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• Accelerator physics is a branch of applied physics that deals with all the physics 
issues associated with accelerators.  

• The goal is the production of energetic particle beams for other applications 
(~beam physics).  

• Particle beams are collections of charged particles all travelling in nearly the 
same direction with nearly the same speed (possibly relativistic). 
 

• Accelerator physics encompasses broad disciplines, ranging from engineering 
and technology to diagnostics/controls, to experimental physics, to computer 
science, to computational and theoretical physics. 

• Accelerator physics assumes basic knowledge in electromagnetism, classical 
mechanics, and special theory of relativity. Also basic understanding on 
magnet/RF/microwave engineering would be helpful. 
 

• In general, charged particles are focused and bent by use of magnets, and 
accelerated by use of electromagnetic waves in cavities.  

• Accelerator physics studies motions of charged particles under the influence of 
electromagnetic fields within the context of classical physics. 
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[From A. Chao (SLAC)] 
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Space charge effects Nonlinearity, resonance, coupling 
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Electromagnetism 



Maxwell Equations 
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• Classical electrodynamics is governed by the Maxwell equations. In the SI 
(MKS) system of units, the equations are 
 
 
 
 
 
 
 

• For external sources in vacuum, the constitutive equations are 
 
 
 

• The equations are linear: the sum of two solutions, 𝐄1,𝐁1 and 𝐄2,𝐁2 is also a 
solution corresponding to the sum of densities 𝜌1 + 𝜌2, 𝐉1 + 𝐉2. 



Charge and Current Densities 
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• The free electric charge density and current density are related by the equation 
of continuity, which is implicit in the Maxwell equation. 
 
 
 
 

• For a point charge moving along a trajectory 𝒓 = 𝒓0(𝑡), 
 
 
 
 
 

• Note that 



Scalar and Vector Potentials 
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• It is often convenient to express the fields in terms of the vector and the scalar 
potentials (two homogeneous Maxwell equations are automatically satisfied). 
 
 
 
 

• The potentials are not uniquely specified. 
 
 

• We can choose a set of potentials to satisfy the so-called Lorentz condition.   
 
 

• The Lorentz condition results in the symmetric and decoupled form of the 
inhomogeneous wave equations. 



Coulomb Gauge 
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• Within a closed region of space containing no free charges, surrounded by an 
equipotential surface (e.g., RF cavities): 
 
 
 

• The Lorentz condition becomes Coulomb gauge: 
 
 

• The electric and magnetic fields are obtained from the vector potential alone. 
 
 

• For time-independent case (e.g., Magnets), 



Example: Uniform Magnetic Induction 
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• Let us consider a uniform magnetic induction given by 𝐁 = 𝐵𝒛�  where 𝐵 = 𝑐𝑐𝑐𝑐𝑡. 
 
 
 
 
 
 
 
 
 
 
 
 

• For all three cases: 



Boundary Conditions 
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• Inside perfect conductor, all of the field vectors will be zero. If 𝐧� is the unit normal 
vector pointing outward from the surface of the conductor,   



Skin Depth 
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• For a good but not perfect conductor, fields and currents are not exactly zero 
inside the conductor, but are confined to within a small finite layer at the surface, 
called the skin depth. 

• Fields inside the conductor exhibit rapid 
exponential decay, phase difference, 
magnetic field much larger than the electric 
field, and fields parallel to the surface. 

• Time-averaged power absorbed per unit area: 



Energy Balance 
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• The energy density of the field (energy per unit volume) is* 
 
 

• The Poynting vector gives energy flow (energy per unit area per unit time) in the 
electromagnetic field. 
 
