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Off-Momentum Effects

(Dispersion, Momentum compaction, and Chromaticity)
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[Review]

Equation of motion in the horizontal direction with correct momentum:

Vertical: direction of dipole magnet field

Horizontal: deviation away from the design

Design orbit orbit

ds = Rdg

<L>2+Q—B’ z =0, ByRy = —
0 Po

From dipole components From quadrupole components Magnetic rigidity
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Dispersion (n or D)

« Change in the design orbit for the off-momentum particle:

/(P—Po)

A
—:U/ngmP—f =23 + Nx0p

Offset in position  Offset in momentum

dp.’l} o
dt

Now we allow v to be deviated from v,

ymov?

— — ’B
Ro(1 +a/Ry) 1770

dp
dt

12

Path length focusing term

\

2
L Nx0p
¥y

/Ogg;grgy referenm

In Lecture 2, we used the following force balance equation for constant vy:
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New term caused by p # p,
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Governing equation for dispersion

« We can express the new force balance equation using s as an independent variable:

() = d d dx
Y === pp=ymyg—
ds  wvdt’ P 7o dt
1 1 qBg 1 1 1 Ap 1 1 Ap
o= Lan {___] ~ Ly [___ (1__ S
R? Ro P R2 Ry Ry Po R2 Roy po
_ _ pBo _ 1po _ 1 po NL<1_%>
»  With the quadrupole term included, p  Rop Ropo+Ap Ry Po
1 qB’ 1 Ap
o [_ . ] 1A
R3  po Ry po
1st order in position offset\ \ 1st order in momentum offset
. A
 |If we substitute = =23+ m-p—p
0
1 gqB P 1 qB Ap 1 Ap
x"—i—[—+ ]m =0, n—+ |5 Ne™— = 55—
R TR " Po RS 1o po  Ro po
1 qB’ 1
124
n+ [—+—]nx=—
| RS po Ry
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Solution of the dispersion equation

« For net horizontal focusing, the general solution is composed of homogeneous and
particular solutions:

1
Ny = Acos(kps) + Bsin(kys) +  —
homogeneous —
particular

[Note] If there is only bending magnet (i.e., B’ = 0, no quadrupole),

1
P -

« If we apply matching boundary conditions at the entrance of the bend magnet (s = 0),

_ 1 7,(0) . 1
ne(s) = [7733(0) — HgR()] cos(kps) + p sin(kps) + K%Ro

1
ky o

n.(s) = [ — mbnm(O)] sin(rps) + 1, (0) cos(kps)
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Transfer matrix of dispersion R

* |n the matrix form,

—rKp sin[rps]  cos[kps] Si:i';’os)

(] [ ol Esnl e ]
", = 0
[Note]

1. Even if there is no dispersion in the beginning (i.e., n,(0) = 1, (0) = 0), dispersion can be created
when the beam is transported through a bending magnet.

2. Ina straight section (R, = oo, i.e., no bending),

N2 () cos|kps] ,_%b sinfkps] 0 1.(0)
n.(s) | = | —kpsin[kps]  cos[rps] 0 n..(0)
0 0 1

3. Even in the straight section, dispersion can exist if there is dispersion in the beginning (i.e.,
1Mx(0) # 0, 15 (0) # 0).

30

p\

FIGURE 2.18
Bending magnet creates dis-
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Longitudinal coordinate

« The canonical dependent coordinate in the longitudinal direction is time of arrival relative to
the design particle. ,
Early particle: <0
T=1— t(] {
Late particle: > 0
* In the Hamiltonian analysis, it is useful to introduce a parametrization of the time through a

spatial variable,
Early particle: > 0
( = —voT = votg — vot = s — vot = s — Poct

Late particle: <0

[Note] This is the distance that must be traveled at the design velocity by the design particle, to reach
the position of the temporally advanced (or delated) particle.
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Momentum compaction

« The time of flight of an off-momentum particle through travel distance L(p) :

« First order expansion with paraxial approximation yields

oL L oL L
525:57:———251)22———350Z
v, U2 vo  vh
5t 0L v, [ 1 } op > Lo
o7 ~ la. — —5 | — to = —
to Lo o Yo 1 Po G0

Here we define the path length parameter (usually called, momentum compaction) as

_ 0L/Lyg
Aqe =
op/po

which characterizes the path length changes according to the momentum offset. We also used

do. 03 1

/ vo  Bo Y2 po

op = 6(meyB) =me(Boy +v05)
0y = ~°Bop
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Phase slip factor (or time dispersion) e

« We define so-called phase slip factor:

oT { 1]5}) op
— e — 5| — =1, —
to

Y61 po o
(57’/1;0) 1
= = Qe — —
= 8(0p/po) a0

Note that there is a certain energy (y, = y:», called transition energy) at which the time dispersion
vanishes, and all particle pass through the system in the same amount of time.

0 1 1
7]7_: :ac——:ap__
o V2
N T T
« Below transition: [ = — <0, v <7
f)/tr ,}/0

Particles of higher momentum pass through the system more quickly, which is the natural state of
affairs in linear systems.

IR
« Above transition: == — = >0, 7 > Y

tr /YO

Particles of higher momentum take more time to pass the system , since the added path length of a
higher-momentum trajectory outweighs the added advantage in velocity, which becomes
progressively smaller as particle becomes more relativistic.
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[Example]

Late particle
(high energy) Crest
NV

Synchronous ™ /\ 1|
particle L/ \ x
(design energy)

Below transition: stable
oscillation for off crest with
Ap <0

]
|
[}
Early particle Y
(low energy) P Zero\crossing

Synchronous particle arrives at the same voltage
wypT =2m, or 2rh (h=1,2,---)

5 \ il :\ / Above transition: stable

P, YT =0yt oscillation for off crest with
\\v// \\J// o
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Momentum compaction VS Dispersion R

« Path length change around the circular path:

/\ (R + 1,0p/po)do

N — RdO = ds

dL = (R + ny0p/po)dd — Rd# = n,6p/podf

de

5L = /dL _op Nwdf = U T 5, R
Do poJ) R

— For a single pass system:

Qe

OL/Lg 1 /5 ne(8) .

