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Sec. 3.1

Weak Focusing in
Circular Accelerators
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[Review] Path length focusing

* In Chapter 2, we learned that path length focusing is effective in stabilizing the horizontal
motion (x), but not in the vertical motion (y).

ds = Rdf
Design orbit
path length s

dsy = (R+2)d0 = R(1 +x/R)df = (1 4+ z/R)ds

For g>0, B into the page
Path length s(1+(x/R))

to to S92 T 52 S2 T
Ap, = —q/ voBodt = —q/ Bods, = —q/ By (1 + §> ds = —q/ Bods — q/ Boﬁds
t t g S1 g

b1 F1 S1 S1
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Magnetic fields in betatron (p particle

* Near the design orbit:
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Equation of motion in betatron

« The magnetic field appears as a superposition of vertically oriented dipole and vertically
focusing (horizontally defocusing) quadrupole fields.

From quadrupole components

Electron is coming out of the paper

, . B'R
* Interms of field index: n = — 5
0
1\° ' n
x”+(§> l1-njz=0 ¥ +py=0 —— 0<n<l

For simultaneous stability
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Tunes (denoted by either v or Q)

« If we write the equations of motion in terms of azimuthal angle 6 = s/R:

gy 2[1 ] 0—>d2m+[1 ] 0—>d2m+ =0
X e —NnN|r = —_— — nir = —_— V. =
R d6? db? v

d2y d2y

" n 2 o _ 2
Y +(E> y=0— g ny=0— vy =0

« The phase changes (or phase advances) per one period (for circular machine considered
here, one revolution, 2x) are

A¢, = 2rmv,, A¢, =21y,

« The number of oscillations in the horizontal (x) and vertical (y) dimensions per one period
(for circular machine considered here, one revolution, 2r) are called tunes:

Ve =V 1—n, I/y:\/ﬁ

» Restriction on tunes for betatron (weak focusing): v.,v, <1
« Scaling of the maximum offset—> size of the beam scales with the radius of curvature

&~ rysin(v,/Rz + ¢y) — 2’ ~apvp /R — 1, ~ R v,

T~

We need to make tune very large:
Strong focusing



NS’
ULSAN NATIONAL INSTITUTE OF

nnnnnnnnnnnnnnnnnnnn

Sec. 3.2

Matrix Analysis of
Periodic Focusing System
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Periodic focusing

* Most large accelerators are made up of several (or many) identical modules and,
therefore, have periodicity of L,:

— Circular machine: L, = C/M,
— Linear machine: array of simple quadrupole magnets with differing sign field gradient

D FDFLPDFDFD
Y NV DAY O .
AN VAN A U A L N U/ A AL W A A N

S

« Hill's equation:

o'+ r2(2)x =0, kK2(z+L,) = r2(2) = K,(2) in some other books

« Two special cases which can be readily analyzed.
— The focusing is sinusoidally varying: Mathieu equation

— The focusing is piece-wise constant : Combination of a number of simple harmonic oscillator
solutions
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Matrix formalism

«  Solution of the simple harmonic oscillator for 3 > 0 :

* Initial state vector:

x(z) = wm;coslko(z — 20)] + i—é sin[kg(z — z0)]

' (z) = —kox;sin|ro(z — 20)] + 2} cos[ko(z — 20)]

— If conveniently expressed by a matrix expression:
X(Z) = MF : X(Z())

Mp = [ _ole ol dintte - |

— Though a focusing section of length (:

M, — [ cos[kol] - sinrol] ]

—rKosin[kol]  cos[kol]

Moses Chung | Leccture 3 Transverse Dynamics 9
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Matrix formalism (cont’d)

«  Solution of the simple harmonic oscillator for x5 = —|xo|* < 0:

/
3

x(z) = x;coshl|kgl(z — 20)] + |Zo’ sinh[|ko|(z — 20)]

2'(z) = |kolz;sinh[|ko|(z — 20)] + 2} cosh[|ko|(z — 20)]

— If conveniently expressed by a matrix expression:

x(z) = Mp - x(29)

Mo — cosh[|ko|(z — z0)] ﬁ sinh[|ro|(z — 20)] ]
D= .

