

Lecture 2

Basics of Magnets

Moses Chung (UNIST) mchung@unist.ac.kr

Lecture 2 Introduction

• In general, charged particles are focused and bent by use of magnets, and accelerated by use of electromagnetic waves in cavities.

 $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$

- A transverse magnetic field will provide a much larger force than a field of the same magnitude which is almost in the direction of the particle's trajectory.
- Static magnetic fields for accelerators are produced either by electric currents or permanent magnet material (e.g., alloys of samarium-cobalt or neodymiumboron-iron).
- Iron ($\mu \approx 5000\mu_0$) is frequently placed around the currents or permanent magnet material to decrease the magnetic reluctance, guide the field distribution, and reduce the leakage flux.
- Electrically powered magnets can be made with warm conductors (water-cooled copper or aluminum), or superconductors (an alloy of niobium-titanium embedded in a copper stabilizer).

the LORENTZ

WITH YOU

Please Use Your Right Hand !

MAGNETIC PISCUSSION

brun Toushel.

Cartoon by Bruno Touschek (3 February 1921–25 May 1978)

Austrian physicist who initiated e-p collider

Yoda is among the oldest and most powerful known Jedi Masters in the *Star Wars* universe

Magnitude of Magnetic Fields

1 T = 10000 Gauss

KoPAS 2015

Value	Item		
0.1 - 1.0 pT	human brain magnetic field		
24 μT	strength of magnetic tape near tape head		
31-58 μT	strength of Earth's magnetic field at 0° latitude (on the equator)		
0.5 mT	the suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH)		
5 mT	the strength of a typical refrigerator magnet		
0.15 T	the magnetic field strength of a sunspot		
1 T to 2.4 T	coil gap of a typical loudspeaker magnet		
1.25 T	strength of a modern neodymium-iron-boron (Nd2Fe14B) rare earth magnet.		
1.5 T to 3 T	strength of medical magnetic resonance imaging systems in practice, experimentally up to 8 T		
9.4 T	modern high resolution research magnetic resonance imaging system		
11.7 T	field strength of a 500 MHz NMR spectrometer		
16 T	strength used to levitate a frog		
36.2 T	strongest continuous magnetic field produced by non-superconductive resistive magnet		
45 T	strongest continuous magnetic field yet produced in a laboratory (Florida State University's National High Magnetic Field Laboratory in Tallahassee, USA)		
100.75 T	strongest (pulsed) magnetic field yet obtained non-destructively in a laboratory (National High Magnetic Field Laboratory, Los Alamos National Laboratory, USA)		
730 T	strongest pulsed magnetic field yet obtained in a laboratory, destroying the used equipment, but not the laboratory itself (Institute for Solid State Physics, Tokyo)		
2.8 kT	strongest (pulsed) magnetic field ever obtained (with explosives) in a laboratory (VNIIEF in Sarov, Russia, 1998)		
1 to 100 MT	strength of a neutron star		
0.1 to 100 GT	strength of a magnetar		

KoPAS 2015

Classes of Magnetic Materials

• Diamagnetic ($\mu_r < 1$) and Paramagnetic ($\mu_r > 1$) Materials:

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) = \mu_0(\mathbf{H} + \chi \mathbf{H}) = \mu_r \mu_0 \mathbf{H}$$

- Diamagnetism is a fundamental property of all matter, although it is very weak.
- Paramagnetism follows Curie's law: $\chi \propto \frac{1}{T} > 0$.

Classes of Magnetic Materials

- Ferromagnetic Materials: Iron, Cobalt, Nickel
- Ferrimagnetic Materials: very similar behavior to ferromagnetic, but have very different magnetic ordering (e.g., Ferrites)

Optics Analogy

Equations of Magnetostatics

• Field free ($\mathbf{J} = 0$) vacuum region ($\mu = \mu_0$):

$$\nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{H} = 0$$

Method 1: Directly by magnetic induction for 2D

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} = 0, \quad \frac{\partial B_x}{\partial y} = \frac{\partial B_y}{\partial x} \quad \longrightarrow \quad \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) B_x = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) B_y = 0$$

- Method 2: In terms of scalar potential (sometimes, "-" sign is dropped for simplicity)

$$\mathbf{H} = -\nabla \Phi_m \quad \longrightarrow \quad \nabla^2 \Phi_m = 0$$

- Method 3: In terms of vector potential

$$\mathbf{B} = \nabla \times \mathbf{A}, \nabla \cdot \mathbf{A} = 0 \quad \longrightarrow \quad \nabla^2 \mathbf{A} = 0$$