= = dS
dp/po s — 50 Js,

— For a closed system:

X = = —
op/po Co J R(3)

N
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Chromaticity (or Chromatic aberration)

« Offsets of energy in the particles cause not only dispersion but also result in different
focusing strengths of the magnetic elements:

@B qB  qB N
- = 21— 5,) = ko(1-0 ;
p o po(l+dp) o o= Rt W

FIGURE 2.20
Chromaticity of a focusing
quadrupole.

+ Current In

(~quadratic)
Sextupole

T + Current Out

. e
Force Directior™
N -\~ Fole

Quadrupole
(~linear)

Incoming beam

Desired focus

Sextupole:
- Nonlinearity
- Coupling

Low energy focus High energy focus
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6D linear transformation

6D phase space vector:

P = (xaxliyvylvc =S5 U()t)C/ =~ 5p/p0 — 6}7
D(s) =R(s,s0) - P(s0)

- Owy oxy Ox ¢ Ox s Oxy Oxy
oz, (93:; Oy ay; ¢ 8(}/
8:1:} ox'y 8:1:} 'y 8.%'_// ox’y
Byf ayf ayf ayf ayf Byf
B ox, o« Dy, oy 9¢ O
R(57 SU) - ay} Oyfc C)y9 ay; 0y9 Oy;
¢y 9¢  9¢y 9¢y 9¢y O¢
oz, 8a:/’i Ay, Gy}’. ¢ 8@;
oy oG oG oG oG 9¢
| Ox; ox!, Ay oy, ¢ o¢l
Ri1 Ry Rz Riua Ris Rae %77.7
Ro1 Roa Roz Roy Ras  Rog M
_ R31 Rzx Rz3 R3ys Ras Rag . Ty
Ry Ryz2 R4z R4qa Riys  Rug m,
Rs1 Rs2 Rs3 Rsy Rss | Rsg —
| Reé1 Re2 Res Rea Res R
)
5L = / dr, = 2
Po

Moses Chung | Lecture 4 Longitudinal Dynamics

)T

ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

14



NS’
ULSAN NATIONAL INSTITUTE OF

nnnnnnnnnnnnnnnnnnnn

Conventional Acceleration

(DC acceleration, RF acceleration: Synchrotron, Linac)
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DC Acceleration =020 oo

==

electrons
s o 10 000 000

vacuum

tube f _:w-

TEDYENG s
B

por e

“hot” electrons
KE ~ 0 eV
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[Example] Electrostatic accelerators R

Collecting
Metal sphere brush

Control
Grid

Cathode / % + x
™
t?) + + +*
i k- +
-
2 +
Heater [ +
<] + Rubber
iy + € belt
Metal 4
Focusing brush =
Coil
Deflecting ;
Coils —_
FIGURE 5.1 FIGURE 5.2
A cathode ray tube TV as an example of an accelerator. Cockeroft-Walton  genera- S
tor. FIGURE 5.3
Van der Graaf accelerator.
Charge-exchange target Negative ion source
Accelerating tube % Steel pressuretank
B & E— !\\ .

® .Iféi...‘.‘...@*- | = lo—o— 8

(U] P,

Charged belt High voitage Gradient rings

FIGURE 5.4
Tandem electrostatic accelerator.
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RF Acceleration

-7/0
-4
o (ko
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[Example] Synchrotron and Linac

NS’
ULSAN NATIONAL INSTITUTE OF
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Lower momentum
particle arrives earlier

—=<0
T\ Ul oy
F cavity Uqf ________ _E_I ------- p
Synchrotron Ao .%m

higher momentum
particle arrives later
v

Accelerating
FIGURE 5.11

e ® stations
‘ 3 Synchrotron oscillations. Above transition case
Linac
lon source Drift tubes
FIGURE 5.6 (0t 4 ( l, Y
Synchrotron and linac. w7
7121 3| 4 =' j i+1 “17: t
=l el p— =t= 2| |—_—
= H = | === | == ¥
T | | | Beam l ° \
i ) i i AY
1
FIGURE 5.8
RF generator @ Voltage in Widerée linac.

FIGURE 5.7
Widerde linear accelerator.

Linac (Below transition)



Synchrotron oscillation

Fig. 5.31

Fig. 5.34 \E,

A \
\ Separatrix

The synchronous particle is the particle that arrives
at the RF cavity when the voltage is such that it RF bucket
exactly compensate the average energy loss

A AE
\ Energy increases
B until ¢ = ¢,
A >
i *
s

r——"T

fom-

NS
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

Local electric field (or Voltage)
of the cavity

Energy\relative to the

}ch;@nous particle

Fig. 5.33 Below|transition Linac (Below transiﬁon)

Moses Chung | Lecture 4 Longitudinal Dynamics

20



LIPIST
Widerée linac (not yet using a cavity) ===

A
A~ pPA=v— = ? = o[’ = Distance that particle travels during 1 RF cycle

SCHEE D I3
0 ’ }

Wideroe

« Time-varying electric field is applied through transmission lines. The electrical charges are
actually travelling from one tube to the next by passing through the RF generator.

 The RF phase changes by 180° (11-mode), while the particles travel from one tube to the
next.

« When using low frequencies, the length of the drift tubes becomes prohibitive for high-
energy particles.

« When using high frequencies, the drift tubes would act more like antennas and radiate
energy instead of using it for acceleration.

Moses Chung | Lecture 4 Longitudinal Dynamics 21
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Alvarez drift tube linac (inside a cavity) R

| l | | | Length of the tube is increasing

P @ G__—'D c
Drift tubes

Alvarez

l%ﬁ/\:fué
c

v
= ? = 01" = Distance that particle travels during 1 RF cycle

« The RF power is inductively coupled through a transformer consisting of a one turn primary
inserted through the wall of the resonant tank containing the drift tubes.

«  While the electric fields point in the “wrong direction” the particles are shielded by the drift
tubes.

 The RF phases are same (0-mode), while the particles travel from one tube to the next.
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Conditions for RF Acceleration

The wave must have an electric field component along the direction of particle motion.