 

• Time rate of change of electromagnetic energy within a certain volume plus the 
energy flowing out through the boundary surface of the volume per unit time, is 
equal to the negative of the total work done by the fields on the sources within 
the volume:   
 
 
 
 
 

*Note that for plane EM wave in vacuum:  𝐸 = 𝑐𝐵 



Time-Harmonic Fields 
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• We assume all fields and sources have a time dependence 𝑒−𝑖𝜔𝑡 (or 𝑒𝑗𝜔𝑡)  
 
 

• Time-average of the products:  
 
 

• Complex Poynting theorem:  
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Relativity 



Inertial Frame 
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• All inertial frames are in a state of constant, rectilinear motion with respect to one 
another; 𝑭 = 𝑭𝑭 

• A non-inertial reference frame is a frame of reference that is 
undergoing acceleration with respect to an inertial frame. 

• 𝑭 = 𝑚𝒂 holds in any coordinate system provided the term 'force' is redefined to 
include the so-called inertial forces. 

• Lorentz transformation for relativistic motions (𝛾 = 1/ 1 − 𝑣2/𝑐2 > 1)  
 

 

= lab. frame 

= beam rest frame 



Time Dilation and Lorentz Contraction 
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• Time interval appears to be longer to the moving observer than it does to the one 
at rest with respect to the clock. 
 
 

 
 Ex] Unstable particles such as muons should have a longer lifetime than resting 
 ones as accelerated.  

 
• As found by the moving observer, the length (whose ends are determined 

simultaneously) in the direction of motion will be contracted. 
 
 
 
 
 

 Ex] Longitudinal Lorentz contraction of the bunch in relativistic beams. 



Special Relativity Handle Acceleration? 
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• It is often said, erroneously, that special relativity cannot deal with accelerations 
because it deals only with inertial frames. 
 

• Sometimes it is claimed that general relativity is required for these situations; if 
that’s the case, accelerator physics must have been extremely complicated!  
 

• This is not true. We must, of course, only allow transformations between inertial 
frames; the frames must not accelerate.  
 

• Special relativity treats acceleration differently from inertial frames and can deal 
with anything kinematic, but general relativity is required when gravitational 
forces are present. 



Main Results of Special Relativity 
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• Relativistic parameters: Don’t be confused with Twiss parameters. 
 
 
 
 
 
 
 
 
 

 
• The total energy, mechanical momentum, and kinetic energy of a rest mass 𝑚: 

 
 

• The relation between total energy and momentum in the absence of EM fields:  



Energy and Mass Units 
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• To describe the energy of individual particles, we use the eV, the energy that a 
unit charge  
 

     gains when it falls through a potential, Δ𝜙 = 1 volt. 
 
 

• We can use Einstein’s relation to convert rest mass to energy units. 
 
 

• For electrons,  
 
 

• For protons, 
 



Lorentz Equation and Effective Mass 
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• Lorentz equation: We need to consider changes of 𝛾 in time. 
 
 
 
 

• Parallel and perpendicular decomposition: 
 
 
 

– Parallel acceleration: 
 
 
 

– Perpendicular acceleration: 
 



Transformation of Potentials and Fields 
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• Lorentz transformation of potentials: 
 
 
 

• Lorentz transformation of fields: Longitudinal fields are “Lorentz invariant” 
 
 
 

 
 Ex] Pure electric field in beam rest frame (i.e., primed system): A pure electric 
 field to one observer may be seen as both an electric and a magnetic field to a 
 second observer. 



Fields of Relativistic Point Charge 
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• The field distribution is Lorentz contracted into a thin disk perpendicular to the 
particle’s direction of motion with an angular spread on the order of 1/𝛾. 



Relativistic Doppler Shift 
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• The Doppler effect is modified to be consistent with the Lorentz transformation 
 
 
 
 
 
 
 
 

 Ex] Fundamental radiation wavelength from undulator, which is a periodic 
 arrangement (𝜆𝑢) of many short dipole magnets of alternating polarity. 
 

– Electron sees length contraction of the undulator period:  
– The electrons oscillate at a corresponding higher frequency: 
– The electrons emit radiation just like an oscillation dipole:  
– For a stationary observer looking against the electron beam, the radiation appears 

strongly blue-shifted:  
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Classical Mechanics 



Lagrangian Mechanics 
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• If we take the nonrelativistic case of a conservative system and B = 0, the 
Lagrange function is defined by the difference between kinetic and potential 
energy. 
 
