
Lecture 2 
‘Single’ Charged Particle Motion 

in Static Fields 
(Ch. 2 of FOBP, Ch. 2 of UP-ALP) 

Moses Chung (UNIST) 
mchung@unist.ac.kr 



2.1 Motion in a uniform magnetic field  
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• Motion of charged particle in EM fields: 
 
 

– where the momentum 𝒑 and energy 𝜀 of the particle are given by  
– and 𝑚0 is particle rest mass, and 𝛾 is the relativistic mass factor.   

 
 

• In a uniform magnetic field: Conservation of energy 
 
 
 

• Equations of motion: 
 

 
 
 
• Cyclotron frequency:  



2.1 Motion in a uniform magnetic field (cont’d) 
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• General solutions: 
 
 

• Meaning of the parameters: 
 
 

• Physical meaning: Balance of radial force (Lorentz force, FL) and centripetal force 
 
 

• Magnetic rigidity [T m]: 
 

 
• Pitch angle: Associated with helical motion 

For q >0 



[Note] Circular Accelerator VS Focusing Solenoid 
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• Circular accelerator: 
– Very small pitch angle  
– Indeed, 𝑝𝑧 ≈ 0 
– Circular design orbit 

• Focusing solenoid: 
– Very large pitch angle  
– Indeed, 𝑝𝑧 ≫ 𝑝⊥ 
– Straight design orbit 

Be careful ! Later we will reassign x, y, and z coordinates. 
In fact, B fields are applied locally around the particle orbits.    



2.2 Circular accelerator 
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• We analyze the charged particle dynamics near the design orbit. The design orbit is 
specified by a certain radius of curvature (𝑅) and a certain momentum (𝑝0 = 𝑞𝐵0𝑅) 
 

• A new locally defined right-handed coordinate system: 
 
 
 
 
 
 
 
 

• Equation of motion in this new coordinate system: Homework  (Problem 2.1 of FOBP) 
 
 

 
• The azimuthal velocity and radial momentum:  

Vertical: direction of dipole magnet field 

Horizontal: deviation away from the design 
orbit 

Design orbit 

Individual particle’s radius 

Individual particle’s velocity 

Reference 

(2.9) 



2.2 Circular accelerator (cont’d) 
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• Linearization of Eq. (2.9) by assuming 𝑥 ≪ 𝑅: Lowest order Taylor series expansion about 
the design orbit equilibrium (𝑝𝑥 = 𝑝𝜌 = 0 at 𝜌 = 𝑅), 
 
 
 
 
 

• Using the definition of the design radius and cyclotron frequency: 
 
 
 

• Using 𝑠 as the independent variable:  
 
 
 
 
 

• Simple harmonic oscillations about the design orbit for particles having the same 
momentum (𝑝0 = 𝑞𝐵0𝑅): We call it Betatron oscillations  Basis of phase advance and 
tunes. 



[Note] How does the restoring force arise? 
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• Total momentum transfer of the particle on an arbitrary offset orbit: 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Momentum transfer is larger (smaller) due to longer (shorter) path length: Path length 
focusing (basis of weak focusing system) 
 

• Betatron oscillation is due to trajectory errors (angle and offest deviation from the design 
orbit) for particles that have the design momentum  

Same momentum but different path 



[Note] How does the restoring force arise? 
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• Or, we can explain in terms of an error in the center of curvature of the orbit: 
 
 
 
 
 
 
 
 
 
 
 
 

• The trajectories of the particles in this dipole exhibit an equivalent “focusing” with the 
wavelength of motion (along the curvilinear coordinate 𝑠) given by 2𝜋𝜌. 



[Note] Momentum dispersion 
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• Displacement of an arbitrary particle from the design orbit due to deviation from the design 
momentum:  
 
 

• An analysis which treats the particle dynamics only in a first-order Taylor series in both 
betatron (i.e., angle and offset) errors and momentum errors is by assumption a 
description which is additive in these quantities: 
 
 
 
 
 
 

• The coefficient 𝜂𝑥 (or 𝐷𝑥) is termed the momentum dispersion, and is generally a detailed 
function of the magnetic field profile with variation in 𝑠. 