E|#0

— This condition is not satisfied by EM waves in free space, but can be satisfied by a transverse
magnetic (TM) wave propagating in a uniform waveguide.

For a sustained energy transfer and an efficient particle acceleration, the phase velocity of
the wave must be closely matched to the beam velocity.

Uph RV < C

— This condition is not satisfied for a uniform waveguide, because the phase velocity v,, > c.
— In periodically-loaded waveguide, reflections from the loading elements reduce the phase velocity.

The distance between accelerating gaps (1) is proportional to particle velocity.

_ . / o _ n=2: n-mode
— Here, we neglect the increase in f inside the waveguide structure. n=1: 0-mode

Moses Chung | Lecture 4 Longitudinal Dynamics 23
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Waveguides and Cavities

(Sec. 5.2 and Sec. 5.3 of UP-ALP)
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Plane waves in free space @~ =

* For free space (no boundary):

E(r,t) = Re [Eoe“k'r—wﬂ} . B(r,1) = Re [Boei(k'r_“ﬂ

* Phase velocity:

w w 1
:C:

K NCRENTEN V0

« Consequences of Maxwell equations:

Uph =

V-E=0 — k-E=0, V.B=0 — k-B=0

VxE=iwB — kxE=uwB, VxB=—ivqB —kxB=——F
C

S=P=(ExB)/ug=ExH

Elk Blk E LB, E=cB
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Boundary conditions at conducting surfaces e

On the surface of a perfect conductor, the tangential component of an electric field and the
normal component of a maanetic field will vanish.

— 1
:-» E(t) 4 B
T By =0 T, By =0
A non-ideal surface has a finite conductivity:
o 2 1/2 o 1 dPloss o 1 1 2
°= (ucwa> - Vrfpopro’ da 2 90 [Kea
=Rgsurf

JZOEC, chf:/ deIﬂXHH
0

(See Lecture 1)
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Group velocity e

« Interference between two continuous waves slightly different frequencies and
wavenumbers:

E = FEi+E,

Egsin [(k + dk)r — (w + dw)t] + Egsin [(k — dk)z — (w — dw)t]
2Ey sin[kx — wt| cos|dk © — dw ]

= 2Eyf1(x,t) fo(z,t) FIGURE 5.14

Two-wave interference.

« Phase velocity: by requesting the convective derivative of f; to be equal to zero

(9 0 o dfy)/ot w
V= (m +“pax> T

« Group velocity: by requesting the convective derivative of f, to be equal to zero

_(9,, 2 L _Oh(w /ot dw
O_<8t+ug(9m>f2_>ug_ (9f‘2(:£,t)/(‘)x_dk




Dispersion for a waveguide (Qualitative)

AL a A2 <a, or A\.=2a

w = ck We =Ck, =c— = c—

NS’
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

If the wavelength of an EM wave in free space is When half of a wavelength in free space equals the
much shorter than the transverse size a of the waveguide transverse size, that is the longest wavelength
waveguide then the waveguide does not matter. for which the boundary conditions at a perfectly conducting

surface of the waveguide can still be satisfied.

b wic / wie=k
®
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TM Mode Solution in Circular Waveguide

From conducting boundary, electromagnetic wave can be transformed into TM (Magnetic
field is Transverse to z) mode.

TM fields can be found from one vector component of the magnetic vector potential (note
that V- A # 0, i.e. using Lorentz gauge) :

A=A,z
9, 1 0%2A 1 ¢

Helmholtz wave equation In cylindrical coordinates:

( 92 10 1 0? 0>

g 29,0 A, +k2A, =0
6M2+p8p+iﬂﬁ¢f+3ﬁ> T

EEEEEEEEEEEEEEEEEEEE

Separation of variables with arbitrary constant C (complex in general):
A, =C x Jp(kyp) Cos(mqﬁ)eiikgz

2 2 _ 1.2
K2+ kE = k2

d? 1 d ( m?
— + -+ H——erk =0
[dp? pdp r P (o)



UNsST
TM Mode Solution in Circular Waveguide R

 Field components can be expressed by A, alone:

1 0A., 0A,
B=-VxA — B,=-222 p -_%= p _|
T p o Y dp
. . 4B . 9B
E=— VxB — E,=—— 9By Ey=+— B,
WLOEQ wio€ey 0z wioey 0z
. . 82AZ .
B.= " [Vx(VxA), — B, =" VAL = L k2A,
W€ whpeg | 022 wpo€eo

« Boundary conditions:

Ey(p=a)=E.(p=a)=B,(p=0a)=0
xmn wC
a
—  Xmn . N-th zero of the Bessel function of order m. (e.g., xo; = 2.405)

« Dispersion relation for guide propagation constant and wavelength:

2 2 2
2 g2 42 0w (27 We
kg_kO kp 62_()\9) +02
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m=0, n=1

B & E change
their signs

. - .

. - '
2
-

Yy
A A




NS
Dispersion for a waveguide (Quantitative) R

« There is a “cut-off frequency”, below
which a wave will not propagate. It
depends on dimensions.

» At each excitation frequency is associated
a phase velocity w/k,, , the velocity at
which a certain phase travels in the
waveguide.

« Energy (and information) travel at group
velocity dw/dkg4, which is between 0 and
c. This velocity has respect the relativity
principle!

« Synchronism with RF (necessary for
acceleration) is impossible because a
particle would have to travel at v = v, >
c!

« To use the waveguide to accelerate

particles, we need a “trick” to slow down
the wave.
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Meaning of v,,;, > ¢

An EM wave with an oblique incidence on a conducting plane: Incident and reflected
waves are combined in suchaway that F,=FE,=0, B, =B, =0

incident wave

reflected wave

~ _—
-

T
P

~ N

>

0 o
NN N NN NSNS NANN

AANNNNNNANSN

A

ol 4
Let’s consider the z direction.
Standing wave structure in the x direction: Travelling wave structure
Integer number of half-wave length in the z direction:
), n between the walls
% \ c > 3
% - ; > C / Y
‘///I/,,” SO SSSSXYXS ANAYAN ANANANANANA
X
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Iris(Disk)-Loaded Waveguide @~ ==

In order to slow down the waves in simple waveguide, we introduce some
periodic obstacles. Iris acts as a scatter, resulting in a transmitted as well as a
reflected wave. I ;

1

2a !

