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A Passive EMI Filter for both CM and DM

● A typical passive EMI filter consists of a X-cap, CM choke, and Y-cap.
● The leakage inductance of CM choke can be used as the DM inductance.
● Each filter generates a large impedance mismatching.

X-cap Y-cap
CM choke

LISN EUT

3[ref] H. W. Ott, Electromagnetic Compatibility Engineering, 2009, Wiley
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A good and large CM choke 
is bulky and costly. 

Y-capacitor is limited by the safety 
regulation on leakage currents.

Limitation in a Passive CM EMI Filter

Attenuation of DM noise by using X-cap is relatively easier. 

● For sufficient CM noise reduction, the passive EMI filter with a large CM choke, a large Y-
capacitor, or multi-stage filters are necessary.

● Active EMI filters (AEFs) employing active circuit components are also proposed to
reduce the low-frequency CM noise in a compact-size and low-cost.
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Topologies of Active EMI Filter (AEF)

Voltage-sense Current-compensation 

Current-sense Voltage-compensation 

Voltage-sense Voltage-compensation 

Current-sense Current-compensation 

Voltage-sense Voltage-compensation Current-sense Current-compensation 

[ref] Y. Son, S. Sul, "Generalization of active filters for EMI reduction and harmonics compensation," IEEE Trans. Ind. Appl., vol.42, no.2, 
pp.545-551, March./April 2006
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Current-sense Voltage-compensation 

Voltage-sense Voltage-compensation 

Voltage-sense Voltage-compensation 

Voltage-Compensation AEFs

● The voltage-compensation AEFs behave as
a series impedance, such as a CM choke.

● It should be used with other passive filter
components.
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Voltage-sense Current-compensation 

Current-sense Current-compensation 

Current-sense Current-compensation 

● The voltage-compensation AEFs behave as
a shunt impedance, such as a Y-cap.

● It should be used with other filter
components.

Current-Compensation AEFs
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● Immunity against high voltage transient (e.g. surge)
– Protection circuits are required, but it should not affect the performance

● Power supply generation for AEF
– A DC voltage for AEF can be separately made, but it increases cost and size.
– A proper DC voltage is usually available from a gate switching control board.

● Stability in the target applications
– Because AEF should be used with other filter components, the stability

condition depends on the condition of filter and EUT.

Critical Issues in applying AEF to AC lines



(AEF Type 1) : FF-VSVC AEF

● Dongil Shin, et al., and Jingook Kim, "Analysis and Design Guide of Active EMI Filter in a Compact Package for Reduction of Common-
Mode Conducted Emissions", IEEE Trans on EMC, vol. 57, no. 4, pp. 660-671, Aug. 2015.
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Voltage-sense Current-compensation 

Current-sense Voltage-compensation 

Voltage-sense Voltage-compensation 

Current-sense Current-compensation 

Voltage-sense Voltage-compensation Current-sense Current-compensation 
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Impedance 
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Noise 

Attenuation

Two Types of VSVC AEF
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 High Gain amplifier required

Feed back type Feed forward type
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Structure of the Designed CM FF-VSVC AEF

• Common-mode Feed-forward VSVC
• The AEF output for voltage compensation is coupled to both power lines 

through a transformer, and isolated from the high power voltage. 

• The AEF input for voltage sensing is connected to both power lines through 
capacitors and a resistor.
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Feedback Loop Gain of the AEF
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Loop Gain

o

oinj

opinj

v

sC
RsL

AsM
A

1
*




LISNinjcmin ZZZZ 

1

*

12



Noise Attenuation by Impedance Boosting

• The line impedance of the CM choke (     ) is amplified by            .         

• The closed-loop gain (Av) should be close to 1 for high impedance boosting.

• The noise attenuation performance of the AEF is achieved by impedance boosting.
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Design of FF-VSVC AEF (1) - Cin and Csen
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• A large impedance of CM noise source degrades the noise attenuation.
• Cin is required to decrease the effective impedance of CM noise source.
• Both Cin and Csen should be smaller than the Y-cap regulation standard.
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Design of FF-VSVC AEF (2) – Compensation Part

• Aamp is designed to be 1/kinj, and the ratio of Linj and Ro is determined by the minimum 
operation frequency fo. 

