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Off-Momentum Effects 

 

(Dispersion, Momentum compaction, and Chromaticity)  



[Review] 
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• Equation of motion in the horizontal direction with correct momentum:  

Vertical: direction of dipole magnet field 

Horizontal: deviation away from the design 
orbit Design orbit 

From dipole components From quadrupole components Magnetic rigidity 



Dispersion (𝜼 or D) 
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• Change in the design orbit for the off-momentum particle: 
 
 
 
 
 
 

• In Lecture 2, we used the following force balance equation for constant 𝑣0: 
 
 
 
 

 Now we allow 𝑣 to be deviated from 𝑣0 
 
 
 
 
 
 
 
 

 

𝜂𝑥𝛿𝑝 
𝑥𝛽 

Offset in position Offset in momentum 

Path length focusing term New term caused by 𝑝 ≠ 𝑝0 



Governing equation for dispersion 
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• We can express the new force balance equation using 𝑠 as an independent variable:  
 
 
 
 
 

• With the quadrupole term included, 
 
 
 
 

• If we substitute   

1st order in position offset 1st order in momentum offset 



Solution of the dispersion equation 
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• For net horizontal focusing, the general solution is composed of homogeneous and 
particular solutions: 
 
 

 
 [Note] If there is only bending magnet (i.e., 𝐵′ = 0, no quadrupole), 

 
 
 
• If we apply matching boundary conditions at the entrance of the bend magnet (𝑠 = 0),  



Transfer matrix of dispersion 
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• In the matrix form, 
 
 
 
 
 
[Note] 
1. Even if there is no dispersion in the beginning (i.e., 𝜂𝑥 0 = 𝜂𝑥′ 0 = 0), dispersion can be created 

when the beam is transported through a bending magnet. 
2. In a straight section (𝑅0 → ∞, i.e., no bending), 

 
 
 
 

3. Even in the straight section, dispersion can exist if there is dispersion in the beginning (i.e., 
𝜂𝑥 0 ≠ 0, 𝜂𝑥′ 0 ≠ 0). 



Longitudinal coordinate 
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• The canonical dependent coordinate in the longitudinal direction is time of arrival relative to 
the design particle. 
 
 

• In the Hamiltonian analysis, it is useful to introduce a parametrization of the time through a 
spatial variable,  
 
 
 
[Note] This is the distance that must be traveled at the design velocity by the design particle, to reach 
the position of the temporally advanced (or delated) particle. 

Early particle: < 0 
  
Late particle: > 0 

Early particle: > 0 
  
Late particle: < 0 



Momentum compaction 
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• The time of flight of an off-momentum particle through travel distance 𝐿(𝑝) : 
 
 
 

• First order expansion with paraxial approximation yields 
 
 
 
 

Here we define the path length parameter (usually called, momentum compaction) as 
 
 
 
which characterizes the path length changes according to the momentum offset. We also used 

 



Phase slip factor (or time dispersion) 
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• We define so-called phase slip factor: 
 
 
 
 
 
Note that there is a certain energy (𝛾0 = 𝛾𝑡𝑡, called transition energy) at which the time dispersion 
vanishes, and all particle pass through the system in the same amount of time. 
 
 
 
 

• Below transition:  
– Particles of higher momentum pass through the system more quickly, which is the natural state of 

affairs in linear systems. 
 

• Above transition:  
– Particles of higher momentum take more time to pass the system , since the added path length of a 

higher-momentum trajectory outweighs the added advantage in velocity, which becomes 
progressively smaller as particle becomes more relativistic.  



[Example] 
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Below transition: stable 
oscillation for off crest with 
∆𝜑 < 0 

Above transition: stable 
oscillation for off crest with 
∆𝜑 > 0 

Crest 

Zero crossing 
Early particle 
(low energy) 

Synchronous  
particle 
(design energy) 

Late particle  
(high energy) 

*Convention:  
sin function for circular machines, and 
cos function for linear machines. 

