

Overview of an Accelerator-based Neutron Source for Breeding Blanket Components Test

Yoo Lim Cheon, Hyun Wook Kim (Korea Institute of Fusion Energy) Emre Cosgun, Seok-Ho Moon, Dong-Hyun Kwak, Moses Chung* (Department of Physics, UNIST)

2023 KNS Spring Meeting

Fusion Energy at a Turning Point

Administration

MARCH 15, 2022

Fact Sheet: Developing a Bold Vision for Commercial Fusion Energy

► OSTP ► BRIEFING ROOM ► PRESS RELEASES

Fusion Science and Technology are at a Turning Point

A fusion reaction in which more energy is produced than is consumed always seemed to be decades in the future. Recent advances, building on 70 years of groundbreaking fusion science and technology by DOE National Laboratories and other agencies, universities, and industry, demonstrate that we are closer than ever to a viable reaction. Just in the past year, there have been many technical achievements reported in the media. For example:

· a privately-funded U.S. fusion company demonstrated its prototype 20-tesla high-temperature-superconducting magnet, opening up an exciting new high-field, compact approach to commercial fusion energy,

ITER (\$6.1B initially) (cf, ~\$6.7B for LHC) > 75% construction (finally \$45B - \$65B)

12.01.2021

Commonwealth Fusion Systems Raises \$1.8 Billion in Funding to Commercialize Fusion Energy

CFS

Commonwealth Fusion Systems (CFS) announced it has closed on more than \$1.8 billion in Series B funding to commercialize fusion energy. This includes capital to construct, commission, and operate SPARC, the world's first commercially relevant net energy fusion machine. In addition, it will enable the company to begin work on ARC, the first commercial fusion power plant, which includes developing support technologies, advancing the design, identifying the site, and assembling the partners and customers for the future of fusion

KSTAR (~1억도, ~30초)

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Published: 07 September 2022

A sustained high-temperature fusion plasma regime facilitated by fast ions

H. Han, S. J. Park, C. Sung, J. Kang, Y. H. Lee, J. Chung, T. S. Hahm, B. Kim, J.-K. Park, J. G. Bak, M. S. Cha, G. J Choi, M. J. Choi, J. Gwak, S. H. Hahn, J. Jano, K. C. Lee, J. H. Kim, S. K. Kim, W. C. Kim, J. Ko, W. H. Ko, C. Y. Lee, J. H. Lee, ... Y.-S. Na C + Show authors

Nature 609, 269-275 (2022) Cite this article 4701 Accesses 490 Altmetric Metrics

H-Mode

FIRE Mode

Not only Tokamak but also other Concepts

DOE National Laboratory Makes History by Achieving Fusion Ignition DECEMBER 13, 2022

Press Conference: Secretary Gran,

The U.S. Department of Energy (DOE) and DOE's National Nuclear Security Administration (NNSA) today announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL)-a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power.

US Department of Energy

nature

For First Time, Researchers Produce More Energy from Fusion Than Was Used to Drive It, Promising Further Discovery in Clean Power and Nuclear Weapons Stewardship

Energy.gov » DOE National Laboratory Makes History by Achieving Fusion Ignition

Explore content v About the journal v Publish with us v Subscribe

nature > news explainer > article

NEWS EXPLAINER | 13 December 2022

Nuclear-fusion lab achieves 'ignition': what does it mean?

Researchers at the US National Ignition Facility created a reaction that made more energy than they put in.

'챗GPT의 아버지', 이번엔 핵융합.. MS에 전기 만들어 판다

파이낸셀뉴스 인력 2023.05.11 07:29 수정 2023.05.11 07:29

Helion's plasma accelerator raises fusion fuel to 100 million degrees Celsius and directly extracts electricity with a high-efficiency pulsed approach.

8 Core Technologies for Fusion Reactor

Roadmap by KFE

 \rightarrow lithium containing ceramics, with a focus on lithium titanate and lithium orthosilicate, mostly in a pebble form

Why Breeding Blanket?