|ko| sinh]|ko|(z — 20)] coshl|ko|(z — z0)]
* Limiting cases: Length of drift space

— Force-free drift: kg — 0 /

B B I S N I S O The position x changes
Mp=Mp =Mo = 0 1 } o { 0 1 ] while the angle x’ does not
—  Thin-lens limit: 1 — 0 while 2l is kept finite
_ 1 0| _ 1 0 The change in position x is negligible
MF(D) a [ :Fli%l 1 ] o [ q:% 1 ] and only the angle X’ is transformed
Focal length

Moses Chung | Leccture 3 Transverse Dynamics 10
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[Example 1] Doublet

«  Step-by-step matrix multiplication of all individual elements:

F D
| L :

1 1 1 L

Effective focal length of the system

— + —
f h f2 fife
« For vertical direction: reversing sign of f; and f,

* There is a region of parameters where the sign of f* is the same and positive for both
horizontal and vertical planes (for example, when f; = f,), which corresponds to the

focusing in both planes.

Moses Chung | Leccture 3 Transverse Dynamics 11
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[Example 2] FODO lattice @ = ===
*  Focus(F)-Drift(O)-Defocus(D)-Drift(O) lattice:

F O D o F

Ly=1/2 envelope

X(Z) = X(L—|— Zo) = X(QLd + 20 + Z()) = MO . MD . MO . MF -X(Z()) = MT . X(Zo)

2 2 Oz Ox
L Ly L; Oz Oz

M, = 1- i (7d> 2La + 7ol = Oz; Oz, What about y direction ?
T L L ox ox
_f_él Td +1 ox; ox!,

* Note that the matrix product given in Eq. (3.20) is written in reverse order from that in
which the component matrices are physically encountered in the beam line. Confusion on
the ordering of matrices is the most common mistake made in the matrix analysis of beam

dynamics!

Moses Chung | Leccture 3 Transverse Dynamics 12
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[Note] General properties of linear transformation ==

All of the transformation matrices (the focusing, defocusing, drift, and thin lens matrices)
have determinant equal to 1.

The total transformation matrix, being the product of matrices of all of unit determinant,

also has the property:
det(MT) =1

The partial derivative form of the transformation matrix shows explicitly that it can be
interpreted as a generalized linear transformation of coordinates in trace space.

dx Oz
8:87; (9:13/-
MT — ox’ 8.7:%

The determinant of this matrix is known as the Jacobian of the transformation.

The fact that the Jacobian is unity indicates that the transformations are area preserving,
as anticipated by application of Liouville’s theorem.
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Stability analysis e

Linear stability: Assurance of the stability of particle motion under forces that are linear in
displacement from the design orbit is a necessary, but not sufficient, condition for
absolutely stable motion (= Nonlinear forces may also cause unstable orbits).

We consider the transformation corresponding to n repeated passes through the system:

x(nl, + z9) = M} - x(20)
Eigenvector analysis:
My -d; = \;d,; d’ . d; = 0y x(zg) = Zaidi, where a; = x’ (2) - d,;
The transformation can be written in terms of eigenvectors:

X(Lp + Z()) = M -X(Zo) = a1 A\1dy + asAods

X(TLLP -+ Z()) = M&Lﬂ . X(Z()) = (L1>\§Ld1 + (LQ)\SdQ
In this case,
eigenvectors are complex as well

The eigenvalues of the transformation must be complex numbers of unit magnitude,
otherwise the motion will be exponential, meaning either unbounded or decaying.

Al =1



Eigenvalue problem e

* Requiring the determinant of the matrix operating on the eigenvector vanish:

(MT — )\71) . dj =0— ‘MT — )\71| =0

A7 — (Mr1y + Mroa) Aj + (Mpin Mrog — MrigMray) = 0

=Tr(Mry) =det(My)=1

* For the stable motion, the eigenvalue is of unit magnitude. Hence, we choose to write the
eigenvalue as (with u being real)

A = exp(ip)

e Then the solution becomes

Aj = exp(£ip) = cos(p) £ isin(p) = Tr(l;/IT) 4+ z'\/l _ (TY(I;/IT)>

2cos(p) = Tr(Mr)
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Stability condition

« If the term inside the square root is non-negative, the motion will be stable.

|Tr(Myp)| = |[Mpi1 + Mpaa| = [A1 + Aa| <2

[Example] For FODO lattice

I 2
| Tr(Myp)| = [Mp11 + Mpoo| = ‘2 - (7‘[) <2 — Td = La(kgl) <2
Tr(My) 1 /Lys\"
- ——— — 1 - - I
oo =414 ()
* Note:
— We remark that since the eigenvalues of stable motion are complex, the eigenvectors are generally
complex.