Synchronous particle arrives at the same voltage 
 



Momentum compaction VS Dispersion   
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• Path length change around the circular path: 
 
 
 
 
 
 
 
 
 
 
 
 

– For a single pass system:  
 
 

– For a closed system: 

Circumference of the design orbit 



Chromaticity (or Chromatic aberration) 
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• Offsets of energy in the particles cause not only dispersion but also result in different 
focusing strengths of the magnetic elements: 

(~quadratic) 

(~linear) 

Sextupole: 
Nonlinearity 
Coupling 



6D linear transformation 
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• 6D phase space vector:  



Moses Chung | Lecture 4 Longitudinal Dynamics 15 

 
Conventional Acceleration 

 
(DC acceleration, RF acceleration: Synchrotron, Linac)  



DC Acceleration 
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[Example] Electrostatic accelerators 
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RF Acceleration 
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[Example] Synchrotron and Linac 
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Above transition case 

Lower momentum 
particle arrives earlier 

higher momentum 
particle arrives later 

Linac (Below transition) 



Local electric field (or Voltage)  
of the cavity 

Effective potential energy 

X-point or Saddle point 

RF bucket 

Synchrotron oscillation  
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Energy relative to the 
synchronous particle  

The synchronous particle is the particle that arrives 
at the RF cavity when the voltage is such that it 
exactly compensate the average energy loss   

Fig. 5.31 

Fig. 5.33 

Fig. 5.34 

𝜙𝑠 

Energy increases  
until  𝜙 = 𝜙𝑠 

Linac (Below transition) Below transition 



Wideröe linac (not yet using a cavity) 
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• Time-varying electric field is applied through transmission lines. The electrical charges are 

actually travelling from one tube to the next by passing through the RF generator. 
• The RF phase changes by 180º (π-mode), while the particles travel from one tube to the 

next. 
 

• When using low frequencies, the length of the drift tubes becomes prohibitive for high-
energy particles. 

• When using high frequencies, the drift tubes would act more like antennas and radiate 
energy instead of using it for acceleration. 

Wideröe 

+ + + - - + + - - 



Alvarez drift tube linac (inside a cavity) 
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• The RF power is inductively coupled through a transformer consisting of a one turn primary 
inserted through the wall of the resonant tank containing the drift tubes. 

• While the electric fields point in the “wrong direction” the particles are shielded by the drift 
tubes. 

• The RF phases are same (0-mode), while the particles travel from one tube to the next. 
 

Alvarez 

Length of the tube is increasing  



Conditions for RF Acceleration 
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• The wave must have an electric field component along the direction of particle motion. 
 
 

– This condition is not satisfied by EM waves in free space, but can be satisfied by a transverse 
magnetic (TM) wave propagating in a uniform waveguide. 
 
 

• For a sustained energy transfer and an efficient particle acceleration, the phase velocity of 
the wave must be closely matched to the beam velocity. 
 
 

– This condition is not satisfied for a uniform waveguide, because the phase velocity 𝑣𝑝𝑝 > 𝑐. 
– In periodically-loaded waveguide, reflections from the loading elements reduce the phase velocity.  

 
 

• The distance between accelerating gaps (𝑙) is proportional to particle velocity. 
 
 

– Here, we neglect the increase in 𝛽 inside the waveguide structure. 
 

n=2: π-mode 
n=1: 0-mode 



Moses Chung | Lecture 4 Longitudinal Dynamics 24 

 
Waveguides and Cavities 

 
(Sec. 5.2 and Sec. 5.3 of UP-ALP)  



Plane waves in free space 
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• For free space (no boundary): 
 
 

• Phase velocity: 
 
 

• Consequences of Maxwell equations: 



Boundary conditions at conducting surfaces 
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• On the surface of a perfect conductor, the tangential component of an electric field and the 
normal component of a magnetic field will vanish. 
 