WIKIPEDIA The Free Encyclopedia

 \equiv

Q Search Wikipedia

Create account Log in •••

文A 3 languages ~

Breeding blanket

Article Talk Read Edit View history Tools ~

From Wikipedia, the free encyclopedia

The tritium **breeding blanket** (also known as a **fusion blanket**, **lithium blanket** or simply **blanket**), is a key part of many proposed fusion reactor designs. It serves several purposes; one is to act as a cooling mechanism, absorbing the energy from the neutrons produced within the plasma by the nuclear fusion reaction between deuterium and tritium (D-T), another is to "breed" further tritium fuel, that would otherwise be difficult to obtain in sufficient quantities, through the reaction of neutrons with lithium in the blanket.^[1] The breeder blanket further serves as shielding, preventing the high-energy neutrons from escaping to the area outside the reactor and protecting the more radiation-susceptible portions, such as ohmic or superconducting magnets, from damage.

Of these three duties, it is only the breeding portion that cannot be replaced by other means. For instance, a large quantity of water makes an excellent cooling system and neutron shield, as in the case of a conventional nuclear reactor. However, tritium is difficult to obtain in sufficient quantity to run a reactor through other means, so if commercial fusion using the D-T cycle is to be achieved, successful breeding of the tritium in commercial quantities is a requirement.

Breeding blanket designs are mostly based on lithium containing ceramics, with a focus on lithium titanate and lithium orthosilicate.^[2] These materials, mostly in a pebble form, are used to produce and extract tritium and helium; must withstand high mechanical and thermal loads; and, should not become excessively radioactive upon completion of their useful service life.

To date, no large-scale breeding system has been attempted, and it is an open question whether such a system is possible to create.

ITER runs a major effort in blanket design and will test a number of potential solutions.^[3] Concepts for the breeder blanket include helium-cooled lithium lead (HCLL), helium-cooled pebble bed (HCPB), and water-cooled lithium lead (WCLL) methods.^[4] Six different tritium breeding systems, known as Test Blanket Modules (TBM) will be tested in ITER.^[5]

Why Breeding Blanket?

What is breeding blanket?

5

Ľ

A breeding blanket is a component of a nuclear fusion reactor that surrounds the plasma Core and serves several important functions. In a fusion reactor, the aim is to generate energy by fusing atomic nuclei together, typically isotopes of hydrogen, such as deuterium and tritium. These reactions release a tremendous amount of energy but require extremely high temperatures and pressures.

One of the challenges in a fusion reactor is to sustain the fusion reactions by providing a sufficient supply of fuel and maintaining the appropriate conditions. This is where the breeding blanket comes into play. The breeding blanket primarily has two functions:

- Fuel Production: The breeding blanket is responsible for generating additional fuel for the fusion reactions. It contains a material, often lithium or lithium compounds, which interacts with the high-energy neutrons released during fusion. The neutrons transfer energy to the lithium atoms, causing them to undergo nuclear reactions and produce tritium, which is an essential fuel for fusion. This process is known as tritium breeding.
 Shielding and Heat Extraction: The breeding blanket also acts as a radiation shield,
- 2. Shielding and Heat Extraction: The breeding blanket also acts as a radiation shield, protecting the reactor's structural components and external environment from the intense neutron flux produced during fusion. Additionally, the breeding blanket absorbs some of the fusion-generated heat and transfers it to a coolant, typically a liquid metal or helium, which then circulates and transfers the heat to a power cycle for electricity generation.

Accelerators for Fusion-like Neutrons

Fusion-like Neutron Source

History of Accelerators for Fusion Materials

2023 KNS

AN INTENSE LI(d,n) NEUTRON RADIATION TEST FACILITY FOR CONTROLLED THERMONUCLEAR REACTOR MATERIALS TESTING

P. GRAND, K. BATCHELOR, J. P. BLEWETT, A. GOLAND, D. GURINSKY, J. KUKKONEN, and C. L. SNEAD, Jr. Brookhaven National Laboratory, Upton, New York 11973

1975~

Received November 16, 1975 Accepted for Publication January 16, 1976

INTRODUCTION

The needs of the Controlled Thermonuclear Reactor (CTR) program related to radiation damage in fusion reactor materials are becoming critical to the development of the planned Experimental Power Reactor. The 14-MeV neutron sources with high enough fluxes $[>10^{14} n/(cm^2 sec)]$ in large volumes (~1 liter) do not exist. Neutron sources being constructed or pro-

NUCLEAR TECHNOLOGY VOL. 29 JUNE 1976

The design of this Li(d,n) intense neutron source is based on the acceleration of a 100-mA deuteron beam to 30 MeV followed by stripping in a liquid-lithium target.³ The resulting neutron intensity, whose energy spectrum is centered at ~14 MeV, will be >2 × 10¹⁶ n/sec produced in the forward direction, highly peaked, on the deuteron beam axis. The production process enables us, therefore, to obtain neutron fluxes >10¹⁴ n/(cm² sec) in a volume adequate for experiments (>600