• In case of a uniform magnetic field, the dispersion is constant at the design momentum: 

Betatron orbit Dispersion 
Fractional momentum deviation 

R is a function of p 



2.3 Focusing in solenoids 
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• The key to understanding the motion of a charged particle in a focusing solenoid is to 
recognize how the angular momentum, which drives this helical motion, arises. 

• We need to ask what happens when the charged particle moves from a region where the 
magnetic field vanishes to one where it is uniform. 
 

To reduce leakage flux 

First order Taylor expansion 



2.3 Focusing in solenoids (cont’d) 
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• Transverse momentum kick imparted to a charged particle as it passes through the fringe 
field region: 
 
 
 
 

• Rotation in the axisymmetric system due to conservation of canonical angular momentum 
or Busch’s theorem: 
 
 
 
 
 

• A charged particle with no initial transverse motion displays helical motion inside of the 
solenoid, with radius of curvature such that the particle orbit passes through the axis. 

Kick is −�̂� direction 
Rotation is CW for 𝑞 > 0 

Φ = 0 outside the solenoid, but Φ ≠ 0 inside. 



[Note] Equations of motion 
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• Equations of motion for constant 𝛾: 
 
 
 
 
 
 
 
 
 
 

 
• Introducing (normalized) Larmor frequency and applying paraxial approximation: 

Different sign convention from the FOBP 
Rotation is CW for 𝑞 > 0  



[Note] Larmor frame 
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• Introducing Larmor frame (the frame that rotates about 𝑧-axis with normalized Larmor 
frequency), in which the transverse orbits in the rotating frame are related to the orbits in 
the laboratory frame by  
 
 
 
 
 
 

• By direct substitutions, one can show that 

Uncoupled simple harmonic 
oscillators in the Larmor frame 



[Example] Larmor frame 
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• Particle orbits become considerably simpler by introducing Larmor frame: 

This is the case with some  
initial velocities in entering the 
solenoid   



[Example] Larmor frame 
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• If the particle begins its trajectory offset in 𝑥 (𝑥 = 𝑥0), but not in 𝑦, and with no transverse 
momentum before the magnetic field region: 

Looks like 𝑞 < 0 for this case.  

 They are solutions of the following 
simple harmonic oscillators:  



2.4 Motion in a uniform electric field 
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• For uniform electric field 𝑬 = 𝐸0�̂�, with 𝑩 = 0: 
 
 
 

• In terms of the potential energy, the Hamiltonian (total canonical energy) is given by 
 
 

• Because the Hamiltonian is independent of time, it is a constant of motion: 
 
 
 
 
 

• Linear increase in mechanical energy 𝑈 = 𝛾𝑚0𝑐2 = 𝑇 + 𝑚0𝑐2 (see page 18 of FOBP): 

Accelerating gradient [MeV/m] 
= Change in momentum per unit time 
= Spatial energy gradient 



2.4 Motion in a uniform electric field (cont’d) 
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• Other relevant dynamical variables can be derived from knowledge of 𝛾(𝑧): 
 
 
 
 
 
 
 

• We can also explore acceleration from the point of view of explicit time dependence:  

Longitudinal mass 



Open beam pipe 

Focusing Defocusing 

[Note] Edge effects 
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• For the case of entry into a uniform electric field with azimuthal symmetry: 
 
 
 

• Near the axis: 
 

 
 
• Inward force (focusing momentum kick) when entering: 

 
 
 
 

• Outward force (defocusing momentum kick) when exiting: 
 

• No exact cancellation between focusing and defocusing momentum kicks: 
– Fields vary in time as the particles cross the gap. For longitudinal stability, the field is rising when 

the reference(synchronous) particle is injected. A field in the second half that is higher than the field 
in the first half, resulting in a net defocusing force: RF-defocusing force (important for ion linacs). 

– The particle velocity increases and radial position changes, while the particle crosses the gap: 
more important in electron linacs. 