 
 
 
 
 
 

• A non-ideal surface has a finite conductivity: 

(See Lecture 1) 



Group velocity 
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• Interference between two continuous waves slightly different frequencies and 
wavenumbers: 
 
 
 
 
 
 
 

• Phase velocity: by requesting the convective derivative of 𝑓1 to be equal to zero 
 
 
 

• Group velocity: by requesting the convective derivative of 𝑓2 to be equal to zero 



Dispersion for a waveguide (Qualitative) 

Moses Chung | Lecture 4 Longitudinal Dynamics 28 

If the wavelength of an EM wave in free space is 
much shorter than the transverse size a of the 

waveguide then the waveguide does not matter. 

When half of a wavelength in free space equals the 
waveguide transverse size, that is the longest wavelength 
for which the boundary conditions at a perfectly conducting 

surface of the waveguide can still be satisfied. 



TM Mode Solution in Circular Waveguide 
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• From conducting boundary, electromagnetic wave can be transformed into TM (Magnetic 
field is Transverse to 𝑧)  mode. 

• TM fields can be found from one vector component of the magnetic vector potential (note 
that 𝛻 ∙ 𝐀 ≠ 0, i.e. using Lorentz gauge) : 
 
 
 
 

• Helmholtz wave equation In cylindrical coordinates: 
 
 
 

 
• Separation of variables with arbitrary constant 𝐶 (complex in general): 



TM Mode Solution in Circular Waveguide 
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• Field components can be expressed by 𝐴𝑧 alone: 
 
 
 
 
 
 
 
 

• Boundary conditions: 
 

 
 

– 𝑥𝑚𝑚 : n-th zero of the Bessel function of order m. (e.g., 𝑥01 = 2.405)  
 

• Dispersion relation for guide propagation constant and wavelength:   



[Example] 
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m=0, n=1 m=0, n=2 

B 

E 

B 

E 

B & E change 
their signs 



Dispersion for a waveguide (Quantitative) 
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• There is a “cut-off frequency”, below 
which a wave will not propagate. It 
depends on dimensions. 

• At each excitation frequency is associated 
a phase velocity 𝜔/𝑘𝑔, , the velocity at 
which a certain phase travels in the 
waveguide. 

• Energy (and information) travel at group 
velocity 𝑑𝜔/𝑑𝑘𝑔, which is between 0 and 
𝑐. This velocity has respect the relativity 
principle! 

• Synchronism with RF (necessary for 
acceleration) is impossible because a 
particle would have to travel at 𝑣 = 𝑣𝑝𝑝 >
𝑐! 

• To use the waveguide to accelerate 
particles, we need a “trick” to slow down 
the wave.  



Meaning of 𝒗𝒑𝒑 > 𝒄  
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• An EM wave with an oblique incidence on a conducting plane: Incident and reflected 
waves are combined in such a way that  
 
 
 
 
 
 
 
 

• Let’s consider the z direction.  
Standing wave structure in the x direction: 
Integer number of half-wave length 
between the walls 

Travelling wave structure 
in the z direction: 

Speed of wave-front 



Iris(Disk)-Loaded Waveguide 
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• In order to slow down the waves in simple waveguide, we introduce some 
periodic obstacles. Iris acts as a scatter, resulting in a transmitted as well as a 
reflected wave. 
 
 
 
 
 
 

• The complicated boundary conditions cannot be satisfied by a single mode, but 
by a whole spectrum of space harmonics. 
 

• From Chap.3.11 of Wangler’s textbook [RF Linear Accelerators]: 

𝑙 Axial length of the cavity 

𝐿 



Brillouin Diagram 
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• For a given mode, there is a limited passband of possible frequencies; at both 
ends of the passband, the group velocity is 0. 

• For a given frequency, there is an infinite series of space harmonics (−∞ < 𝑛 <
+ ∞). All space harmonics have the same group velocity, but different 𝑣𝑝𝑝. 

• The directed (reflected) wave are characterized by 𝑣𝑔 > 0 (𝑣𝑔 < 0), i.e., the EM 
energy flows in the +z (−𝑧) direction. 

• At the end of the waveguide, the EM energy can either be dissipated into a 
matched load (travelling-wave structure) or be reflected back and forth by 
shortening end walls (standing-wave structure)  Energy can also be 
transferred to a particle beam from an standing wave in an RF cavity (next 
topic). 