Note that these parameters can be met utilizing state-of-the-art, proven technology in the accelerator field, and liquid-metal handling area to achieve a viable and reliable neutron radiation test facility, and that this facility could be made operational as early as 1981. *To meet the average beam current on the order of 100 mA, CW is advisable (but, not as critical as in ADS)

IFMIF-DONES(EU), A-FNS(JP), CMIF(CN), FPNS(US) etc.: half of IFMIF

11

Recent Trends Worldwide

 \rightarrow The requirements for the early phase of the neutron source are significantly reduced, opening the possibility of a staged approach to IFMIF in which its construction can be developed in phases, with the first one focused only on DEMO needs (max ~20 dpa initially, followed by max 50 dpa in a second phase).

Facility	Beam	Beam energy	Beam current	Beam Power	Target	Beam spot at target	Neutron flux	Remark
GANIL- SPIRAL2 (France)	H ⁺ , D ⁺ , Heavy ion CW or Pulse	40 MeV	5 mA	200 kW	Solid Li (thin) Be/Carbon (thick)	$\sim 10 \text{ cm}^2$	~10 ¹⁵ n/s	Neutron For Science (TOF, possible fusion-relevant exp.), Super Separator Spectrometer
SARAF- PHASE2 (Israel)	H ⁺ , D ⁺ CW or Pulse	40 MeV	5 mA	200 kW	LILIT	$\sim 2 \text{ cm}^2$	~10 ¹⁵ n/s	Nuclear physics, High energy neutron induced experiments
IFMIF- DONES (EU) A-FNS (Japan)	D ⁺ CW	40 MeV	125 mA	5 MW	LiLiT	5 cm × 10 cm 5 cm × 20 cm	> 10 ¹⁸ n/m ² · s 20~50 dpa	Neutron irradiation tests on the DEMO reactor materials (blanket/divertor)
CMIF (China)	D ⁺ CW	50 MeV	10 mA	500 kW	Granular flow Be	5 mm × 15 mm (smaller spot)	$\sim 10^{18} \text{ n/m}^2 \cdot \text{s}$ 20~50 dpa/y	For ADS and fusion materials (not much recent progress)
MYRRHA- Phase1 (Belgium)	H+ CW	100 MeV	4 mA	400 kW	Water cooled spallation target (W, Ta)	400 cm ² (either direct proton irradiation or neutron converter)	10 ¹³ n/cm²/s 0.4 dpa/200 days	ISOL system (low power) and Fusion material research (full power)

Example of A-FNS (Japan)

Neutron flux field in Test Cell of A-FINS	Region	Test Module	Materials
High Flux Test Module Diagnostic and Controlled Devis	High Flux	Blanket Structural Material	RAFM (F82H)
4.3e13 1.1e13 2.7e12 Test Module		Divertor Functional Material	RAFM, W, Cu
1.7e14		Blanket Functional Material	Be ₁₂ V, Be ₁₃ Zr, Be ₁₂ Ti, etc Li ₂ O, Li ₂ TiO ₃ , etc.
	Middle Flux	Tritium Release Test Module	BS+BFM for tritium recovery
		Creep Fatigue Test Module	RAFM (F82H)
unit: n/cm ² /s	Low Flux	Diagnostic Controlled Device	MI, Mo, W, etc
2.2e13 5.4e12 1.4e12 2e+12		Blanket Nuclear Property	BS+BFM for neutronics
Target Tritium Release Test Module - 1e+12		Neutron Flux Measurement	Activation foils, etc
NEUTRON FLUX MAP IN TEST CELL	(Others)	Medical RI production*	Mo for Mo-99

List of Neutron Irradiation Plan in A-FNS.

More Recent Activity

 \rightarrow US is planning a Fusion Prototypic Neutron Source (FPNS), which could be constructed in the near term at moderate cost with accelerator parameters similar to IFMIF-DONES. More detailed cost estimates by ORNL.

& Injector	MEBT	Main	n Linac – SC	RF HWR	
100 keV	5 MeV				40

Figure 3 - Option 1 schematic layout

Table 7 - Option 1 accelerator specifications.