- 11 - II-1l IFf--> Beam

2b

>

S

A

l Axial length of the cavity

The complicated boundary conditions cannot be satisfied by a single mode, but
by a whole spectrum of space harmonics.

From Chap.3.11 of Wangler’s textbook [RF Linear Accelerators]:

2.405
w=— C\/l + k[l — cos(kpl)e=h]
4a* 2.405 27N
= 1 ~ kn — kz
" s eansel S YN T T



Brillouin Diagram e

Vph =C
- - reflected wave
~ N\ n=1
~ .
direct wave
| k
n
T T T T Y T T T -
¢r 3 T 0 = R 3z 2%
L 2L L 2L 2L L 2L L

For a given mode, there is a limited passband of possible frequencies; at both
ends of the passband, the group velocity is 0.

For a given frequency, there is an infinite series of space harmonics (—oo < n <
+ o). All space harmonics have the same group velocity, but different v,,.

The directed (reflected) wave are characterized by v, > 0 (v, < 0), i.e., the EM
energy flows in the +z (—z) direction.

At the end of the waveguide, the EM energy can either be dissipated into a
matched load (travelling-wave structure) or be reflected back and forth by
shortening end walls (standing-wave structure) - Energy can also be
transferred to a particle beam from an standing wave in an RF cavity (next
topic).
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TM Mode of Pillbox Cavity @ =

 We simply superpose two waves in a circular waveguide, one propagating in the
positive z direction and the other propagating in the negative z.

A, = C x Jp(k,p) cos(me) (eTs* 4 e_ikgz) = 2C x Jp(k,p) cos(me) cos(kyz)

p

(1>

« Additional boundary conditions atz =0 and z = L:

E,(z=0)=Ey(z2=0)=FE,(2=L)=FE4(z2=L)=0
E, Es xsin(kyz) — kL =prm (p=0,1,2,--+)

« Dispersion relation: discrete resonance frequency (it was continuous for WG)

w? Tom \ 2 T 2
2 (=) ()
c a L
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[ Exam P [ e] ™ 010 Mode T

« Simplest and lowest frequency mode: TM, ., = TM4,

2.405 2.405¢
k, = s W=wWoip = ——

» EXxplicit expression for fields:
. —iwt o -li) —iwt
E. =EyJo(k,p)e ", By = —27J1(kpp)e

Phase difference

A
o G sy 1 E 1E B !
= = = e o o o o o o o o o e e r : |
c - |
e e e e e A r - !
b b b — = =
‘‘‘‘‘‘‘‘‘‘ =t ( 04 F 045 !
[ @ “r e \
q OO O ¢} E e |
““““““““ POO0000000000000 0.2 021 !
DOOO0OO00000000000 £ - |
o bttt POOOO0O0000000000 C L L I I I L
--------------- POOOOOOOOOOO0O0O0O (a) 0 0.5 1 1.5 2 wrlc  (b) O 0.5 1 1.5 2 wrlc
POOO0O0O0O0OOO00O000O0
i —————r——p pbooo0COOOODO0OCOC0ODOD0OO0OO0O0
poooooooo0o90O0O0O0OO0CO0
iy p o o o o 2 9 5 9 8 9 0 0 0 0
>

Z
electric fields magnetic fields
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Cavity Parameters: Transit Time Factor R

We suppose that the field is symmetric about z = 0, and confined within an axial
distance L containing the gap, in which velocity change is small.

h
27z E(rz)
trws =2rf— === B
w " ﬂfﬂc 6}\ i ir a
| | o | |
) - '
At t =0, the particle arrives atlz =0 I .y i } r=0
| | | :
le——g—> | Leak into the beam pipe
— [ pip
L2 | L2 L2 I | L2
L/2
AW =gq E(0, z) cos(wt + ws)dz = qVuT cos g
—L/2
where
L/2 fL/Q E(0, z) cos(wt)dz fL/Q E(0, z) cos(2mz/BN)dz
Vo :/ B(0,2)dz = By, T = L2 L2
—L/2 VO VO

Accelerating voltage and gradient: Effect of transit time factor (T) is included.

VCLCC
L

Vacc — V0T7 EOT [MV/HI} —
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Cavity Parameters: Transit Time Factor R

Physical meaning: ratio of the energy gained in the time-varying RF field to that
in a DC field of voltage V,cos(¢y).

Thus, T is a measure of the reduction in the energy gain caused by the
sinusoidal time variation of the field in the gap.

Ex] A simple TM,,, pillbox cavity of length g:

sin(mwg/BA
E(07 Z) — g — COTLSt., T = ( / )
mg/BA
E(2)
A
If g/BAN—0 1§
= E,
g
g — 0 very short gap 0.8
BN = wl/c ~ 06
= T,y ‘
— oo very fast transit 0.4 f
0 /2
0.2 7
[ |
= 1.5 2
-0.2 b
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Cavity Parameters: Quality Factor

The quality factor Q describes the bandwidth of a resonator and is defined as the
ratio of the reactive power (stored energy) to the real power that is dissipated in

the cavity walls.

A

Power

Amplitude (dB)

Ex] For SC cavities, Q ~ 101°~10%1. Why so high ?

Y

1
f, f, f2 Frequency (Hz)

» Filling/Decay time of a cavity: Narrow freq. response = Long time response

d 2
AU wU LU () = Upe 27, 7= 2Q

Pd - dt Q ' wo
If the cavity is connected with a power coupler, some power will leak out though
the coupler and be dissipated through the external load/waveguide.

L WOU o on
Qext — Pe:ct7 Qloaded — Pext +Pcav




Resonant Circuit

ULSAN NATIONAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

« A parallel resonant circuit driven by a current generator is the simplest model for describing
a single mode of an accelerating cavity (damped driven oscillator).

circutt __
R =

+ C

)

Zin
(a)
| Z, ()] A 1
_ 1 w 20 Ao
Py = §VI = §Zin|[ | = Maximum

R

0.707R
| -
0 1 w/w,

I(t) = Lyl V(t) = Vel “t?)