TM Mode of Pillbox Cavity 
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• We simply superpose two waves in a circular waveguide, one propagating in the 
positive 𝑧 direction and the other propagating in the negative 𝑧.  
 
 
 
 
 
 
 

 
• Additional boundary conditions at 𝑧 = 0 and 𝑧 = 𝐿: 

 
 
 
• Dispersion relation: discrete resonance frequency (it was continuous for WG)  

𝜌 



[Example] TM010 Mode 
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• Simplest and lowest frequency mode: TMmnp = TM010 
 
 
 
 

• Explicit expression for fields: 
 
 
 

 Phase difference  



Cavity Parameters: Transit Time Factor 
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• We suppose that the field is symmetric about 𝑧 = 0, and confined within an axial 
distance 𝐿 containing the gap, in which velocity change is small. 
 
 
 
 
 
 
 
 

 where 
 
 
 
• Accelerating voltage and gradient: Effect of transit time factor (𝑇) is included. 

Leak into the beam pipe 

At t =0, the particle arrives at z = 0 



Cavity Parameters: Transit Time Factor 
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• Physical meaning: ratio of the energy gained in the time-varying RF field to that 
in a DC field of voltage 𝑉0cos (𝜑𝑠).  

• Thus, 𝑇 is a measure of the reduction in the energy gain caused by the 
sinusoidal time variation of the field in the gap. 
 

 Ex] A simple TM010 pillbox cavity of length 𝑔: 



Cavity Parameters: Quality Factor 
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• The quality factor Q describes the bandwidth of a resonator and is defined as the 
ratio of the reactive power (stored energy) to the real power that is dissipated in 
the cavity walls. 
 
 
 
 
 
 
 
 

• Filling/Decay time of a cavity: Narrow freq. response  Long time response 
 

 
• If the cavity is connected with a power coupler, some power will leak out though 

the coupler and be dissipated through the external load/waveguide. 

Ex] For SC cavities, 𝑄 ≈ 1010~1011. Why so high ? 

Power 



Resonant Circuit 
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• A parallel resonant circuit driven by a current generator is the simplest model for describing 
a single mode of an accelerating cavity (damped driven oscillator). 

– Resonance frequency: 
 

– Stored energy at resonance (𝑈𝑚 = 𝑈𝑒): 
 

– Dissipated power: 
 

– Quality factor: 
 
 

Real amplitude 



Cavity Parameters: Shunt Impedance 
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• Shunt impedance: A figure of merit that measures the effectiveness of producing 
an axial voltage 𝑉0 for a given power dissipated 𝑃𝑑. 
 
 

• Including the transit time factor, we define effective shunt impedance: 
 

 
• Be careful ! Accelerator community uses different definition of the shunt 

impedance. 
 
 
• R-over-Q: the ratio of 𝑅 to 𝑄 (quality factor), which measures the efficiency of 

acceleration per unit stored energy 𝑈 at a given frequency. 
 
 
 

– A single geometric quantity given in Ohms. 

Don’t be confused with surface resistance  



Cavity Parameters: Maximum Achievable Gradient 
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• Empirically derived around 1950, the Kilpatrick limit expresses the relation between the 
accelerating frequency and maximum achievable accelerating field of any normal 
conducting cavity: 
 

 
• After improving surface quality and cleanness to avoid RF breakdown, a considerable 

increase of achievable accelerating gradients has been made. In particular, Wang and 
Loew’s empirical formula, devised in 1997, suggests the following behaviors: 
 
 
 
 
 
 
 
 
 
 

It was observed that at higher (multi-tens of 
GHz) frequency regimes, the maximum 
gradients appear to be rather independent of 
the frequency. 
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Longitudinal Dynamics:  

Qualitative Picture 
 

(Sec. 5.5 of UP-ALP)  



Acceleration in RF Structure 
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• Standing wave: The particle bunch in a standing wave observes the electric field with a 
varying function of time as   
 
 
 
 
 
 
 
 

• Travelling wave: The particles in an appropriately synchronized travelling wave experience 
a constant electric field  



Comments on the Standing Wave Structure 
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• These standing wave modes are generated by the sum of 2 traveling waves in opposite 
directions. 