• Small Ro and Linj are desired for compact size, but they should be sufficiently large for the 
OP amp output current not to exceed the limit.
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Design of FF-VSVC AEF (3) – Sensing Part

• R1 should be much larger than 1/sCsen even at the minimum operation frequency fo. 

• The amplifier gain Aamp should compensate the coupling coefficient.
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Design of FF-VSVC AEF (4) – Stability Check

• If the feedback system is unstable, the AEF does not work properly or even damaged. 

• After the initial design, the stability should be confirmed by checking the gain margin.

• The gain margin increases, as R1 decrease and Ro increases. 
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VNA Measurement vs. Model
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CE Measurements of the AEF installed on a SMPS

• The OP amp supply is supplied by the SMPS board using regulators.

• Two CM Chokes are replaced by the AEF, and the space is greatly reduced.

• The AEF has the noise attenuation about 10 ~ 12dB. 

• The performance of the (AEF + 1 CM choke) is comparable to 3 CM chokes. 

• The size is greatly reduced!
19



Surge Inflow Path to VSVC AEF

The varistors and GDT arrestor 
cannot block surge under their 
operating voltage.

 Mostly, the varistors and gas discharge tube (GDT) arrestors are installed to primarily 
suppress the surge voltage and current.

 However, they usually operate only for very high surge voltages over several kV.

 Surge protection circuits for the AEF should be separately prepared against the surge 
voltage or current that the varistors and arrestors cannot suppress.
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Overcurrent path to the compensation part 

 Inducted voltage and current can be generated through the injection transformer.

 The current flowing to R2 is almost negligible since R2 is usually much higher than output 
impedance of Op-amp.

 The current injection into the op-amp output stage can be limited by a high value of Ro, 
but higher Ro degrades the noise attenuation performance at low frequency range. 
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Surge Protection Circuit for Compensation Part

When the diode is Turn-off :

When the diode is Turn-on :
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 A transient voltage suppression (TVS) diode is 

installed to limit the current and maintain the 

design freedom of Ro.

 The diode limits the op-amp current as shown in 

the right expressions.

 The resistor of Ro,p1 should be sufficiently robust 

against a large voltage pulse.
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Overvoltage path to the Sensing part

 The sensing part has basically a high input impedance from the AC line, the current is not 
critical issue but an overvoltage can be induced at the op-amp input, Rop,in.

 Most commercial op-amps include internal diodes on each pin for electrostatic discharge 
(ESD) protection, but the on-chip ESD-diode is not suitable for preventing surges.

 External TVS diodes are necessary for reliability from the surges. 
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should be lower than that of internal ESD diode.

23



Surge Protection Circuit for Sensing Part

 The TVS diode can be connected to the node ‘n1’ (option1) and ‘n2’ (option2).

 The voltage at the node n2 is larger than the node n1 so the voltage can be more 
effectively limited in the option 2. However, the junction capacitance of the diode at the 
‘option2’ position can degrade the noise attenuation performance of AEF

 R1 or R1,p1 should be strong against the overvoltage surge pulse.
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(not recommend this placement since 
overcurrent can flow to the diode.)
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2kV Surge Test Set-up

 2kV common mode (LINE-GND)
surge tests had been performed,
and the waveforms are measured
using an oscilloscope.

 The impedance of the CE noise
source is modeled as a capacitor
of 40pF, which represents the
parasitic capacitance between
switching transistors and heat
sinks in SMPS.
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Measured Waveform of Compensation Part 
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 Ro,p1 and Ro,p2 are designed as 100 and 30 , respectively, and the clamping voltage of 
bidirectional TVS diode is around 6V.

 The output current of op-amp is limited to about 200mA when large VLinj is induced as 
shown in the above figures.

 When VLinj is small and diode is  turn-off, current level is similar. (last peak of current)
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Measured Waveform of Sensing Part

 The op-amp input voltage and current are
compared according to the diode position.

 The internal ESD-diode are turned on at
around 6V, while the external TVS diode with
the break-down voltage of 3.5V was
implemented

 R1,p1 and R1,p2 are 3.6k and 2k, respectively.
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Performance Degradation Effect of Diode
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• The 1/Y21 parameter measured by the vector network analyzer (VNA), which can 
demonstrate the boosting of the power line impedance by the AEF.