Ion Source	
Species	D+
Output Beam Current (mA)	140
Output Energy (MeV)	0.100
Output Transverse Emittance (π-mm-mrad, rms, norm)	<0.3
	2-Solenoid LEBT with gas
Low-Energy Beam Transport (LEBT)	neutralization and electron trap
RFQ (LEDA Based)	
Туре	4-vane
RF Frequency (MHz)	175
Input Energy (MeV)	0.100
Output Energy (MeV)	5.0
Input Beam Current (mA)	140
Output Beam Current (mA)	125
Beam Power (MW)	0.61
Structure Power (MW)	0.56
Total RF Power (MW)	1.17
Output Transverse Emittance (π-mm-mrad, rms, norm)	0.30
Output Longitudinal Emittance (π-mm-mrad, rms, norm)	<0.4
Structure Length (m)	9.6
Medium Energy Beam Transport (MEBT)	
Quadrupole Magnets	5
Bunchers	2, 5-gap IH cavities
MEBT Length (m)	2
Main Accelerator	
Structure Type	SC 2-gap HWR
RF Frequency (MHz)	175
Output Energy (MeV)	40.0
No. Structure Segments	4 Cryomodules
	β=0.094, β=0.094,
Cavity Design B	β=0.164, β=0.164
	Cryomodules 1,2 = 6
No. Cavities per Cryomodule	Cryomodules 3,4 = 4
Cryomodule output energy (MeV)	9.0, 14.5, 26.0, 40.0
Output Beam Current (mA)	125
Beam Power (MW)	4.4
Structure Power (MW)	0.2
Total RF Power (MW)	4.6
Transverse Focusing Type	SC EM Solenoids
Output Transverse Emittance (π-mm-mrad, rms, norm)	0.3
Structure Length (m)	22.7
Total RF Power – RFQ + SCRF Linac (MW)	5.8

\mathbf{a}	\sim	
5	(·	
\mathbf{O}	J	
-	-	

Option	1	Option 2		
Subsystem	Cost (\$M 2019)	Subsystem	Cost (\$M 2019)	
RFQ (175 MHz)	11.28	RFQ (175 MHz)	11.28	
SCRF HWR (175 MHz)	34.05	NC DTL (175 MHz)	32.82	
RF Power	19.94	RF Power	26.15	
Cryoplant	8.50			
Total	73.76	Total	70.25	
•			7	
Inherent complexity TRL 7		No ope CW	erating DTL	
		> TRL	_ 6	

NC

Figure 5 – Option 2 schematic layout.

Table 10 – Option 2 accelerator specifications.

Ion Source	
Species	D+
Output Beam Current (mA)	140
Output Energy (MeV)	0.100
Output Transverse Emittance (π-mm-mrad, rms, norm)	<0.3
	2-Solenoid LEBT with gas
Low-Energy Beam Transport (LEBT)	neutralization and electron trap
RFQ (LEDA Based)	
Туре	4-vane
RF Frequency (MHz)	175
Input Energy (MeV)	0.100
Output Energy (MeV)	5.0
Input Beam Current (mA)	140
Output Beam Current (mA)	125
Beam Power (MW)	0.61
Structure Power (MW)	0.56
Total RF Power (MW)	1.17
Output Transverse Emittance (π-mm-mrad, rms, norm)	0.30
Output Longitudinal Emittance (π-mm-mrad, rms, norm)	<0.4
Structure Length (m)	9.6
Medium Energy Beam Transport (MEBT)	
Quadrupole Magnets	4
Bunchers	2, 175-MHz, 2-gap cavities
MEBT Length (m)	2
Main Accelerator	
Structure Type	NC DTL
RF Frequency (MHz)	175
Output Energy (MeV)	40.0
No. Structure Segments	TBD
Output Beam Current (mA)	125
Beam Power (MW)	4.4
Structure Power (MW)	2.0
Total RF Power (MW)	6.4
Transverse Focusing Type	Permanent-Magnet Quadrupoles
Output Transverse Emittance (π-mm-mrad, rms, norm)	0.3
Structure Length (m)	23
Total RF Power – RFQ + SCRF Linac (MW)	7.6

More Recent Activity

The High Brilliance Neutron Source (HBS), currently under development at Forschungszentrum Jülich, a room temperature solution has been chosen because of the much simpler technology avoiding a cryogenic plant, the development of cryo-modules and suitable power couplers [H. Podlech et al, IPAC 2019].

in a second de la se La second de la second de la seconda de la

Figure 3: Conceptual layout of the HBS-Linac. It consists of an ECR-source, LEBT, RFQ, MEBT and the CH-DTL.