• Since only the forward wave can accelerate the beam, the shunt impedance (effectiveness 
of producing axial voltage for a given power dissipated) is ½ of that of the travelling wave 
structure.  

• The standing wave could accelerate oppositely charged beams traveling in opposite 
directions. 



Comments on the Travelling Wave Structure 
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• If you consider the particle evolution in the RF cavity turn by turn, the equation of the 
motion is similar to the case with the travelling wave.    

Bunch arrives at the cavity after 10 RF cycles 

Angle corresponds to 1  
RF cycle  



Longitudinal Dynamics in a Synchrotron 

Moses Chung | Lecture 4 Longitudinal Dynamics 48 

Below transition 

Above transition 

SHO-like oscillation near the 
synchronous phase 

𝜑 

Δ𝑊 

𝜑𝑠 



Longitudinal Dynamics in a Synchrotron 
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• Nonlinearity  Filamentation of the phase space   Longitudinal emittance growth 
 
 
 
 
 
 
 
 

• Fast acceleration VS adiabatic acceleration: Golf-club like RF bucket 



Synchrotron Tune and Betatron Tune  
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• Tune: Number of oscillations per one period the machine (one revolution for the circular 
machine). It is denoted either by 𝑄 or 𝜈.   
 

• Synchrotron tune: 
 

 
• Betatron tune: Phase advance 

Sidebands 
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Longitudinal Dynamics:  
Hamiltonian Approach   

 
(Sec. 4.2 of FOBP)  



Phase Convention 
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• Using arrival time: 
 
 
 
 
 
 
 
 
 

• Using axial distance: 

Early 

Synchronous 

Late 

E 
S 

L 

Below transition 

Above transition 

L 
S 

E 

Below transition 

L 

S 

E 

Above transition 



Acceleration in Travelling Wave 
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• Longitudinal electric field associated with a single travelling wave can be derived from a 
vector potential with only a longitudinal component: 
 
 
 
 
 
 

• Only considering longitudinal motion, Hamiltonian with the vector potential can be written 
as  
 
 

 
• Equations of motion: 

This is for the 
canonical momentum 

Eq. (4.8) 



Acceleration in Travelling Wave 
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• The equation of motion for the mechanical momentum can be recovered using 
 
 
 
 
 
 
 
 
 

• The main problem of the  Hamiltonian given in Eq. (4.8) is that it is not a constant of 
motion, as its partial time derivative does not vanish. 
 
 
 

– In order to make phase plane plots of the longitudinal motion, we must convert the form of the 
Hamiltonian to one in which it is constant in time.  

– This is done by use of a canonical transformation. (See slides for Lecture 1) 

Total time derivative at the particle position 
= sum of the partial and the convective derivatives 



[Review] Canonical Transformation 
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• The variation of the action integral between two fixed endpoints: 
 
 
 

• We would like to transform from the old coordinate system 𝐪,𝐩  to a new 
system 𝐐,𝐏  with a new Hamiltonian 𝐾(𝐐,𝐏, 𝑡): 
 
 
 

• One way for both vibrational integral equalities to be satisfied is to have  
 
 
 

• If 𝜆 ≠ 1, it is extended canonical transformation. If 𝜆 ≠ 1 and 𝑑𝑑
𝑑𝑡

= 0, it is scale 
transformation. These transformations do not preserve phase space volume 



[Review] Generating Function 
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• The function 𝐹 is in general a function of both the old and new variables as well 
as the time. We will restrict ourselves to functions that contain half of the old 
variables and half the new; these are useful for determining the explicit form of 
the transformation. 
 