Real amplitude

v 1 1%
I(t):CE+—/th+—

L R
Vi) = (£ + - 4 juc B ()
“\RrR " jur ¥
:Zn

Resonance frequency:
wo = 1/VLC
Stored energy at resonance (U,,, = U,):
U=CV3E/2=L|IL|*/2
Dissipated power:
P;=VZ/2R

Quality factor:
Q = wOU/Pd = MQRC = R/OJ()L
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UNsST
Cavity Parameters: Shunt Impedance R

Shunt impedance: A figure of merit that measures the effectiveness of producing
an axial voltage V,, for a given power dissipated P,. Dont be confused with surface resistance

V02 Pd X Rsur.f

Including the transit time factor, we define effective shunt impedance:

Reff — w

Py
Be careful ! Accelerator community uses different definition of the shunt

im nce.
pedance Vg

2P,

citrcutt __
R =

R-over-Q: the ratio of R to Q (quality factor), which measures the efficiency of
acceleration per unit stored energy U at a given frequency.

-2

Q wU

— A single geometric quantity given in Ohms.
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Cavity Parameters: Maximum Achievable Gradient™

Empirically derived around 1950, the Kilpatrick limit expresses the relation between the
accelerating frequency and maximum achievable accelerating field of any normal

conducting cavity:

After improving surface quality and cleanness to avoid RF breakdown, a considerable
increase of achievable accelerating gradients has been made. In particular, Wang and
Loew’s empirical formula, devised in 1997, suggests the following behaviors:

E[MV/m] = 220 f[GHz]'/?

E(MV/m)
1000 )
/ It was observed that at higher (multi-tens of
100 GHz) frequency regimes, the maximum
gradients appear to be rather independent of
the frequency.
10
1
0.001 0.01 0.1 1 10
FIGURE 5.25 f(GHz)
Breakdown Kilpatrick limit (lower curve) and Wang-Loew limit
(upper curve).
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Longitudinal Dynamics:
Qualitative Picture

(Sec. 5.5 of UP-ALP)



UrisT
Acceleration in RF Structure @ = uewEm

« Standing wave: The particle bunch in a standing wave observes the electric field with a
varying function of time as

ct=A/2

E, = Eqycos(wt + pg) sin(kz) E. c c

-

>Z

« Travelling wave: The particles in an appropriately synchronized travelling wave experience
a constant electric field

E, = Eycos(wt — kz) = Eg cos(ps) E. c

IAWAWAS
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NiST
Comments on the Standing Wave Structure e

These standing wave modes are generated by the sum of 2 traveling waves in opposite
directions.

Since only the forward wave can accelerate the beam, the shunt impedance (effectiveness
of producing axial voltage for a given power dissipated) is 72 of that of the travelling wave
structure.

The standing wave could accelerate oppositely charged beams traveling in opposite
directions.

0 VAN
e [\ 1\ 2 AWAN
VAAVARVER Zav

T/4 /\ /\ ‘. e ol

aze _/\ N\ X\ 4
WV W W N

T/2

BT/B/\ /\ /\
177

Time standing wave wave components
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Comments on the Travelling Wave Structure

« If you consider the particle evolution in the RF cavity turn by turn, the equation of the
motion is similar to the case with the travelling wave.

Bunch arrives at the cavity after 10 RF cycles

R

]

n

|

1\

[

—
|

n

[

|

T

|

(|

N

)

0.5 - !
o

— 1.0

Uy

|

U

U

U

U

U

!

U

O

4
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Angle corresponds to 1

Trey = R ¢ or wyp = hwrey

2

RF cycle

1o

h = harmonic number ~ number of bunches in the synchrotron
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Longitudinal Dynamics in a Synchrotron ==

Vie

|

SHO-like oscillation near the
synchronous phase

Separatrix

Below transition

Y

&\—'—/ go)

Above transition




UNsST
Longitudinal Dynamics in a Synchrotron R

* Nonlinearity - Filamentation of the phase space - Longitudinal emittance growth

 Fast acceleration VS adiabatic acceleration: Golf-club like RF bucket




LINiST
Synchrotron Tune and Betatron Tune R

Tune: Number of oscillations per one period the machine (one revolution for the circular
machine). It is denoted either by Q or v.

Synchrotron tune:
T?”&’U
Qs <1

- 27 Jwg
Betatron tune: Phase advance
TT’@U
21 /wg 27

\MAAnAAAARAD.
AR

Trev 6 Trev b Trev é Trev o +ds Q-bs Sidebands

x ~ sin(wpt) [1 + Asin(wst)] ~ sin(27Qt/Tyey) [1 + Asin(20Qst/Trey )]
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Longitudinal Dynamics:
Hamiltonian Approach

(Sec. 4.2 of FOBP)



Phase Convention

Using arrival time:
1.0FT |..'___'_ I"‘I-u.\l LA AL L R B B L T
@ late \\
ol ;’ Synchronouéxxx
[/ Earl Y
[/ ’ Y
0oL .
Below transition ""a.\ /
—05F
.-";"
///
-1k L M.-\_._T |/. - L
L] 1 1 3 1]
Using axial distance:
1.0F T ',--—'--L_ T T T T
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'Q\
osf L @
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risT
Acceleration in TravelingWave %

Longitudinal electric field associated with a single travelling wave can be derived from a
vector potential with only a longitudinal component:

Eq
k.(z — vyt
Fvg cos[kz(z — vgt)] L
Uy = Uph = 7~
0A,

ot

A (z —vpt) = —

=~
I\

E.(z —vyt) = — = Fysinlk,(z — vst)]

Only considering longitudinal motion, Hamiltonian with the vector potential can be written
as

2
qF
H = \/( z,e T kzv(; coslk,(z — Uﬁbt)]) c? + (moc?)? Eq. (4.8)

= p.(mechanical)
Equations of motion:

dz  O0H p,C?
dt  Opze  \/p2c? + (moc?)?