— However, the transformation matrix itself is real.

» Physical meaning of u: Phase advance per one period.

p— I\
= :

] N

Moses Chung | Leccture 3 Transverse Dynamics

@ > m — physically meaningless
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Parametrization of the transformation matrix

 For stable motion,

a b
M= | ¢ ]
From total 5 variables
(a,b,c,d, ), only
a+b="Tr(My)=2cos(p), det(My)=ad—bc=1 3 variables are independent

* Therefore, we may set for some real k

a=cos(p)+k, d=cos(p)—k, ad=-cos’(u)—k* be=—k*—sin®(u)

« Forsin(u) # 0, k may be replaced by % = asin(n) for some real a:

be = —k* —sin?(p) = —(1 + o?)sin®(u) — b = Bsin(p), ¢ = —vysin(p)

« The relation between a, B3, y:

*Don’t be confused with relativistic factors

Moses Chung | Leccture 3 Transverse Dynamics 17
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Parametrization of the transformation matrix

Thus the transformation matrix (or transfer matrix) can be written as

[ cos Q sin sin
Mr = H +. H b M. ] 3 independent variables
—y sin j COS [t — asin [t

= L0 Ccos [ + @ b sin
101 a -y —« H

= Icospu+ Jsinp [ a B }[ a B }_
-y —« -y —«
Since J?= -1, one can apply Euler’s formula for matrices: a2 — By  afB - Ba
—atay —fy+a?

MT:Icosu—l—Jsinu:eJ“

We can also obtain the De Moivere’s theorem

MPE = (Tcos pn + Jsin p)F = e?* = Tcos(kp) + I sin(kp)

M, ' = (Tcosp + Jsinp) ' =e " =Tcosp — Jsinp
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Parametrization of the transformation matrix

« The transformation matrix can also be decomposed as

[ cos ji + asin p [ sin p ]
Mr = . .
| —ysinp cos j — asin
] 0 ,
_ \/E 1 ]x[ oS [t smu}x [

—sinp  cosp

L VB VB

_ B[ coS fi SlﬂM]B—1
—siny  cosp

Inverse transformation into the original \ Transformation into normalized

phase-space coordinates. phase-space coordinates.

Sl

Clock-wise rotation in the normalized
phase-space coordinates.

« Be careful! So far we only consider transfer matrix for a system with a repetitive period.

« Be careful! The a, 8,y, u only depend on the optics and are independent of any specific
particle’s initial conditions.

Moses Chung | Leccture 3 Transverse Dynamics 19



NS’
ULSAN NATIONAL INSTITUTE OF

nnnnnnnnnnnnnnnnnnnn

Sec. 3.3

Visualization of Motion
in Periodic Focusing System
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Typical trajectory

Slow simple harmonic oscillator-like behavior (secular motion) + Fast oscillatory motion
with lattice period:

Maximum envelope a particle
with arbitrary initial conditions

/ can have

Moses Chung | Leccture 3 Transverse Dynamics 21
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Trace space plot in periodic focusing system ===

3 [T T T T T T UL D L
E N Fig. 3.5 Motion of a particle in a FODO chan-
°r nel with o = 33°. Lenses are at positions
b marked with diamond symbols. Note the devi-
f ation from simple harmonic motion occurring
= OF ; with the FODO period.
b ] 360° .
. ] ~ 11 periods ~ 22 lenses
, ] 33°
—2r ]
ST T T T T T s T T Ty T s T - The fast motion, despite its small spatial amplitude, will also
Lens number be seen to have relatively large angles associated with it.
I '4: Fig. 3.6 Motion of a particle in a FODO
0.6 F . channel of ;& = 33°, plotted in trace space.
os b X ] The fast deviations from simple harmonic
N 7B motion occurring with the FODO period have
0.2 ] a large angular spread.
=oo0f g
02 F .
02 r R ] - The fast errors in the trajectory have large angular oscillations,
04 F “0):" . and the trace space plot fills in a distorted annular region,
o C ] yielding unclear information about the nature of the trajectory
_0.8 - 11 1 1 I 11 1 1 I L1 1 | I 11 1 1 I L1 1 | I‘ 1 I 11 :
-3 -2 -1 0 1 2 3
For simple harmonic *

oscillator case
Moses Chung | Leccture 3 Transverse Dynamics 22
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Poincare plot (Stroboscopic plot) S