Case 1: 
 
Case 2: 
 
Case 3: 
 
Case 4: 
 
 
• In all cases, new Hamiltonian and equations of motion become: 



[Review] An Example of the Generation Function 
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• For 𝐹3 we will show 
 
 

• Proof:  
 
 
 
 
 
 
 
 
 

 Therefore 



Generation Function of Type 2 
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• Old variables are              and the new variables are  
• If we introduce a type 2 generating function as                                              , from the 

canonical transformation, 
 
 
 
 
 

• Then the new Hamiltonian becomes   
 
 
 
 

 It is clear that the new Hamiltonian is in fact a constant of the motion 

Eq. (4.13) 



New Equations of Motion 
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• The equations of motion derived from the new Hamiltonian are thus 
 
 
 
 
 

 
• More convenient form: Once we find the correct Hamiltonian and corresponding equations 

of motions, we can revert Eq. (4.13) to the mechanical description. It is more convenient to 
visualize the motion of the charged particle in the longitudinal phase space  
 
 
 
 

• In the normalized form: 

See Eq. (2.29): the ratio of the maximum spatial rate 
of change of the normalized particle energy to the 
maximum spatial rate of change of the particle’s 
phase in the wave 



Violent Accelerating System (𝛼𝑡𝑟 ≥ 1) 
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• Violent acceleration: Particle can gain more than one unit of rest energy by remaining in 
synchronism with the wave for a radian or less of spatial propagation.  
 
 
 
 

 
• Also we assume that the phase velocity of the wave reaches its ultra-relativistic limit.  If the 

𝑣𝜙 is chosen to be noticeably less than 𝑐, the particles can accelerate past this phase 
velocity, and eventually outrun the wave to the point where they may enter a decelerating 
phase. 
 

• With these approximations, 



Violent Accelerating System (𝛼𝑡𝑟 ≥ 1) 
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• To visualize the dynamics of the accelerating process in the phase plane, we define a new 
parameter 
 
 

 
• Contours of constant 𝐻� with 𝛼𝑡𝑟 = 1: 

𝛽𝑧 = 0, 𝜒 = 1 
 
𝛽𝑧 = 1, 𝜒 →  ∞, 

Final phase: 𝜑𝑟 ,𝑣 → 𝑐 = 𝑣𝜙,  
                        no further phase slippage 

Initial phase:  𝜑0 

Phase slippage 

Not allowed 

Bottom left case in slide 52 



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 

Moses Chung | Lecture 4 Longitudinal Dynamics 62 

• For heavy particles (proton, heavy ions), one always finds 𝛼𝑡𝑟 ≪ 1. For these gentle 
accelerating systems, the energy gain over a wavelength of the acceleration is much less 
than the rest mass. 
 

• The motion in these systems is characterized by simple harmonic motion near the stable 
fixed point.  
 

• The design (reference) momentum is given by 
 
 
 

– Particle is resonant with the phase velocity of the wave 
 

• Expanding up to second order in   



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 
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• We have the following expression 
 
 
 
 
 
 
 
 
 
 

• The addition and subtraction of constants in the Hamiltonian have no effect on the form of 
the phase plane curves, or on the derived equations of motion. 
 
 
 

– We can extract the equations of motion: 

𝛾0 



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 
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• It can be seen that the Hamiltonian in Eq. (4.27) is of the from corresponding to a 
pendulum, where the minimum potential of the pendulum is chosen as 𝜑𝑚𝑚𝑚 = 𝜋  

𝜑 

0 < 𝜑 < 2𝜋 



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 
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• Phase plane trajectories showing the stable region (bucket) of vibrational motion, bounded 
by a separatrix: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Motion along the constant 𝐻� curves: 

Bounded orbit 
(vibrational motion) 

Unbounded orbit 
(liberational motion) 



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 
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• The equation for the separatrix: 
 
 
 
 
 
 

• The peak momentum offset encountered in the bucket occurs at 𝑘𝑧𝜁 = 𝜋. 
 