Table 1: HBS Top-Level Requirements

arameter	Specifications	
Particle type	Protons	
Accelerator type	RF Linac	
Peak beam current	100 mA	
Final energy	70 MeV	
Beam duty factor	6%	
RF duty factor	11%	Similar beam power as other SC-based machines,
Pulse length	52/208/833 μs	but the beam is pulsed with much higher current.
Repetition rate	384/96/26 Hz	
Peak beam power	7 MW	
Average beam power	420 kW	

Nonetheless, the fusion community prefers CW beam (from Y. J. Lee of ORNL) \rightarrow Less peak power, more similar situation as fusion plant

Acvitivities in Korea

The First Workshop on IFMIF-EVEDA/IFERC and Beyond

@ Pohang Accelerator Laboratory

29-31 July 2013

The First Workshop on IFMIF-EVEDA/IFERC and Beyond

Pohang Accelerator Laboratory 29-31 July 2013

29th July, Monday

14:00 – 14:30	Registration	
14:30 - 14:40	Welcoming Remark	M. H. Cho
14:40 - 15:00	Introductory Remarks	P. Barabaschi and M. Mori
15:00 - 15:40	K-DEMO Design, R&D and International Collaboration	G. S. Lee
15:40	Coffee Break	
16:00 - 17:00	Overview of IFMIF-EVEDA Project (w. Discussion)	J. Knaster
17:00 - 18:00	Overview of IFERC Project (w. Discussion)	N. Nakajima
18:00	Close	
18:30	Banguet/Dinner at POSCO International Centre	

30th July, Tuesday

8:30 - 10:30	Plan beyond the IFERC and IFMIF-EVEDA		K. Ushigusa
	IFMIF/ENS Options	R. Heidinger, A.	Ibarra, A. Moeslang
10:30 - 10:45	Coffee Break		
10:45 - 12:30	Discussions		
12:30 - 14:00	Lunch		
14:00 - 15:30	Korean Accelerator Program Overview and PAL	Four	W. Namkung
15:45 - 16:30	Move from PAL to KOMAC		
16:30 - 18:00	KOMAC Overview and Facility Tour		Y. S. Cho
18:30	Dinner at Gyeongju		

31st July, Wednesday

8:30 -	12:00	Discussions and other talks
12:00		Lunch
13:00		Adjourn

* Technical Seminar (for anyone stay longer + PAL and NFRI Members):

14:00 - 15:00 Superconducting Accelerators for Hadrons and Test Facilities S. H. Kim

~2016

Busan International Fusion Neutron Source

(BIFNS)

Busan Natl' Univ., Dongeui Univ., Seoul Natl' Univ. NFRI, KAERI, KIMS, City of Busan, BISTEP
 Beam energy
 reaction
 N yield [n/s]