:'UZ

= ’Ym002

dp... ~ OH  p.c®(qEo/vy)sin[k.(z —vst)]  qEou: sinlk. (= — vot)] This is for the
dt 0z VP2 + (moc?)? vy & ¢ canonical momentum
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Acceleration In Travelling Wave

« The equation of motion for the mechanical momentum can be recovered using

_qko
kzv¢

Dze =Pz + qu = Dz COSU{?Z<Z - U¢t>]

dpz dpz,c dAz dpz,c laAz aAz
— N — — q

dt dt 9 dt dt ot + v, 8 ] = qkEp Sln[kz(z — U¢t)]

Total time derivative at the particle position
= sum of the partial and the convective derivatives

* The main problem of the Hamiltonian given in Eq. (4.8) is that it is not a constant of
motion, as its partial time derivative does not vanish.

dH OH
o o 70

— In order to make phase plane plots of the longitudinal motion, we must convert the form of the
Hamiltonian to one in which it is constant in time.

— This is done by use of a canonical transformation. (See slides for Lecture 1)
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UNsST
[Review] Canonical Transformation R

The variation of the action integral between two fixed endpoints:
tQ t2
5/ Ldt:5/ p-q—H(q,p,t)] dt =0
t1 ty

We would like to transform from the old coordinate system (q, p) to a new
system (Q, P) with a new Hamiltonian K(Q, P, t):

to
3 [ 1PQ-K(@QP.) d =0
ty

One way for both vibrational integral equalities to be satisfied is to have

. : dF
If A # 1, it is extended canonical transformation. If A #= 1 and % = 0, it is scale

transformation. These transformations do not preserve phase space volume



[Review] Generating Function = =

« The function F is in general a function of both the old and new variables as well
as the time. We will restrict ourselves to functions that contain half of the old
variables and half the new; these are useful for determining the explicit form of
the transformation.

Case 1: F = Fi(qQ,1) p¢=+%—2, P’i:_ggli
Case 2 F'=F)(q,P,t)-Q-P pi:‘f'%z?, Qi:—?-g};?
Case 3: F=F(Q,p,t)+q-p qiz—gi;? P@:—ggi
Case 4 F=Fi(p,P.t)+q-p—Q-P Qi:_?;;ja QZ-:Jrg];j

* In all cases, new Hamiltonian and equations of motion become:

OF; dQ; 0K dP; 0K
K — H = —
* ot dt or;" dt 0Q;




UNsST
[Review] An Example of the Generation Function =

* For F; we will show

p-a—H(a,p,t) =P Q- K(QP,1)+—-
 Proof:
dr’ _ aFS (9F3 . (9F3 ) .
E N ot +Z 8@@ QZ+ apz Di t +4ipi + Pigi
L g —~—
=—P; =—q
OF . _ _ .
- 5—;+Z<_PiQi—%+%+piqi>
OF3 .
p— —_P . A
By Q+p-q
Therefore
F ) I

ot dt
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Generation Function of Type 2 T

Old variables are (z,p...) and the new variables are (¢, p¢.c)

If we introduce a type 2 generating function as Fs(2,pcc,t) = (2 — vyt)pc e , from the
canonical transformation,

B OB
bi = g, Pz.c = 9. Pc¢,c
8F2 8F2
@i=+5p O Ppe. TV
Then the new Hamiltonian becomes
~ F.
K(or H) = H + % = H — vypc.c
f{(gapg,c) — H(CvpC,c) — UVpPCc
qF ?
= (Pc,c t UO COS[M]) ¢ + (moc?)? — vgpc.e Eq. (4.13)
zU¢

- ltis clear that the new Hamiltonian is in fact a constant of the motion
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New Equations of Motion e

The equations of motion derived from the new Hamiltonian are thus

d¢ oH Pec + (qEo/k;vy)cos[k ] P
= = _ —Vy = ——— =V, =V, =V,
dt  pse y Mg ¥y
q S E (4.14)
P .c qrovz . f
= - = sin[k; . 4.15
T T ) sinfkz(¢)] (4.15)

More convenient form: Once we find the correct Hamiltonian and corresponding equations
of motions, we can revert Eq. (4.13) to the mechanical description. It is more convenient to
visualize the motion of the charged particle in the longitudinal phase space ({,p; = ymov,)

= Pz
~ 7
H(.p:) = \/pgfz + (moc?)? — vyps + ; cos[k;¢]. (4.17)
In the normalized form:
ﬁI 2
7 = (B:v)=+ 1 — ByB:v + ayf coslk L]
mpc
f}'E '.V! See Eq. (2.29): the ratio of the maximum spatial rate
o = 0 — max of change of the normalized particle energy to the
: k~?ﬂ[}f2 k- maximum spatial rate of change of the particle’s

phase in the wave
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Violent Accelerating System (a, r = 1) R

Violent acceleration: Particle can gain more than one unit of rest energy by remaining in
synchronism with the wave for a radian or less of spatial propagation.

A A
ﬁf& [1/m ] <ch2> /Az —nﬁgc‘é) Energy gain in the unit of rest energy
afr' — - — — . . . h :
f= k.[1/m] 21 /A (2mr/A\)Az  Spatial propagation in the unit of radian
Qo f > 1

Also we assume that the phase velocity of the wave reaches its ultra-relativistic limit. If the
vy is chosen to be noticeably less than c, the particles can accelerate past this phase

velocity, and eventually outrun the wave to the point where they may enter a decelerating
phase.

Ve ~ C
With these approximations,

H
=/ 241 — ¢ cos[k, 4.18
o2 (Bzy)? + 1 = ByBzy + apf cos[kzC ], (4.18)

B2
(B:7)? + 1= 2 +l=v7-B7=

~ 2 7 1 - Mz
H(_&'a[’(:) = moc“[y — B;y +oaus coslk; ¢ 1] = mopc” |:1.f ng + ayf COSU‘EC]:| .