If one only plots the trace space point of a trajectory once per FODO period, then the
motion is regular.

0-8 LI I | I L] L) ¥ I L] LI | ¥ I L] LI | ¥ I L] LI | ¥ L'_JC_'@II T
).T7%) ] Fig. 3.7 Poincaré plot of the motion of a
L. ) 3 5 P
0.6 @ /] particle in a FODO channel of ¢ = 33°,
04 ’ . shown previously in Fig. 3.6, but here plotted
s ] only at the end of every FODO array.
. <3 y y y

02}

02F
0af ©

|
iy
.\
"=~
|

o -
_0_8'...'-r"l"....|....|....|....|....'
-3 -2 -1 0 1 2 3

Note:
— Infact, it is an ellipse in trace space.

— However, the ellipse does not necessarily align with (x, x’) axes, but it is aligned to the eigenvector
axes.

— Depending on z-position in the lattice, the Poincare plots yield different ellipses.
— In general, particles are moving in the clockwise direction.

Moses Chung | Leccture 3 Transverse Dynamics 23
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Smooth approximation

We will employ here assumes that the motion can be broken down into two components,
one which contains the small amplitude fast oscillatory motion (the perturbed part of the
motion), and the other that contains the slowly varying or secular, large amplitude
variations in the trajectory.

T = Tose T Tsec

Only averaging focusing effect is used in the equation of motion:

v+ K2(2)r =0 with k2(2) =ki(z+L,) — 2" +kZ 2=0

sec

The averaging focusing strength can be simply deduced from

b

ksec ~

LP
[Example] .
—  For Thin FODO lattice: 12~ A fo
sec 32 L2

— For sinusoidally varying focusing (Mathieu equation or ponderomotive force)

4
B2~ 1 o
sec 871_2 L]%

Moses Chung | Leccture 3 Transverse Dynamics 24
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Secs. 2.4.1/12.4.2/2.4.6 of UP-ALP

Analytic approach
for Hill’s equation



2.4.1 Pseudo-harmonic oscillations ===

« Let’s try for the solution of the Hill's equation in the following form:

A constant determined by initial A constant determined by initial
conditions of the particle conditions of the particle

z(s) = VeB(s) cos [¢(s) — ¢]

Beta function, proportional /

to the square of the. Phase change of the
envelope of the oscillation oscillation: betatron phase

2(5) = E [ coslots) — o] = /()T sinfols) — o

o) = | 0L B 6(8)¢’2(S)] Veeoslols) — ol - [¢"<s>\/ﬁ<s>+5'(5;f;gs) Vesinl(s) — o

= —k(s)\/B(s) =0

* New differential equations (depending only on the magnetic lattice)

1 1
3 - 107%(s) + k() (s) = 1 0'(s) =
Envelope equation _ Phase advance equation
Moses Chung | Leccture 3 Transverse Dynamics 26
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2.4.2 Principal trajectory =

Meaning of the alpha function:

B'(s) / slope of the change in the envelope

» By defining alpha function as a(s) = — 5 (a > 0: converging, a < 0: diverging)
2(s) = V/eB(5) cos [p(s) — o] #(5) = = 557 15100s) = 6]+ as) coslols) — o1}

«  With the following initial conditions:

B(s=s0) = Po, a(s=s0) =09, d(s=s0)=0

x(s = s0) = xo = \/ €5 cos [—¢] (s =s0) = 2 = — é {sin[—¢] + ag cos[—¢]}
— Vecosp = %, Vesin g = ao% + Boxy