 300keV/10A (3MW)
 DD
 1.6 x 10¹⁴

 DT
 6.2 x 10¹⁵

 250keV/4A (1MW)
 DD
 0.4 x 10¹⁴

 DT
 2.1 x 10¹⁵

Case studies by KFE

Design studies by KAERI

중성자원 종류	주요 사양	특기사항	검토사항
d + ⁶ Li stripping (LINAC) IFMIF	- 40 MeV /125 mA (5 MW) - 열부하(20x20cm):~ 100 MW/m ² - 중성자 : 1E ¹⁷ n/s (forward) (> 10 MeV) - 중성자속 : 5E ¹⁴ n/cm ² ·s - 조사 영역 : 0.1 L (10~20 dpa/y)	- IFMIF EVEDA 기술 존재 - Liquid Li Target(50x100 mm ²) 기술(유속15m/sec) - 125 mA 연속운전 기술 필요 - 구축 공간 : 100 x 50 m - EU(IFMIF-DONES), 일(A-FNS)	- 가속기 건설 (투자 (약 1조원) 대비 효율 낮음) - 투자 측면을 제외할 경우, 기술 측면에서 가장 매력 적임 - 고강도 증성자원으로 구조재 연구 가능
D+T (이온 Beam)	- 0.2 MeV /40 A (4 MW) - 열부하 : ~ 100 MW/m ² - 2E ¹⁵ n/s (핵융합증성자 : 14.1 MeV) - 중성자속 : 1E ¹³ n/cm ² ·s - 조사 영역 : 10x20 cm (~1 dpa/y)	- 많은 R&D 필요(회전 표적, T 증착 등) - Solid Target(TiT ₂) 가능 (회전rpm:~1,000) - CW 가능 연구 필요 - 이탈리아(ENEA), 중국(INEST, HINEG-II) 설계/연구만 진행 중	- <mark>외부로부터 반입되는 삼중수소 이슈</mark> - 추가 Target 관련 R&D 필요 - (약 3,000억원+기술리스크)
d + ⁷ Li (RFQ 가속기)	- 3 MeV /100 mA (0.3 MW) - 열부하 : ~10 MW/m² - 4.4E¹⁴ n/s (10 Mev 이상 ~30%)	- 3 MeV/20 mA 경험 (100 mA 기술 개발 필요) - Solid Target 가능 여부 - CW 가능 추가 연구 필요	- 소규모 가속기 타입 (투자 대비 효율 저) - CW 100mA 기술 확인 필요 - 고속중성자 비울 30% 정도
d + ⁷ Li (이온 Beam)	- 1 MeV /5 A (5 MW) - 열부하 : ~100 MW/m ² - 1.2E ¹⁵ n/s (10 Mev 이상 ~30%)	- 1 MeV 개발 경험 없음 - Liquid Li Target 기술 필요 - CW 어려움	- 가열기술 연계 개발 가능(투자 효율 저) - <mark>기술 성숙도 가장 낮음</mark> - <mark>고속중성자 비율 30% 정도</mark> - 핵융합 가열장치 개발과 연계가 있는 장점
p + ⁹ Be (Cyclotron)	- 70 MeV /1 mA (0.07 MW) - 열부하 : ~ 2 MW/m² - 6E ¹⁴ n/s(70%, <30° forward) (고속중성자 10 Mev 이상)	- 1 mA 가능 여부 - CW 가능 여부 - Solid Target 가능	- 사이클로트론 핵융합 중성자원 시설 구축 - 고에너지(70 MeV), 고전류(1 mA) 연속 운전가능 R&D 필요 - 기술 성숙도 가장 놓음 (기성품 있음) - 투입비용 대비 효율 높음

FIG. 4. Example of CANS application for fusion material and blanket.

For both the 20 MeV and 30 MeV proton beam (0.1 mA) with the selected targets (Be), neutron yields of 8.8×10^{12} n/s and 1.9×10^{13} n/s, respectively, are expected.

KAHIF (KAERI Heavy Ion Irradiation Facility ← TRIAC/KEK) ^[S. H. Noh (PKNU)]

- Simulation of "fusion neutrons" by ion beams
- Temperature controlled target chamber (< 1500 °C)
- Successful commissioing with He⁺ (7.8 euA peak), Ar¹⁰⁺ (0.8 euA peak) at duty cycle 28.8%
- Upgrade planned to inject metal ions (ex, Fe)

[More recent updates by D. W. Lee (KAERI)]

What about KOMAC or RAON?

- Average beam current is limited to 1.6 mA
- User facility
- No space or infrastructure for fusion material irradiation or tritium breeding module test

White neutrons: C(d,n): 98 MeV D+
Mono-energy neutrons: Li(p,n): 83 MeV p

- Average beam current is limited to 1 mA or lessUser facility
- No space or infrastructure for fusion material irradiation or tritium breeding module test

Integrated Breeding Test Facility (IBTF) by KFE

Layout of Deuteron Accelerator Unit (DAU)

ECR Ion Source (IS)

- 2.45 GHz
- Over 10 mA CW D+
- 20 keV/u

Low Energy beam Transport (LEBT)

- Matching between IS and RFQ
- 1~2 m with 1~2 Solenoids
- €_(N,rms,x) < 0.2 mm-mrad
- 20 keV/u

Radio Frequency Quadrupole (RFQ)

- 4-vane, copper cavity
- 162.5 or 176 MHz (TBD)
- bunching & acceleration
- ~4 m, >250 kW, 1.5 MeV/u

Medium Energy Beam Transport (MEBT)

- Matching between RFQ and SC section
- ~3 m with 4 Quads + 2 Rebunchers
- ε_(N,rms,z) < 0.12 MeV-deg

- 1.5 MeV/u

High Energy Beam Transport (HEBT)