(4.20)




UNisT
Violent Accelerating System (s = 1) R

To visualize the dynamics of the accelerating process in the phase plane, we define a new
parameter

1+ B, { S

1 -7, B.=1,  x~

Final phase: g7, v - ¢ = vy,
—r— / —— —T T 1717 no further phase slippage

Contours of constant H with ., = 1:

<Y
10! jj | Phase slippage
10° —= / — X = 1 line
- z H = moc®[1 + oy cos(yp)].
(! Not allowed Initial phase:{ ¢,
—[} 4 —D 3 0.0 0.2 0.4

¢ < 0 decelerating k.l2n @ >0 accelerating

Bottom left case in slide 52
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Gentle Accelerating Systems (a, < 1)

For heavy particles (proton, heavy ions), one always finds a, «< 1. For these gentle

WrisT

ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

accelerating systems, the energy gain over a wavelength of the acceleration is much less

than the rest mass.

The motion in these systems is characterized by simple harmonic motion near the stable

fixed point.

The design (reference) momentum is given by

Po = Yomoto =

mopvUo mov(p

= YoV

V1= (vo/c)?

T T (vfo?

— Particle is resonant with the phase velocity of the wave

Expanding up to second order in dp = p¢ — po

e/ (Bp+ po)? + (m3e?)

~Y

c\/5p2 + 20ppo + pE + m3c = c\/pE + m%cQ\/l -

’)/QTYL()C2

%moé‘2

14

op? + 20ppo
e

1 0p2 + 25ppo

1 [/ 6p? + 25ppo 2
2 p3 + m3c? 8 \ pg +mic?
16p? +20ppy 1 Op°pi 9 op?
— —_ - = ,0C [ (5
2 Emic? 2 (v2m3c?)? Y0moC” + vodp 2v3my
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Gentle Accelerating Systems (a,r < 1) R
« We have the following expression
3 2.2 2\ qEo .
H(.pe) = \/pgc + (moc=)= — vppr + . coslk:¢]. (4.17)
2 2 2 @ ~ 2 8})' qEO
Yomoc” —vopo = YoMoCT — YMovy H(c,8p ) = yomoc™ 4+ vodp + — —Vo(po + dp) + —— cos(k;¢)
2 vh 2y5mo k;
= Yomoc (1 - C—2>
o moc? 5p? qEo
— = +—+ cos(k;¢). (4.26)
o Yo 2y, mo k-,

« The addition and subtraction of constants in the Hamiltonian have no effect on the form of
the phase plane curves, or on the derived equations of motion.

2
H(¢.8p ) = (moc?) {;}0 5 (8p%) + arelcos(k;0) + 1]} . (4.27)

YoPy

— We can extract the equations of motion:

o~

OH mo(ﬂoc)2 dp ) oH

(= - op = ’ 8p = —— = ayrkomoc? sin(k.¢) = gEo sin(k-¢). 4.29
W0m v v p =7 = awkmoc? sinihet) = g sin(k0) (4.29)
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Gentle Accelerating Systems (a,r < 1) "

2

H(t.8p ) = (moc?) [ i = (3p7) + anslcos(k:¢) + 1]} . (4.27)
2]/0})0

« It can be seen that the Hamiltonian in Eq. (4.27) is of the from corresponding to a
pendulum, where the minimum potential of the pendulum is chosen as ¢,,,;, = 7

@
1
g mlnextensible KE = im(lg'o)Q
stnng
] PE = mg[l —1lcos(f)] =mgl(l —lcos(m — )]

mg [l + 1 cos(p)]



LINiS'T
Gentle Accelerating Systems (a, < 1) TR

« Phase plane trajectories showing the stable region (bucket) of vibrational motion, bounded
by a separatrix:

Unbounded orbit Stable fixed point :
(liberational motion) (¢ = k.C,8p) = (7,0)

0.03 —————————————1-

\Q%/
Unstable fixed point :

3/ Bounded orbit
: (vibrational motion)

)
(@)

9

0.01
(‘1‘9 = k.¢, 5]7) = ( )
0.00

) L& (= kG dp) = (2m,0)
ool \\% 5

_0'03 [ " " " 1 1 1 1 1 " " 1 1 1 " " 1 " 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0

k(2T
z&

/ Unstable fixed point :

oplpg

«  Motion along the constant H curves:

For ép > 0 — towards positive ¢

For ép < 0 — towards negative (
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Gentle Accelerating Systems (a, < 1) "

The equation for the separatrix:

~ 2 ~
(G 00) = (moc®) | 522 03) + 0 leos(hcd) + 1| = F1(0.0) = 20, pmoc?

8 D 1 4‘ f . k?’
Psb — 4 Parroll = costkd)] = + | —10 Gy (—5) @430
Po Bo By 2

The peak momentum offset encountered in the bucket occurs at k,{ = .

3P max — 4 Ao vo
Po Bj

Since the particles are moderately relativistic (y,is not many orders of magnitude larger

than unity) and . < 1, we note that
Ao 0
= <1
\' 3

The area of the stable phase plane ({, 6p): Bucket area

4av, 2m/ks 16 a,
Ay =20y [0 [ sin(ha/2)ag = S0 [0
5() 0 z 50

‘ (Spmax
Po




LINiST
Gentle Accelerating Systems (a, < 1) "

« Even though this large amplitude motion (with its nonlinear characteristics) is unfamiliar,

the small amplitude motion about the stable fixed point is quite familiar. If we expand the
Hamiltonian near this point, we have

8¢ =C —n/k,
cos(k,(C) = coslk,(6C + w/k,)] = — cos[k.d(] ~ —1 + %(kz5g)2
ot (k:87)°

H(,8p) = (moc?) b 0 _(ap?) 4 S0 | (4.34)
2005 2

» This small amplitude Hamiltonian can be used to obtain the simple harmonic oscillator
equation:

OH moc? B3 op oOH
op =

6C = = , O0p = ——— = —mocoy k28
=060~ o P N P e e ke
. (k)2
5 4 o :f) 5¢ = 0. (4.35)
Y0

« Equation (4.35) gives solution termed synchrotron oscillations, that are harmonic with the
synchrotron frequency:

I T N LT The synchrotron frequency is
w, =k |—= |——.
Vo Vv Bo much smaller than the

frequency of the wave
K1
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The Moving Bucket

WrisT
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For the gentle accelerating system, stable buckets do not allow significant acceleration.