Solutions in 2D

• Using separation of variables in cylindrical coordinates $(r < a, \theta, z)$:

$$B_x = B_0 \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^n \left(a_n \cos n\theta + b_n \sin n\theta\right), \quad B_y = B_0 \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^n \left(b_n \cos n\theta - a_n \sin n\theta\right)$$

- The central field is given by B_0 (only $a_0 = 1$; skew dipole, only $b_0 = 1$; dipole), and $a \approx$ (order of the beam pipe radius) is a reference radius of the expansion.
- Fields in the cylindrical coordinates are

$$B_r = B_0 \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^n \left[a_n \cos(n+1)\theta + b_n \sin(n+1)\theta\right]$$
$$B_\theta = B_0 \sum_{n=0}^{\infty} \left(\frac{r}{a}\right)^n \left[b_n \cos(n+1)\theta - a_n \sin(n+1)\theta\right]$$

• Or, in terms of scalar potential:

$$\Phi_m = -\sum_{n=0}^{\infty} \frac{a}{n+1} \left(\frac{r}{a}\right)^{n+1} \left[F_n \cos(n+1)\theta + G_n \sin(n+1)\theta\right]$$

- We have let $F_n = B_0 a_n / \mu_0$, $G_n = B_0 b_n / \mu_0$ to be the respective skew and normal strengths 2(n + 1)th for multipoles.

Equipotential Surfaces

- The magnetic field must be perpendicular to the equipotential lines of Φ_m .
- If we assume that our magnet were made of iron ($\mu \gg \mu_0$), then for the pole face of the magnet would be nearly the equipotential surface.

• For a pure normal multipoles, the optimum shape of the pole face would be the same as the equipotential of the term proportional to G_n .

$$\left(\frac{r}{a}\right)^{n+1}\sin(n+1)\theta = \pm 1$$

Examples: Dipole

• For normal dipole magnet (n = 0):

More Realistic "C" Magnet

Magnetic circuit:

KoP S 2015

- Most of the reluctance is due to the vacuum (or air) gap, that is, the iron is more permeable.
- Essentially, all of the magnetomotive force producing the flux is applied across the gap, even though the gap is physically very small.

Examples: Quadrupole

• For normal quadrupole magnet (n = 1):

More Realistic Quadrupole Coils

• Applying Ampere's law with a proper Amperian loop:

KoP S 2015

Moses Chung | Basics of Magnets

Summary of Multipoles

• US Convention:

$$(a_n, b_n)$$
 in US = (a_{n+1}, b_{n+1}) in EU, for $n = 0, 1, 2, \cdots$

coefficient	multipole	field	\mathbf{notes}
b_0	normal dipole	$B_y = B_0 b_0$	horz. bending
a_0	skew dipole	$B_x = B_0 a_0$	vert. bending
b_1	normal quadrupole	$B_x = B_0\left(\frac{r}{a}\right)b_1\sin\theta = B_0\left(\frac{y}{a}\right)b_1$ $B_y = B_0\left(\frac{r}{a}\right)b_1\cos\theta = B_0\left(\frac{x}{a}\right)b_1$	focusing defocusing
a_1	skew quadrupole	$B_x = B_0\left(\frac{r}{a}\right)a_1\cos\theta = B_0\left(\frac{x}{a}\right)a_1$ $B_y = -B_0\left(\frac{r}{a}\right)a_1\sin\theta = -B_0\left(\frac{y}{a}\right)a_1$	coupling
b_2	normal sextupole	$B_x = B_0 \left(\frac{r}{a}\right)^2 b_2 \sin(2\theta)$ $B_y = B_0 \left(\frac{r}{a}\right)^2 b_1 \cos(2\theta)$	nonlinear! coupling

Summary of Multipoles

Dipole and Skew dipole

Quadrupole and Skew Quadrupole

Sextupole and Skew sextupole

Vector Potential Solutions

• In terms of vector potentials for r < a:

$$A_z = B_0 \sum_{n=0}^{\infty} \frac{a}{n+1} \left(\frac{r}{a}\right)^{n+1} \left[a_n \sin(n+1)\theta - b_n \cos(n+1)\theta\right]$$