• Junction capacitance of 2.5pF can cause performance degradation at high frequency 
since the additional pole is added in the transfer function.
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(AEF Type 2) : VSCC AEF

Voltage-sense Current-compensation 

Current-sense Voltage-compensation 

Voltage-sense Voltage-compensation 

Current-sense Current-compensation 
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• Dongil Shin, Sangyeong Jeong, and Jingook Kim, "Quantified Design Guidelines of Compact Transformer -less Active EMI Filter for 
Performance, Stability, and High Voltage Immunity", IEEE Trans on Power Electronics, vol. 33, no. 8, pp. 6723-6737, Aug. 2018.
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Structure of the Designed VSCC AEF

• A simple low-cost compact AEF of the VSCC type without transformers is proposed.

• The amplifier part is designed as a push-pull amplifier with two BJTs. 

• The proposed AEF can enhance the Y-cap in the LCL filter. 
30



Loop Gain and Impedance Analysis
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Noise Attenuation by the AEF

• The effective Y-cap impedance, is much decreased compared to (Zsen||Zinj), which results 
in a large increase of the NA.

• However, ZAEF below 1kHz is rarely affected by the AEF, and the influence of the AEF on 
the safety requirements for the leakage current is very small. 
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Design Target of VSCC AEF
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• The values of ZAEF0,high and fop should be reduced as much as possible while maintaining 
the sum of Cinp, Csen, and Cinj to be under the safety limit. 

• Cinp are used to screen out the noise source impedance, ZEUT .

No damping 
circuits

gm : current gain of the BJT 
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Design of Class AB Push-Pull Amplifier

• Re of 1~4  is necessary to stabilize the BJT bias and the thermal runaway of a BJT.
• RL should be as small as possible while satisfying the BJT current limit. 
• Rbias can be determined from the target fop.
• DC bias point of the BJT in the class AB amplifier is located slightly above the cutoff, and  Rp can be 

extracted by solving the KVL from the base to the emitter.

BJT emitter voltage at the sat. region

The amplifier maximum 
output current

the max limit of the BJT 
collector current
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DC bias analysis of the BJT
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Damping Circuit Design for System Stability (1)

• In Case 1, after Cf and Rin are added, the filter becomes stable, but its NA performance is poor. 
• In Case 2, Lf and Cin are inserted at each damping branch to recover the filter performance, but the  

resonance between Lf and Cf causes a risk of feedback instability.
• In Case 3, Rf is also added to suppress the Q-factor of the resonance. Finally, both stability and 

performance of the AEF are optimized.

• The resonance between the CM choke2 and AEF 
most likely causes the system instability.  

• The damping circuits are essential for feedback 
stability of this AEF. 

Resonance
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Damping Circuit Design for System Stability (2)

• For the system to be stable, the phase of the loop gain, Abt, should remain below 180˚.
• The damping circuits should make the filter stable, while maintaining the performance.

Unstable by the resonance
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Design equations for 
Damping circuits
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Effects of AEF Stability on CE Noises

• The CM noises were measured in both time and frequency domains, when the 
EUT was turned off and only the AEF turned on. 

• Without the damping circuits, the oscillation due to the instability occurs. After 
applying the damping circuits, all the oscillations and harmonic peaks 
disappear.
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Design Flow of the VSCC AEF with Surge Protection

38

• The AEF’s immunity against high voltage 
surge transients is tested and guaranteed. 



CE Measurements of the AEF installed on an Inverter

• For a fair comparison, the value of CY is set as the sum of Csen, 
Cinj, and Cinp, which are utilized in the filter with the AEF. 

• The AEF is implemented into a real 2.2 kW current resonant 
inverter, and the CE are reduced by 5dB to 25 dB at a 
frequency range from 150 kHz to 6 MHz.

• The AEF can be embedded inside a real product without 
increasing the size and cost.
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Other developed AEFs
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makes compact Active EMI Filter.

Most of the critical issues have
been resolved now.
(Reliability, immunity, power, stability)



Conclusion

• An EMI filter employing the AEF can be smaller, cheaper, 
and lighter than a passive-only filter.

• The design guidelines for two types of compact AEFs 
were derived for performance, stability, and high voltage 
immunity.

• More reliable other new AEFs are also being developed.
• The AEFs are ready to be practically utilized in real home 

appliance products.
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