By slowly increasing the design velocity (or synchronous velocity) vy, we can make on
average all of the particles in the moving bucket gain energy.
«— Changing phase
dvg  1dvy  Fi(z)  qEo(z)sin(po(2)) different from 7
dz % dt ’ygmovo N vgmovo

— Here, v, is no longer constant in space.

To satisfy the synchronous condition, vo(z) = vg = )
— The accelerating frequency is held constant, but the spatial periodicity is changing.
— So k,(z) is a decreasing function of distance.

[Note] Currently, we're discussing the case in the linac. In circular accelerators, where the
periodicity in space (set by the circumference of the accelerator) is constant, the
synchronous velocity, vy(t) = w(t)/k, is raised by increasing the frequency of the applied
accelerating field in a localized accelerating structure
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The Movi ng Bucket

The acceleration of the synchronous particle means that the entire reference frame is
accelerated in the forward direction. This yields an effective uniform force in the reverse
direction (like the force one feels in an accelerating vehicle; inertial force),

F.crr = —qEosin(pp)

This force can be included in a new Hamiltonian as an accelerating potential:

. B2 .
H(Ca 6p) - (mOC2) 0 5 (6}7)2 + Qg [COS(kZC) + szSHl(SOO) + 1]
290p5
Effective potential
: OH ) ; ) ; } }
op = ~ac = moc o,k sin(k.() — moc o, pk, sin(ypo) = qEp sin(k.C) — ¢Eo sin(po)
, . Effective force
Plots of the effective potential:
20FET \ ' ' ' ' ' T ' ' ' ' ' /'/ ' /
\.\_\1 / sof /
Lo \ /
Ngo=7 / T p0=28 T o =2 ’
0.5 M / . S Y, //
N, / \\ 7
N T B T OBy



The Moving Bucket

NS
........................
nnnnnnnnnnnnnnnnnnnn

« The derivative of the effective potential with respect to k,{ gives two fixed points.

—sin(k,() +sin(pg) =0 — k. { =¢o or k,(=m— ¢q

dyalprg ()

L =183

1—5 H]R J- . .
= \_\\ Turning point

Separalnix energy
I

R J ok

08 1.0 LD

PR e p——

L (.4 L) (HR 1.4}

kS 2n

-

Equation for the separatrix:  H(k.( =7 — ¢g,6p = 0) = . pmoc?[1 — cos(go) + (7 — o) sin(g)]

Phase at the turning point:  cos(@iurn) + @eurn sin(po) = 1 — cos(po) + (7 — o) sin(wo)
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The Moving Bucket = %

The fixed point at ¢, has stable synchrotron oscillations about it. Using the following
expansion in the Hamiltonian,

5C:C—<100/kz

cos(k,0C + o) + (k.0C + ¢o) sin(pg) = cos(k,dC) cos(pg) — SW@())
+ sin(ko86 ST (o) + 0 sin(o)

A new simple harmonic oscillator Constant term
o app(k.c)?
6C — —-fgg ) cos(0)6¢ =0
0

with smaller value of the synchronous frequency for 7/2 <@g <=

Qo f w
Wg = 4 [ —=-|COs(pg)| X —
\/’YS | (20)] Bo
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Acceleration in Circular Machines

To reuse the RF cavity in the accelerating process many times:

Harmonic number
I"fu..sl.ﬂ:.

,h_r w = RF frequency = hw.

_F____-'—'-_‘ L-I e T_"\-
—~
é NE
~ ~_ R | l '
\'-\.‘_“_ --\-—-‘"-_\_-_“_ﬂjﬂ_,r’j
o — — w. = Circulation or revolution frequency
Diesign orbit

Longitudinal stability or phase-focusing is provided by use of the time varying fields inside
the cavity.

I o | - Looking at the motion at only on position in the ring (i.e.,
Her N RF cavity with negligible length):

osf / N Vosin(k,z — wt) — —Vj sin(wt)
. Travelling wave Standing wave
: “x._x JSpo =T 1 - We postulate the existence of a particle on the design
s\ / ] orbit, with constant design velocity vy = Rw,, and with
' / ] constant phase ¢, = m as in the case of stationary

N S 3 bucket in the linac (assuming no net energy gain/loss).

e T T Rl T
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Acceleration in Circular Machines
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We construct the dynamics “turn by turn”. The energy of a particle after its (n+1) traversal
of the RF cavity is related to its energy on the previous turn by

U1 = 06U, — ¢Vysin(wT, + 7) = 0U,, + ¢V sin(wT,)

— where 7 is the time of arrival of the particle at the RF cavity with respect to the arrival of the design

particle,

— and, 8U = U — U, is the difference in particle energy from the design value.

From the definition of the phase slip factor (slide 10 of Lecture 4)

o { 1 ] op op
— e~ | — =N _
to Y01 Po Po Set of difference
equations
2 4] 10U
tg = i Turn-by-Turn revolution time, o _ —5 T
We Po 6() UO
We examine the change in time of arrival “turn by turn”.
Opn 270, Oy, 27, 0U,
Tntl = Tn +0Tp = Ty + lonr—— = - = :
- Po We  Po w53 Uy
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Acceleration in Circular Machines

The difference equations can be understood by viewing them as numerically equivalent to
the differential equations.

d(5U) o U,,,_;_l — Un AU o qw(;VO .

= lim = lim sin(w
dt to—0 to to—0 1 21 ( T)
d — A -
Y i LT T g 27— 2 U
dt to—0 to to—0 T BOU()

— We assume that the changes in the variables are not too significant in one turn,

The second order differential equation derived from the above expressions is

Pt nrweqVh
dt2  2mBaUy

sin(wr) = 0

Assuming an energy below transition, and expanding near t = 0,

Pt |0 lhw?qVy

=0
dt? 27’(’5(2)(]0

For the small amplitude oscillation, the synchrotron frequency and tune are
Validity for approximating the
difference equations to

17 |hq Vo Ws 11 hagVo
Ws = We o _ 027171 ° Vg = — = 7<<1
\/ ZWﬁgUo We. QWBSUO
differential equations
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