• A more general form in arbitrary current-free region is given by

$$A_z = \operatorname{Re}\sum_{n=1}^{\infty} \left[A_n r^n + B_n r^{-n} \right] \exp(in\theta)$$

- We assume a localized current sheet distribution at r = a.
- Note that A_n , B_n are complex in general.
- As an example, we examine the case of a dipole with strength B_0 :

$$A_{z} = \begin{cases} A_{1}r\cos\theta, & r < a \\ B_{1}r^{-1}\cos\theta, & r > a \end{cases} \xrightarrow{A_{1}=-B_{0}, B_{1}=A_{1}a^{3}, \mathbf{B}=\nabla\times(A_{z}\hat{z})} \mathbf{B} = B_{0} \begin{cases} \sin\theta\hat{r} + \cos\theta\hat{\theta} = \hat{y}, & r < a \\ (a/r)^{2}(\sin\theta\hat{r} - \cos\theta\hat{\theta}), & r > a \end{cases}$$
$$B_{\theta}(r = a^{+}) - B_{\theta}(r = a^{-}) = \hat{r} \times \mu_{0}K_{z}\hat{z} \xrightarrow{\text{Discontinuity}} 2B_{0}\cos\theta = \mu_{0}K_{z}(\theta)$$
$$J_{z}(r,\theta) = K_{z}(\theta)\delta(r-a) = (2B_{0}/\mu_{0})\cos\theta\delta(r-a)$$

Moses Chung | Basics of Magnets

More Realistic "cos θ" **Magnet**

• Using Ampere's law for a uniform current distribution in a long cylinder:

$$\mathbf{B} = \frac{\pm \mu_0 J_z}{2} \left(r \hat{r} \mp \frac{d}{2} \hat{x} \right) \times \hat{z}$$

• The superposition of the fields from two opposing current densities:

$$\mathbf{B} = \frac{+\mu_0 J_z}{2} \left(r\hat{r} - \frac{d}{2}\hat{x} \right) \times \hat{z} + \frac{-\mu_0 J_z}{2} \left(r\hat{r} + \frac{d}{2}\hat{x} \right) \times \hat{z}$$
$$= \frac{-\mu_0 dJ_z}{2} \hat{x} \times \hat{z} = \frac{\mu_0 dJ_z}{2} \hat{y}$$

Moses Chung | Basics of Magnets

Dipole

• Field is constant.

$$B_x = 0, \ B_y = B_0 b_0 \ (< 0 \text{ for this Fig.})$$

$$A_z = -B_0 b_0 x$$

• Field varies linearly.

+ Current In

$$B_x = B_0 b_1 \frac{y}{a}, \quad B_y = B_0 b_1 \frac{x}{a} \quad (B_0 b_1 < 0 \text{ for this Fig.})$$
$$\mathbf{B} = B'_q \left(y\hat{x} + x\hat{y}\right)$$
$$\mathbf{A} = -\frac{1}{2} B'_q \left(x^2 - y^2\right)\hat{z}$$

• Field varies quadratically.

A standard technique for insulating magnet coils is to use epoxy resin, reinforced with fiberglass.

Magnetic Bussing

• What's wrong with this picture ?

Magnetic Bussing

• The electrical bussing connection creates a loop around the beam line, resulting in a small solenoidal field. This longitudinal field can rotate the beam.

Quad & Sextupole Bussing

• The in and out conductors should be placed close to each other so that longitudinal fields are minimized

Dipoles are Not Infinitely Long !

- Sector bend (sbend):
 - Simpler to conceptualize, but harder to build
 - Beam design entry/exit angles are \perp to end faces

- Rectangular bend (rbend):
 - Easier to build, but must include effects of edge focusing
 - Beam design entry/exit angles are half of bend angle

KoP S 2015 Dipole Fringe Fields: Horizontal Motion

• For $\alpha \neq 0$, we need to include edge focusing effects.

• Defocusing effect of a thin wedge in horizontal direction with $\alpha > 0$.