* Using trigonometric identities:

x(s) = eb(s)cos[p(s) — @] = /€B(s) [cos ¢(s) cos ¢ + sin @(s) sin @]
= %j) {cos @(s) + apsing(s)}| + z, [\/m sin ¢(3)]

= 20C(s) + xyS(s)

Moses Chung | Leccture 3 Transverse Dynamics 27



2.4.2 Principal trajectory (cont’d)

Cosine-like and Sine-like solutions:

C(s) = % {cos p(s) + apsing(s)}t, C(sg) =1, C'(s0) =0

-~ - ™
> ’., \‘.'b ' Soo
q:oslin‘?-l|ke|traje§toryI /_‘

ULSAN NATIONAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

S RN ~ o~ S (a.u.)
- ~ . . .
D N - General solution is a linear
X | VP a/p combination of the cosine-
-~ -&C like and sine-like trajectories.
P NP e and sine-like trajectories

1 1 1 1
sin‘e_-gké trajectory ~
VA 7N
o’ Sa AT U

-aB

Moses Chung | Leccture 3 Transverse Dynamics
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2.4.7 Connection with matrix formalism e

« The elements of the transfer matrix can be expressed via the Twiss functions (a, 3, y) at
the beginning and end of the beam line:

x(s) = x0C(s)+ 2(S(s)
2'(s) = xoC'(s) + 255 (s)
[ x(s) ] B [ C(s) S(s) ] [ X0 ]
x'(s) | | C'(s) S'(s) T
M _ [ C(s) S(s) ] B \/%{COSAgb-I-CYQSiHAgb} \/3(5) By sin Ag
S0—+s C’(S) S/(s) _(a(s)—ao)cosf/q?;(—()l;a(s)ao)sinAqb %j) {COS A¢_a(8) <in Agb}

* One can also have the following decomposition:

Msoﬁs = a(s) 1 o )
NICERVLD) sin A¢p  cos Ag
cosA¢  sinAg

= B() [ —sin A¢  cos A¢p ] B_l(so)

VB(s) 0 ]X[(‘,OSA¢ sinA¢]X[

e
(@)
1
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2.4.7 Connection with matrix formalism

So far, we haven’t yet assumed any periodicity in the transfer line. However, we may
consider a periodic machine, and then the transfer matrix over a single turn (or single

lattice period) would reduce to
When we impose periodic

boundary condition
on the beta function

cos A¢ + agsin Ag B sin A
M50—>80+Lp — (1—}-@5) . A . A
— 5, sin [0 cos 1 — g Sin A¢

B COS [t + g sin Bo sin
—Yo sin j COS (4 — (g Sin f1

where we define gamma function

1+ o
70 5o
and phase advance for one turn (or one period)
p=A¢

Moses Chung | Leccture 3 Transverse Dynamics 30



2.5.1 Courant-Snyder invariant

« Hill's equation have a remarkable property: they have an invariant!

2(s) = V/eB(s) cos [(s) — ¢] #(5) = = gy (inlo(s) = 9] + als) cosl(s) — o1}
ecos [p(s) — @] = z(5) esin [p(s) — @] = afs)e(s) s)a'(s
— Vecos[(s) = 9] = —m, Vesin[ols) — ¢] = e + VB ()

* Using trigonometric identities:

z(s) i a(s)z(s) V' (s 2 = € = cons
( >+< 5(s>+m<)> )

€ = B(s)2"(s) + 2a(s)x(s)a’(s) + ()2 (s) = B(s0)a"(s0) + 2a(s0)x(s0)2"(s0) + 7(50)2% (s0)

This invariant is known as Courant-Snyder invariant: Even though an initial point in the trace space
(x(s9), x'(sy),) changes to a different position (x(s), x'(s),), the Twiss parameters (a, 8,y) change at
the same time in such as way that e remains constant.

