺	
Rep. Rate	499.973 MHz (ring)	60 Hz	60 Hz 120 Hz		
Accelerating Structure	NC S-band (linac) SCRF (ring)	Vane-type RFQ 350 MHz DTL	3 Bunch Compressor 2.856 GHz (S-band)	SCRF: QWR (81.25 MHz), HWR (162.5 MHz), SSR (325 MHz)	
Research Areas	Condensed matter, Surface/Cluster, Material science, Chemistry/Biology, Energy/Medicine		Atomic/Molecular, Condensed matter, Surface/cluster, Material science, Chemistry/Biology, Non-equilibrium plasma, Warm-dense plasma	Nuclear physics, Bio-medical science, Material science, Neutron science	
	~Typical 3GSR	~ front end of SNS/ORNL	~ LCLS/SLAC	~ FRIB/MSU	

5

Electron Accelerator (PAL-XFEL)

[Courtesy of H. S. Kang]

PAL-XFEL

Undulator hall (HX) Variable gap out-vacuum undulator (5m) LINAC tunnel S-band accelerating **Klystron gallery**

Hard X-ray experimental hall Profile Monitor HU1E:SCM36 16-Mar-2017 20:40:0 3 2.5 2.5 2.5 3 2.5 3 2.5 1 0.5 0 1 2 3 x (mm)

2011: PAL-XFEL project started
2016: Commissioning started
2017: User-service started
2019: HX self-seeding user service 7

POSTECH

FEL beam performance of PAL-XFEL

• HX: 2.0 ~ 15.0 keV : mJ level intensity (> 1.5 mJ)

15 ~ 20 keV : 0.4 ~ 1 mJ

- SX: 0.25 ~ 1.25 keV : 0.3 ~ 0.7 mJ
- FEL duration : 20 ~ 30 fs
- Beam availability : > 98%
- FEL intensity jitter
- FEL position jitter
- FEL central wavelength jitter
- Relative electron beam energy jitter
- Electron beam arrival time jitter
- Timing jitter

between X-ray pulses and optical pulses

< 5% RMS < 10% of beam size 0.024 % (1/5 of SASE BW) **1.2 x 10⁻⁴** 12 fs **18 fs (rms)**

Electron beam arrival time jitter Histogram

A reliable FEL beam with high timing stability is provided to users

PAL-XFEL: Femtosecond-scale timing jitter

Nature Photonics, 11, 708–713 (2017)

ARTICLES

https://doi.org/10.1038/s41566-017-0029-8

photonics

Hard X-ray free-electron laser with femtosecondscale timing jitter → best performing time-resolved pump-probe experiment

Heung-Sik Kang^{1*}, Chang-Ki Min¹, Hoon Heo¹, Changbum Kim¹, Haeryong Yang¹, Gyujin Kim¹, Inhyuk Nam¹, Soung Youl Baek¹, Hyo-Jin Choi¹, Geonyeong Mun¹, Byoung Ryul Park¹, Young Jin Suh¹, Dong Cheol Shin¹, Jinyul Hu¹, Juho Hong¹, Seonghoon Jung¹, Sang-Hee Kim¹, KwangHoon Kim¹,

Ing Gyu Jung¹, Seong Hun Jeong¹, h¹, Hyung Suck Suh¹, t-Chan Kim¹, Mong-Soo Lee¹, n Lee¹, Hocheol Shin¹, Kim¹, Jaeku Park¹, Jaehun Park¹, Sangsoo Kim¹, Ing Nam Kim¹, Seonghan Kim¹, yng-Soo Kim¹, Tai-Hee Kang¹, , Ki-Hyeon Park¹,

In the Republic of Korea achieved satthird hard X-ray free-electron laser in d the SPring-8 Angstrom Compact Free fulator radiation spectrum analysis has arsion-free orbits. In particular, a timing to the use of a state-of-the-art design of 100 r of the electron beam makes it possible ting that PAL-XFEL will be an extremely

LCLS

PAL-XFEL

- No timing jitter correction
- Phonon oscillation is very clear

Narrow Bandwidth for Science Applications

SASE at 9.7 keV (1.5 mJ), PAL-XFEL

Energy Resolution ~ 2x10-4

Monochromator is

necessary?

Repetition rate

Time resolved

Intensity

★ X-ray Absorption Spectroscopy requires a high intensity, coherent X-ray beam which is tunable over a wide energy range → Monochromator is necessary

SR

Yes

Verv weak

> 100 MHz ~100 Hz ~100 Hz ~ ps ~ fs ~ fs

FEL: SASE

Yes

weak

FEL: SS

No (?)