Moses Chung | Basics of Magnets

Dipole Fringe Fields: Vertical Motion

• There is a finite transverse field which induces vertical kicks:

KoP#S 2015

$$B_{y} \approx B_{0} \left(1 - \frac{\sigma}{l}\right) \text{ for } 0 < \sigma < l$$

$$B_{\xi} \approx 0 \quad \text{(i.e., wide poles)}$$

$$B_{\sigma} \simeq \left(\frac{\partial B_{\sigma}}{\partial y}\right) y = \left(\frac{\partial B_{y}}{\partial \sigma}\right) y = -\frac{B_{0}}{l} y$$

$$B_{x} = B_{\xi} \cos \alpha + B_{\sigma} \sin \alpha = -\frac{B_{0} \sin \alpha}{l} y$$

• Focusing effect of a fringe field in the vertical direction with $\alpha > 0$.

Solenoidal Fields

$$\nabla \cdot \mathbf{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z}$$
$$= 2\frac{\partial B_x}{\partial x} + \frac{\partial B_z}{\partial z}$$
$$= 0$$
$$\longrightarrow \frac{\partial B_x}{\partial x} = \frac{1}{2}\frac{\partial B_z}{\partial z}$$

$$\mathbf{B} = -\frac{1}{2}B'_{z}(z)\left(x\hat{x} + y\hat{y}\right) + B_{z}(z)\hat{z} = -\frac{1}{2}B'_{z}(z)r\hat{r} + B_{z}(z)\hat{z}$$
$$B'_{z}(z) \equiv \left(\frac{\partial B_{z}}{\partial z}\right)_{(0,0)}$$
$$\mathbf{A} = \frac{1}{2}B_{z}(z)\left(x\hat{y} - y\hat{x}\right) = \frac{1}{2}B_{z}(z)r\hat{\theta}$$

Moses Chung | Basics of Magnets

ULSAN NATIONAL INSTITUTE OF Science and technology

Solenoidal Fields

- At first glance, one would expect that a particle entering a uniform magnetic field on a straight path parallel to the field lines should not be deflected radially.
- However, there is a net radial focusing due to radial magnetic fields in the fringe regions.
- Rotation in the axisymmetric system due to conservation of canonical angular momentum or Busch's theorem .

$$p_{\theta} = \gamma m r^2 \dot{\theta} + q r A_{\theta} = const.$$
 $\gamma m r^2 \dot{\theta} + \frac{q}{2\pi} \Phi = const.$

Special Magnets: Corrector

- Corrector magnets are used to provide minor horizontal and vertical steering (typically less than 1.5 mrad).
- They are normally located upstream from the main quadrupoles and are used to steer the beam to the center of the quadrupole.
- In order to conserve lattice space and to simplify operation, horizontal and vertical steering are often combined in a single magnet.

Special Magnets: Septum

Special Magnets: Kicker

• Pulsed magnet with very fast rise time (100 ns –few µs)

- Ferrite core (ferrimagnetic) has comparatively low losses at high frequencies, and used for fast, low field magnet cores.
- In many cases, insulated laminated core are used for time varying field magnets in order to reduce or eliminate eddy current effects.

Use of Kicker and Septum

- Kicker deflects the entire beam into the septum in a single turn.
- Septum deflects the beam entire into the transfer line.

Special Magnets: Undulator

• An array of dipoles with alternating polarity of the magnetic field:

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

KoP S 2015 Magnet Technology for Tighter Focus

Moses Chung | Basics of Magnets

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

KoPAS 2015 Magnet Technology for Higher Energy

 $B\rho = \frac{p}{q}$ = Magnetic Rigidity

Dipole Field for Hadron Collider

Lecture 2 References

- Basic Electromagnetism:
 - R. K. Wangsness, *Electromagnetic Fields* (Wiley, 1986)
 - J. D. Jackson, Classical Electrodynamics (Wiley, 1998)
- Beam and Accelerator Physics:
 - J. B. Rosenzweig, Fundamentals of Beam Physics (Oxford, 2003)
 - M. Conte and W. M. MacKay, An Introduction to the Physics of Particle Accelerators (World Scientific, 2008)
 - T. Satogata, V. Morozov, and E. Prebys, Accelerator Physics (USPAS, 2015)
- Magnet Technology
 - M. Lopes, Design of Room Temperature Magnets (USPAS, 2014)
 - J. T. Tanabe, Iron Dominated Electromagnets: Design, Fabrication, Assembly and Measurements (World Scientific, 2005)

*Special thanks to USPAS director, Prof. William Barletta, who provides the USPAS lecture slides and allows me to reuse some of them for this lecture.