Moses Chung | Leccture 3 Transverse Dynamics 31



UrisT
2.5.1 Phase space (or trace space) ellipse T

The Courant-Snyder invariant defines an (tilted) ellipse in phase space (x,x"):

e = y(s)x?(s) + 2a(s)x(s)z’(s) + B(s)x"(s) = ( z(s) ) + (a(s)az(s) + 5(s)x’(s)>

B(s) B(s)
A,
X
X' max Slope = —u/p
\ 2«
tan2¢p =
Xip — 7= B
Area in phase-space = me = const.
[€] = m-rad, or mm-mrad, or T mm-mrad
¢ LTmax — 657 Lint = V 6/7
‘,E;naz — €Y :C’/L'nL -V 6/5
2 (e %
AV B+ —
VB

Or, in the normalized coordinates, it defines a circle:

(0 N (e e ) / L
<5(5>>+( /3<s>+5()”> e |/

Moses Chung | Leccture 3 Transverse Dynamics 32




[Example]

The shape and orientation of the ellipse keep changing as it moves along.

:c}'

x]

)

xz'

<

}xz

82

3:3'

83

X3
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Although the particle trajectory seems often ugly when plotted continuously, however, at a
given position it will stay on some ellipse.

3 T T T T T




[Example]

Simple drift:

Initial

ellipse

Thin focusing lens:

RN

Ellipse after |
focusing lens

l' }I._"I
' -
. LW
SR - — - i
."‘. ...
| "-_
| Ellipse
after drift
t_l
!
Initial
ellipse

NS
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

90 degree phase advance:
- Minor and major axes are exchanged

X .
Imitial

ellipse

N

Ellipse afrer
90° focusing
channel

L]

X
Ellipse afier

subsequent drift

X m— Jlr
Ellipse after
focusing lens

'\\ll
\
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[Example] (x, x") space VS normalized coordinates™*

<
=]

(d) s =0.755

X/B X/yB

(e) s=15 (f) s =1.258 (e) s =18 (f) s = 1.255

Moses Chung | Leccture 3 Transverse Dynamics 35
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[Example] (x,x") space VS (x,y) space R

Matched Beam Envelope and Focusing Function

N

E 12

H— |_ﬂ

E 8 F

K 6L ;
o i [ | B

2 | A 3
e 0.4 I 0.6 0.8

Projection Axial Coordinatel(Lattice Periods)

-——
=
el

et
’-——-—
s

X-y
area: 71,1, # const

X-X'
area: 72, — const
(CS Invariant)

y-y'
area: e, — const
(CS Invariant)

Moses Chung | Leccture 3 Transverse Dynamics 36
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Secs. 5.2/5.3/5.4 of FOBP

Beam Distribution and Emittance
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Bi-Gaussian distribution e

« We assume the particle distribution is a bi-Gaussian distribution in the following form:

f(r.a)) = —— oxp [—

27T€rms

7332+2a9:x’—+-5:1:’2} - [_ ¢ ] - [_ (2/v/B)? + (VB + az/v/B)?

261”1718 Erms 2€rms

A\
@
N

-

Constant (single particle) emittance ellipses Constant (single particle) emittance circles in the
define contours of constant phase-space normalized coordinates define contours of constant
distribution density phase-space distribution density

 The rms beam emittance is proportional to the average of all the single particle emittances.

« The rms beam emittance is defined through the ellipse of the exp[-1/2] contour relative to
the peak density contour.

Moses Chung | Leccture 3 Transverse Dynamics 38
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Normalization of the distribution function

* First, check the normalization:

i
o e e [ ya? 4 20’ + B’ =B
/ / [z, 2" )deda' = / / exp A+ 20wa + fa dxdx’ VB
—00 J —00 —o0 J —0 27T€rms L 2€rms , /6 , axr
~ xr. = T + I
00 o0 1 2 12 n
N / / Yrerme ¥ _%26&] Arnd v
>~ 1
B / Yrerme [_ 266 ] e €=t
0 rms rms
= 1

« Meaning of the rms beam emittance:

o c Integration by parts
(e) = / € exXp [— ] de
0 2€rms

261‘1118

1 € > o €
= —2€rms — 2€rms — d
26rms {6( ‘ mh) P [ 2€rms] 0 i /0 Crms €D { 2€rms] 6}
— 261‘1115
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Moments of the distribution function

* From the general properties of the bi-Gaussian distribution in (x, y) plane:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

1 1 S22 o) 51
= — —9 Y 4 27
f(z,y) Sronon (1= 7)1z P [ 20 ) ( 52 + —= )]

€T

Where dx=x—(x), dy=y—(y)

o <(5$2>, 05 = <5y2>, Ozy = (020Y) = poyo,
covariance

« By comparing with the beam distribution in (x,x") space:

(x) = (z') =0 when beam is alinged to its desing axis

2 _ 2\ __ 2 12\ __ _ A
0, = <37 > — EI'IHSB) Oy = <37 > = €rmsY, Oga’ = <$3j > = —€rms™

s = \[020%, — 0202, = \[(e?) (0) — (aa)?