Very strong

10

Self-seeding at 9.7 keV (850 µJ)

- Very spiky and broad spectrum

- Spectral bandwidth ~ 0.2 % of photon energy (~ a few tens of eV)

- Monochromator is used for narrow band (< a few eV)

PAL-XFEL Hard X-ray Self-seeding

- 1. Sideband effects are substantially suppressed by a laser heater (LH)
- 2. Close to Fourier-transform limited:

Time-bandwidth product: (BW) x (FEL duration) = (0.19 eV) x (20fs) = 3.8 eV fs ~ 2 X FTL

- 3. BW is reduced by 70 from SASE.
- 4. Spectral brightness of Self-seeding is 40 times the SASE

Inhyuk Nam *et al.* High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. *Nature Photonics* **15**, 435-441 (2021)

CW XFEL

- * CW SC RF electron Linac with electron beam pulse repetition rate of > 1 MHz
 - ◆ LCLS-II: 4-GeV SCRF (Superconducting RF) Linac, ~2022
 - LCLS-II-HE: Add more cryomodules to LCLS-II to reach 8 GeV, ~2029
 - SHINE (Shanghai HIgh repetition rate XFEL aNd Extreme light facility): 8 GeV SCRF Linac, 1.5B US\$, ~2025
- Superconducting RF technology has improved substantially for the past 10 years (SLAC, Fermilab and Jefferson lab)
 - N-doping & Mid-T baking method improve Q_o up to 3 x 10¹⁰
 - \rightarrow lower the cryogenic system cost
 - \rightarrow lower the electricity consumption

Fermilab and Jefferson Lab are developing high-Q (efficient) superconducting RF cavities for the LCLS-II-HE Project at SLAC

- Operating Temp: 2 °K
- Q₀ = 2.7 x 10¹⁰ at 21 MV/m

$$Q = \frac{\omega U}{P_{loss}} \qquad P_{loss} = I^2 R$$

SHINE: an introduction

- Located in Zhangjiang, Shanghai
- To be commissioned in 2026
- Electron accelerator:
 - 8 GeV energy
 - 1 MHz bunch frequency
 - 100 pC charge (6.25 × 10⁸ electrons) per bunch

Only 4 km from TDLI!

Courtesy of Kim Siang Khaw

23

Schematic of SHINE (Beam Dump)

Very rich physics SHINE-based program

Proton Accelerator (KOMAC)

[Courtesy of H. J. Kwon]

KOMAC (KOrea Multipurpose Accelerator Complex)

100 MeV	History - Developed via Proton Engineering Frontier Project (2002.7~2012.12, 10.5 Year) (Budget: ₩314B, Area: 180,000 m ²)
Proton	Spec - 100 MeV High Current Proton LINAC (max, peak current 20 mA)
LINAC	Applications - Radiation Effects, RI, Bio, Basic Sciences, Neutron, etc

• In last 5 years, supported 459 research projects, 125 institutions, 1,489 users

KOMAC Site

LINAC Overview

 50 keV Injector (Ion source + LEBT)

- 3 MeV RFQ (4-vane type)
- 20 & 100 MeV Drift Tube LINAC

TR23	20 MeV General Purpose
TR101	RI Production
TR102	Low Flux
TR103	100 MeV General Purpose
TR104	(Internal Research)
TR105	(Internal Research)

Extraction Energy	100 MeV
Max, Peak Beam Current	20 mA
Max, Beam Duty	8%
Avg, Beam Current	(max) 1.6 mA
Pulse Length	0,1 - 1,33 ms
Max. Repetition Rate	60 Hz
Max. Average Beam Power	160 kW

Eventual Goal: Spallation Neutron Source

Accelerator-driven Spallation Neutron Source Accelerator-driven system that produces a number of neutrons via nuclear spallation induced by high-energy hadron beams on high-Z materials (for example, 40 neutrons per proton at E_p =1 GeV on W)