- 2 Octupoles + 2 Dodecapoles
- 40 MeV, 10 mA CW D+
- Beam size : 20 cm x 20 cm

Superconducting RF Linac (SRF)

- 2+2 SRF modules
- 162.5 or 176 MHz (TBD)
- β=0.09 HWR : 1.5 MeV/u -> 5.8 MeV/u
- β=0.18 HWR : 5.8 MeV/u -> 20 MeV/u
- Solenoid (SC) or Quadrupole (NC) (TBD)

Deuteron Beam

BD

Beam Diagnostics (BD)

- Beam Position Monitors
- DCCTs, ACCTs
- Beam Profile Chambers
- Lead shutter
- Isolation Valves

[Y. L. Cheon (KFE)]

Layout of Deuteron Accelerator Unit (DAU)

[Y. L. Cheon (KFE) and E. Cosgun (UNIST)]

Bore diameter: 36 / 40 mm

~**50 m**

lon source	LEBT	RFQ	МЕВТ	SC Linac		HEBT	Target Cell
ECR IS (NC) 2.45 GHz	Matching between IS and RFQ	4-vane 176 MHz –bunching & acceleration	Matching between RFQ and SC section ♦ Space charge	HWR (SC) 176 MHz (2 cryomodules) $\beta = 0.091$	HWR (SC) 176 MHz (2 cryomodules) β = 0.181	2 Octupoles (For making rectangular shape of beam) 30° Dipoles 2 (Achromatic)	(Solid Be 20 cm x 20 cm) Expected neutron yield : ~10 ¹⁷ n/m ² /s
D ⁺ CW Max 10 mA	2 Solenoids	171 kW 5.24 m	4 Quads + 2 Rebunchers Beam diagnostics	<mark>1.5 MeV/u</mark> -> 6 MeV/u	6 MeV/u -> 20 MeV/u		
20 keV/u	20 keV/u	1.5 MeV/u	1.5 MeV/u	Solenoid (SC) L = 250 mm		Beam diagnostics (~4 m)	(Dose rate simulation study)
Extraction current ~12 mA	Solenoids L = 400 mm	 Total power : 171 kW Inter vane V : 70 kV 	Beam diagnostics • BPM (position monitor) • ACCT • BPC (profile chamber)	<pre># cryo : 2 (~3.7 m) # cavities/cryo : 6,7 # cavities : 13 Cavity L : 155 mm # solenoids/cryo : 6 # solenoids : 12</pre>	<pre># cryo : 2 (~4 m) # cavities/cryo : 7 # cavities : 14 Cavity L : 308 mm # solenoids/cryo : 4 # solenoids : 8</pre>	 Beam diagnostics BPM (position monitor) BCT (ACCT, DCCT) BPC (profile chamber) 	 Lead shutter Cu Water cooling
/ 1 · 10 · 11	7 L-2 III	≽ L = 5.24 m	≫ L = 2.3 m	≽ L = 17.34 m (~20 <i>m</i>)		≻ L = ~20 m	
Target beam : Average 5 mA	Chopper (Low duty cycle beam	• ACCT	Scrapers	 Solenoid B max : 6.7 T RF Power : > 400 kW Vacuum : < 10⁻⁸ mbar 4.5 K BPM(position monitor), BPC (profile chamber) 		Remote + Hands-on	• Scraper (at the end of HEBT)
• Max 10 mA	measurement for commissioning test)	• Vacuum < 10 ⁻⁷ mbar	• Vacuum < 10⁻⁷ mbar			• Vacuum < 10⁻⁷ mbar	• Vacuum < 10 ⁻⁵ mbar

SS316L → Aluminium

Start-to-End Simulation of DAU

→ No showstoppers in beam dynamics point of view → Technology Readiness / Cost / Schedule would matter

Possible Collaborators

CEA (France)

VITZRO (Korea)

Summary and Conclusion

- For Blanket Structural Material, Divertor Functional Material, Tritium Release Module of DEMO, neutron irradiation experiments with relatively low energy (~40 MeV), high average current D+ accelerators are being pursed worldwide.
- Korean fusion and accelerator communities should look into best options for domestic fusion engineering program [e.g., dedicated tritium breeding unit tests with a moderate-intensity D+ accelerator via Niche marketing (틈새시장전략) or Mid-entry Strategy (중간진입전략)].
- Accelerator technology seems rather matured, whereas target design and neutronics are getting more challenging.

Thank you for your attention !