—4\ _J\H I Terms = Area of the exp[-1/2] contour
A a
N

expi—1/2) contour
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e The beam matrix is the second-order moments of the beam distribution:

o(s) =%(s) = (xx'
/) B (x2) (xa!) | [ 02  opw
N (xa’y (2) | | Opar O
Contains all the necessary 3 —a : :
information describing the beam =  €rms [ ] If the beam aligns with
-y Courant-Snyder parameters
Beam property Lattice properties

* Note that the determinant of the beam matrix is the rms emittance:

det(o) = (2?) (2*) — (;Ux/>2 = 2

rms

* |f the transfer matrix is known,

- <M30—>S : X(SO)XT(SO) ’ MZO%Q
= My, s 0(s0) ML

So—>S
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Fraction of particles enclosed

From the normalization of the distribution function in slide 39:

€ER 1
F :/ exp [— ¢ ] de
0 2€rms 2€rms

Note that if ez = oo, F = 100% .
The € indicates the emittance value with encloses F (%) fraction of the particles.

€r

F = —exp [—2 ‘ ]

Errns

=1—exp [—QEF ]

6I‘I’IlS

0

erp = —26ms In(1 — F)

Be careful! It is different

€rms

L s

e

39%
87%
95%
100%

from the single Gaussian

99.7% of the data are within
3 standard deviations of the mean
95% within
2 standard deviations
68% within
[*— 1standard —>
deviation

AN

— —_—

u—3a n—2a n—a I p+ao I+ 2a u+ 3a

' €rms
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If the beam is not in thermal equilibrium: ==

We used bi-Gaussian distribution assuming that the beam is in thermal equilibrium:

o el

— =0, fxexp T

ot

Even though the beam distribution function is not exactly in thermal equilibrium, it is often
used as a good approximation.

For example, in the periodic focusing system, the particle motion is always non-
equillibirum, however, when plotted in trace space once per period (i.e., in the Poincare
plot), we can treat the beam in equilibrium.

f(s)=f(s+Ly)

Thermalization is often achieved very slowly, over many revolutions of a circular
accelerator, by a combination of damping and heating effects (e.g., radiation emission,
intra-beam scattering).

In fast, transient systems, such as linear accelerators, equilibrating mechanisms (i.e.
collisions) are too slow to be relevant, and if equilibria are found, they must be a property
of the particle source used (Collective effects may enhance relaxation rate though).
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If the focusing force is not linear:

* Due to the non-linear forces, which are not included in the Courant-Snyder model, beam
trajectories may not be simply ellipses.

! 3 1 3 1 3 {
! 2 ! 3 3
1 1 1 1 ! 1 1
LI a 1 cw o0 !
} = !
= ! = |
-2
-2 ! 2 I
! 3 !
= ! - I
-4
3 o) 1 0 1 7 3 a a 3 2 1 o 1 3 3 & _‘ ”
& ® a 3 7 1 o 1 B 3 [ a 3 7 1 ) 1 F) 3 4
T x

* Non-linear forces are induced by nonlinear magnetic fields and space charge forces, and
increase the rms emittance - Still we can calculate the rms emittance and 2" moments!

 The rms emittance depends not only on the true area occupied by the beam in phase
space (which is constant by Liouville theorem), but also on the distortions produced by

nonlinear forces.

X’ X'

Phase-space area = 0 X x Phase-space area=0

RMS emittance = 0 / RMS emittance > 0

(a) (b)
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If the beam is not matching with the ellipse: ===

Strictly speaking, beam'’s elliptical shape and orientation determined by the second-
moments may not match with the ellipse specified by the periodic lattice system:

6bcam - <$2> /Grms 7£ Blatticca Ybeam = <5E,2> /Erms 7£ Yatticey Xbeam = — <$-T/> /Erms 75 Nattice

Often, even beam'’s elliptical shape and orientation may not be unique. The second-
moment definition of Twiss parameters can be anomalously dependent on “tail particles”.