 

• Since the particles are moderately relativistic (𝛾0is not many orders of magnitude larger 
than unity) and 𝛼𝑡𝑟 ≪ 1, we note that   
 
 
 

• The area of the stable phase plane (𝜁, 𝛿𝑝): Bucket area 



Gentle Accelerating Systems (𝛼𝑡𝑟 ≪ 1) 
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• Even though this large amplitude motion (with its nonlinear characteristics) is unfamiliar, 
the small amplitude motion about the stable fixed point is quite familiar. If we expand the 
Hamiltonian near this point, we have 
 
 
 
 
 
 
 

• This small amplitude Hamiltonian can be used to obtain the simple harmonic oscillator 
equation: 
 
 
 
 

• Equation (4.35) gives solution termed synchrotron oscillations, that are harmonic with the 
synchrotron frequency: 

≪ 1 

The synchrotron frequency is 
much smaller than the 
frequency of the wave 



The Moving Bucket 
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• For the gentle accelerating system, stable buckets do not allow significant acceleration. 
 

• By slowly increasing the design velocity (or synchronous velocity) 𝑣0, we can make on 
average all of the particles in the moving bucket gain energy.  
 
 
 

– Here, 𝑣0 is no longer constant in space. 
 

• To satisfy the synchronous condition, 
 

– The accelerating frequency is held constant, but the spatial periodicity is changing.  
– So 𝑘𝑧(𝑧) is a decreasing function of distance.  

 
• [Note] Currently, we’re discussing the case in the linac. In circular accelerators, where the 

periodicity in space (set by the circumference of the accelerator) is constant, the 
synchronous velocity, 𝑣0 𝑡 = 𝜔(𝑡)/𝑘𝑧 is raised by increasing the frequency of the applied 
accelerating field in a localized accelerating structure 

Changing phase  
different from 𝜋 



The Moving Bucket 
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• The acceleration of the synchronous particle means that the entire reference frame is 
accelerated in the forward direction. This yields an effective uniform force in the reverse 
direction (like the force one feels in an accelerating vehicle; inertial force), 
 
 

• This force can be included in a new Hamiltonian as an accelerating potential: 
 
 
 
 
 
 

• Plots of the effective potential:  

Effective potential 

Effective force 



The Moving Bucket 
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• The derivative of the effective potential with respect to 𝑘𝑧𝜁 gives two fixed points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Equation for the separatrix: 
  
• Phase at the turning point:  

Turning point 



The Moving Bucket 
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• The fixed point at 𝜑0 has stable synchrotron oscillations about it. Using the following 
expansion in the Hamiltonian,  
 
 
 
 

• A new simple harmonic oscillator 
 
 

      with smaller value of the synchronous frequency for  

Constant term 



Acceleration in Circular Machines 
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• To reuse the RF cavity in the accelerating process many times: 
 
 
 
 
 
 
 
 

• Longitudinal stability or phase-focusing is provided by use of the time varying fields inside 
the cavity. 

- Looking at the motion at only on position in the ring (i.e., 
RF cavity with negligible length): 
 
 
 
 
- We postulate the existence of a particle on the design 
orbit, with constant design velocity 𝑣0 = 𝑅𝜔𝑐, and with 
constant phase 𝜑0 = 𝜋 as in the case of stationary 
bucket in the linac (assuming no net energy gain/loss). 

Travelling wave Standing wave 

Harmonic number 
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• We construct the dynamics “turn by turn”. The energy of a particle after its (n+1) traversal 
of the RF cavity is related to its energy on the previous turn by 
 
 

– where 𝜏 is the time of arrival of the particle at the RF cavity with respect to the arrival of the design 
particle, 

– and, δ𝑈 = 𝑈 − 𝑈0 is the difference in particle energy from the design value. 
 
 

• From the definition of the phase slip factor (slide 10 of Lecture 4)   
 
 
 
 
 

• We examine the change in time of arrival “turn by turn”. 

Set of difference 
equations 
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• The difference equations can be understood by viewing them as numerically equivalent to 
the differential equations.  
 
 
 
 
 

– We assume that the changes in the variables are not too significant in one turn. 
 

• The second order differential equation derived from the above expressions is 
 

 
• Assuming an energy below transition, and expanding near 𝜏 = 0, 

 
 

• For the small amplitude oscillation, the synchrotron frequency and tune are   

Validity for approximating the 
difference equations to 
differential equations 
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