 
 
 
 
 

 

Kick is −𝜌� direction for 𝑞𝐸0 > 0 



2.5 Motion in quadrupole fields 
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• Field free (𝐉 = 0) vacuum region (𝜇 = 𝜇0): 
 

 
• In the limit of a device long compared to its transverse dimensions: 

 
 
 

• The solution of the above equation are of a form that is well behaved on axis (by 
separation of variables): 

Sometimes (-) sign is omitted for simplicity 

 Be careful ! Index convention (n) differs in US and Europe, and by authors and textbooks 



2.5 Motion in quadrupole fields (cont’d) 
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• For 𝑛 = 1: 
 
 
 
 

• For 𝑛 = 2: 
 

Dipole and Skew dipole Quadrupole and Skew quadrupole 

Dipole 
Skew dipole 

Quadrupole 
Skew quadrupole 

Equipotential surfaces form lines 

Equipotential surfaces form hyperbolae 



2.5 Motion in quadrupole fields (cont’d) 
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• Force due to quadrupole fields: 
 
 
 

• Meaning of the coefficient 𝑏2: Measure of field gradient 
 
 
 

• Transverse equations of motion for a momentum 𝑝0, assuming paraxial motion near the 𝑧-
axis: 
 
 
 
 

• In standard oscillator form: 
 

• Here, the square wave number is sometimes known as the focusing strength:   

Please check whether the sign is correct in Eq. (2.44) of FOBP 



2.5 Motion in quadrupole fields (cont’d) 
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• For κ02 > 0, one has simple harmonic oscillation in x (around x=0), and the motion in y is 
hyperbolic. 
 
 
 
 

 
• For κ02 < 0, the motion is simple harmonic(oscillatory) in y, and hyperbolic(unbounded) in x. 

 
• Focusing with quadrupoles alone can only be accomplished in one transverse direction at a 

time. Ways of circumventing this apparent limitation in achieving transverse stability, by use 
of alternating gradient focusing. 



[Example] 
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• Field varies linearly 
The in and out conductors should be placed close to 
each other so that longitudinal fields are minimized.  

Cooling water 
line 

A standard technique for insulating magnet coils is to 
use epoxy resin, reinforced with fiberglass.  



[Note] Electric quadrupole 
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• The commonly encountered level of 1 T static magnetic field is equivalent to a 299.8 MV/m 
static electric field in force for a relativistic (v ≈ c) charged particle.  
 

• This electric field exceeds typical breakdown limits on metallic surfaces by nearly two 
orders of magnitude, giving partial explanation to the predominance of magnetostatic 
devices over electrostatic devices for manipulation of charged particle beams. 
 

• Therefore, the transverse electric field quadrupole is found mainly in very low energy 
applications. 
 
 

Hyperbolic surfaces rotated by 45 degrees  
from magnetic case 

Alternating in space 

Alternating in time Alternating in time + longitudinal modulation 



2.6 Motion in parallel, uniform E & B fields 
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• In case of a uniform electric field and a parallel uniform magnetic field: 
 
 
 

– These equations are coupled by the presence of 
– Amplitude of the perpendicular momentum is invariant:  

 
 
 

 
• The energy can be found similar to Eq. (2. 28) of FOBP: 

 
 
 
 
 

• Normalized acceleration gradient: 
Paraxial approximation 



2.6 Motion in parallel, uniform E & B fields (cont’d) 
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• Transverse equations of motion in the Larmor frame: 
 
 
 

– We expect the maximum angle in 𝑥𝐿 and 𝑦𝐿 to be damped by the acceleration (as 𝑝𝑧 is increasing), 
on a time scale longer than the relevant Larmor oscillation period: adiabatic damping  
 

• Equation of motion in 𝑥𝐿: 
 
 

– Last term is  
 

 
 

• Using the paraxial approximation (𝑝𝑧 ≅ 𝑝) and assuming highly relativistic motion (𝛽 ≅ 1): 
 
 

 
where 



2.6 Motion in parallel, uniform E & B fields (cont’d) 
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• The solution to the homogeneous equation: 
 
 
 
 
 
 

where the initial offset, angle, and Lorentz factor are 
 
 

 
• In the paraxial approximation, we often replace a momentum (𝑝𝑥) with the angle (𝑥𝑥) in the 

phase-space plot.  We call this a trace-space plot (see page 24 of FOBP). 
• In this case, we make a plot of the trajectory in the (𝑥, 𝑥𝑥) plane. This does not introduce 

complication in understanding the motion at constant values of 𝑝𝑧, because we can 
always recover the transverse momentum by using 𝑝𝑥 = 𝑝𝑧𝑥′ ≅ 𝛽𝛾𝑚0𝑥𝑥. 