Trace space
o distribution
Five times”™ rms ellipse

rms ellipse

0% ellipse

The mismatch may seem harmless at first glance. However, amplitude-dependent tune
due to small nonlinearity will eventually result in phase-mixing (or de-coherence).

} I

l . Periodic, marched —
T TN, trace space o \
- \ frinje e \‘ |‘
T | ]
RN /A
I P 3
J/ /) / r} ) /¥ ’) ff
s e /
— IS4 o —_——— - iy ;’ 3 Vi / / D -
a0 y / / / / 'K /
e 4 hl}mlcdhe i I
[ - distributio {1 \\__4//./ Il !m]\ od
| \ - {mismatches I l \ o
A .
\ - _

‘ — after many 1)(\1'10(151

! — 90°phase adavnce
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Sec. 2.4.3 of UP-ALP/
Sec. 3.5 of FOBP

Edge Focusing



Dipoles are not infinitely long !

« Sector bend (sbend):

Simpler to conceptualize, but harder
to build

Beam design entry/exit angles are L
to end faces

ULSAN NATIONAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

Rectangular bend (rbend):

Easier to build, but must include
effects of edge focusing

Beam design entry/exit angles
are half of bend angle

)
\‘ t’
7
.
: “ /! :
1 T ’ ]
' [\ " :
' N
[] 0 A} ’ 0 .
== v 0O=20a ,/ o=
y 2N ¢ 2
\ )
‘." ’
\ ;
« )
)
v,
a=—>0
2
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Transfer matrix of shend magnet

« From Sec. 3.1 (or slide 5):

1 n

R

2
2"+ (_) [1 _ n] x=2a"+ ’fg,xf’f =0, y” + @y = Z/H + K’%,yy =0

*  Applying the matrix formalism introduced in slide 9:

Ccos|kyp .1 L ginlky .1
Mbend,x - [ b’x] b, [ b7$] ]

| — Kb Sin[kyp ] VCOS[Iib,xl]

WrisT
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l = R0

Mbond,y

n=0

cos[v1 — nd] \/% sin[y/1 — nf]
I — YL gin[y/1 — nb) cos[v/1 — nb)]

cos[d]  Rsinf] }

| —+sinf0]  cos[d]

cos|Kp,yl] H,bl? sin(kp, (]
| — Kby Sin[kp, ] cos[kp.yl]
cos[y/nb)] % sin[y/nf)]
| —“sin[y/nf]  cos|/nb)
1 R0 Simple drift in the vertical direction

0 1 if the magnet is not a combined-function magnet
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Edge focusing in the vertical direction

« There is a finite transverse field which induces vertical kicks: T

aaelalelelaTual el lal el Tl

ByzBo(l—%> for 0 <o <l | TOpVIew

|
i
ST ,
Be ~ 0 (i.e., assuming very wide poles) s R !
n -
VxB=0 i :
S ——>0
0B \l/ 0B By RS s A a '
B, ~ B — o _ [ TPy _ _ =20 S \
IO N
B ] E'E-:.'.'". Q p
Bx:BgcosomLBasina:_wy _ ] —>
fringe , B=0
Y

* Focusing effect of a fringe field in the vertical direction with « > 0.

e

By sin «

[
- Quadrupole-like field

B:c:_ Yy




Edge (de)focusing in the horizontal direction R

 For a # 0, we need to include edge (de)focusing effects.

a>0

« Defocusing effect of a thin wedge in horizontal direction with a > 0.

Top view

> Undeflected Trajectory




NiST
Another view of the edge focusi ng e

e Fora>0,
— Particles located at positive x take shorter paths in the dipole & to be bent weakly
— Particles located at negative x take longer paths in the dipole & to be bent strongly
— horizontal defocusing & vertical focusing

e Fora<0,
— Particles located at positive x take longer paths in the dipole & to be bent strongly
— Particles located at negative x take shorter paths in the dipole & to be bent weakly
— horizontal focusing & vertical defocusing

beam trajectory °, p

[From Dr. Yujong Kim’s KoPAS 2015 Slide]
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