 

• Hamilton’s variational principle states that the motion of the system from one 
fixed point at time 𝑡1 to another point at time 𝑡2 is such that the time integral of 
the Lagrangian along the path taken is an extremum (actually, a minimum). 

• Lagrangian equations of motion:  
 
 

• Canonical momenta (or conjugate momenta):  



Hamiltonian Mechanics 
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• Hamiltonian is constructed from a Lagrangian: 
 
 
• Hamiltonian equations of motion: 

 
 
 
 
 
 
 
 

• Conservation of Hamiltonian: if it does not depend explicitly on 𝑡. 



Example 
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• Lagrangian for a central force problem in 2D: 
 
 

• Canonical momenta: 
 
 

• Hamiltonian: 
 
 

• Equations of motion: 



Relativistic Dynamics in EM Fields 
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• Lagrangian with velocity-independent potentials: 
 
 
 

• Canonical momenta: mechanical momenta + vector potential contribution  
 
 
 

  
 Ex] Cartesian coordinates: 
 
 
 Ex] Cylindrical coordinates: 



Relativistic Dynamics in EM Fields 

Moses Chung | Basics of EM, CM & Relativity 30 

• Hamiltonian: Using cartesian coordinates, one can prove 
 
 
 
 
 
 

 
 Ex] Cartesian coordinates: 
 
 
 
 Ex] 4-vectors:  
 
 Ex] Cylindrical coordinates: 
 
 
 
       



Canonical Transformation 
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• The variation of the action integral between two fixed endpoints: 
 
 
 

• We would like to transform from the old coordinate system 𝐪,𝐩  to a new 
system 𝐐,𝐏  with a new Hamiltonian 𝐾(𝐐,𝐏, 𝑡): 
 
 
 

• One way for both vibrational integral equalities to be satisfied is to have  
 
 
 

• If 𝜆 ≠ 1, it is extended canonical transformation. If 𝜆 ≠ 1 and 𝑑𝑑
𝑑𝑡

= 0, it is scale 
transformation. These transformations do not preserve phase space volume 



Generating Function 
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• The function 𝐹 is in general a function of both the old and new variables as well 
as the time. We will restrict ourselves to functions that contain half of the old 
variables and half the new; these are useful for determining the explicit form of 
the transformation. 
 

Case 1: 
 
Case 2: 
 
Case 3: 
 
Case 4: 
 
 
• In all cases, new Hamailtonan and equations of motion become: 



Example 
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• For 𝐹3 we will show 
 
 

• Proof:  
 
 
 
 
 
 
 
 
 

 Therefore 



Change the Role of Time Coordinates 
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• Provided that the reference particle moves without backtracking, or some 
particle coordinate increases in time, we can change the role of that coordinate 
and time.  
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• Electromagnetism: 
– R. K. Wangsness, Electromagnetic Fields (Wiley, 1986) 
– J. D. Jackson, Classical Electrodynamics (Wiley, 1998) 

 
• Classical Mechanics: 

– J. B. Marion, Classical Dynamics of Particles and Systems (Harcourt Brace & 
Company, 1995) 

– H. Goldstein, Classical Mechanics (Addison-Wesley, 2002) 
 

• Beam and Accelerator Physics: 
– J. B. Rosenzweig, Fundamentals of Beam Physics (Oxford, 2003) 
– M. Conte and W. M. MacKay, An Introduction to the Physics of Particle Accelerators 

(World Scientific, 2008) 
– T. P. Wangler, RF Linear Accelerators (Wiley-VCH, 2008) 
– G. Stupakov, Lecture notes on Classical Mechanics and Electromagnetism in 

Accelerator Physics (USPAS, 2011)  
 

*Special thanks to USPAS director, Prof. William Barletta, who provides the USPAS lecture slides and allows 
me to reuse some of them for this lecture. 
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