• If longitudinal acceleration occurs, however, the angle is diminished and an apparent 
damping of the motion is observed: so-called adiabatic damping    



[Note] Action in trace space 
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• Simple harmonic motion is associated with two invariants: the angular frequency and the 
value of the Hamiltonian (the total oscillator energy). 
 
 
 
 
 

• For the motion in parallel, uniform electric and magnetic fields, one can see that (setting 
𝑥𝑥𝐿,0 = 0 for simplicity)  



2.7 Motion in crossed uniform E&B fields 
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• Perpendicular equation of motion: 
 
 

• The effect of crossed uniform electric and magnetic fields can be accounted for by writing  
 
 
 
 

• We’d like to make 
 
 
 

• By taking cross-product with 𝑩,   

Cyclotron motion in the moving frame E cross B drift 



[Example] 

Moses Chung | Transverse Dynamics 30 

• In the non-relativistic limit: 



[Note] Lorentz transformation 
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• Notation with respect to the ExB drift motion (not with respect to the B-field as in the 
previous notation): 
 
 
 

• Case 1: 
 
 
 
 
 
 
 
 
 
 
 
 

– In the moving frame, the only field acting is a static magnetic field. The particle has cyclotron 
motion. 



[Note] Lorentz transformation (cont’d) 
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• Case 2: 
 
 
 
 
 
 

– In the moving frame, the only field acting is a static electric field. The particle has hyperbolic motion 
with ever-increasing velocity. 

 



2.8 Motion in a periodic magnetic field 
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• Basics of FEL: 

EM Radiation in a sequence  
of bending magnet 

Net energy transfer between 
EM wave and electrons Micro-bunching with EM 

wavelength 



2.8 Motion in a periodic magnetic field (cont’d) 
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• The periodic, vertically polarized magnetic field (planar undulator configuration) 

y 

z 

To satisfy Maxwell equation 
(Prob. 2. 15) 

Approximately correct if  
𝑘𝑢𝑦 ≪ 1 



2.8 Motion in a periodic magnetic field (cont’d) 
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• Canonical momenta: 
 
 
 
 
 
 

• Relativistically correct Hamiltonian with 𝜙𝑒 = 0:  



2.8 Motion in a periodic magnetic field (cont’d) 
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• Viewing 𝑧 as the independent variable (kind of a canonical transformation): 
 
 
 
 
 
 

– Here we have substituted the numerical energy 𝑈 for the old Hamiltonian functional energy 𝐻. 
 

• New Hamilton equations of motion (assuming 𝑦 = 0 for simplicity):  



2.8 Motion in a periodic magnetic field (cont’d) 
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• New Hamilton equations of motion (assuming 𝑦 = 0 for simplicity): 
 
 
 
 
 
 
 
 

 
• With initial (evaluated before entry into the undulator field) horizontal offset and angle (𝑥0, 

𝑥0𝑥): 
 
 
 
 

– Amplitude of the transverse motion (for 𝑣 ≈ 𝑐):  
 

– Maximum angle (for 𝑣 ≈ 𝑐): 



[Note] 
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• If an initial error 𝑥0𝑥 ≠ 0 is not corrected, it leads eventually to a trajectory with large 
horizontal offset 𝑥. 
 

• The longitudinal momentum (therefore the longitudinal velocity) must decrease in the 
undulator:   
 
 
 
 
 

– Averaging over a period of the motion, we have   
 
 
 
 

– This slowing of the particle in its z-direction is an important effect in FELs. 
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