Worldwide Proton Accelerators

Low performance compared to other accelerator facilities

Country, Name	LANSCE	SNS	ି ESS	ISIS	+ SINQ	J-PARC	CSNS	KOMAC
Institution	LANL	ORNL	ERIC	RAL	PSI	JAEA KEK	IHEP	KAERI
Accelerator Type	LINAC	LINAC	LINAC	Synchrotron	Cyclotron	RCS	RCS	LINAC
Established	1997	2006	2023	1985	1978	2008	2016	2012
Proton Beam Energy (GeV)	0.8	1.0 (1.3)	2.0	0.8	0.59	3.0	1.6	0.1
Average Beam Current (mA)	1.0	1.4 (2.2)	2.5	0.23	1.8	0.33	0.62 (0.31)	(1.6)
Average Beam Power (MW)	0.8	1.4 (2.8)	5.0	0.18	1.0	1.0	0.1 (0.5)	(0.16)
Spallation Neutron Source	0	0	0	0	0	0	0	x
Thermal Neutron Flux (n/sec)	> 1015	> 10 ¹⁷	> 10 ¹⁸	> 10 ¹⁶	> 10 ¹⁴	> 10 ¹⁷	> 1016	-

- Most large-scale proton accelerator facilities have beam energy more than 800 MeV
- High-power accelerators are driving spallation neutron source for sciences

Future Plan: Staged Approach

Goal 1	Proton accelerator upgrade up-to 1 GeV							
Goal 2	World-class proton and neutron science platform							
	O Proton sciences O Neutron sciences							
Demand	Atmospheric/space radiation test for semiconductor devices in aerospace, automotive, data storage, and communications							
	Neutron scattering techniques for most advanced science and technology							
100 MeV LINAC (Present) 200 MeV LINAC (~29') Spallation Neutron Source by 1 GeV Proton (30' ~)								
				Contraction and the				

[From Nikolaos Vassilopoulos: New suggestions from China...]

Muon station for sciEnce technoLOgy and

inDustrY (MELODY) @ CSNS II

[From Nikolaos Vassilopoulos: New suggestions from China...] **Future muon beamlines**

Heavy Ion Accelerator (RAON)

[Courtesy of Y. S. Chung]

RAON: Rare isotope Accelerator complex for ON-line experiments

Bird's-eye-view of RAON

Accelerator System

Accelerator System

29

RAON µSR facility

(

After the 2nd phase, the RAON will provide 600 MeV and 100 kW (one-fourth of the maximum power) proton beam:

Product	Bulk Density (g/ cm ³)	Tensile Strength (MPa)	Compressive Strength (MPa)	Young's Modulus (GPa)	Coefficient of Thermal Expansion $(10^{-6}/\text{K})$	Thermal Conductivity (W/(m·K))	Melting Point (°K)	
Graphite (IG- 430U)	1.84	56.8	99	10.8	5.2	140	3773	
B ₄ C BN	2.3–2.55 1.9–2.3	261–569 27–83.3	2583–5687 224–540	362-472 19.5-100	3.2–9.4 1–6	17–42 19–52	2645–2780 3150–3400	
		Graphite	B ₄ C I	BN	Moter and Magnetic]	Copper plates	
Surface muon Standard devi	yield (#/sec) ation (#/sec)	$\begin{array}{c} 8.167 \times 10^9 \\ 9.037 \times 10^4 \end{array}$	$\begin{array}{ccc} 8.631 \times 10^9 & 7 \\ 9.290 \times 10^4 & 8 \end{array}$	7.920×10^9 8.900×10^4	fluid clutch	SUS304 Shield	with coolant line	
muon beam transpor system	<u>то село з Ордентиенте и 1</u> По се на 				SUS304 shield for radiation Copp Target joint	er plate Shaft	ent Girder	Chamber outer wall
	Mattine V. Motion V.	X viewer-0 (OpenInventorKt)	Mellon 7		Com	position of tai	rget system	30

[From Nikolaos Vassilopoulos: New suggestions from China...]

Muon Source plan at HIAF

Courtesy Zhao, He

4.26 GeV/u ³⁶Ar¹⁸⁺+ C(22.53g/cm²) Intensity: 1e+11 ppp

Courtesy Chen, Liangwen & Zhao, He

[From Nikolaos Vassilopoulos: New suggestions from China...]

Muon Source plan at HIAF

Proton 9300 MeV, 5×10¹³ ppp, 3 Hz

Courtesy Chen, Liangwen & Zhao, He

Accelerator-Based Neutrino/Muon Physics in Korea

• Several large-scale accelerator projects are undergoing in Korea. Whereas these accelerators are not suitable for neutrino/muon physics yet, future upgrades may enable some physics programs.

 Ideas and inputs from the international and domestic user communities are crucial in developing future upgrade strategies. For example, China seems manage to incorporate some neutrino/muon physics programs in its accelerator projects.