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The effect of surfactants on deposit patterns in evaporating colloidal

droplets
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Abstract

Evaporation of a colloidal droplet typically leaves ring-like deposit patterns on a substrate, now
well-known as the coffee ring effect. We investigate the effect of surfactants on the deposit formation
in a drying droplet. A coarse grained model has been developed to simulate kinetics of surfactants,
and the related deposit formation at the contact line. The model can successfully generate stable
surfactant-induced Marangoni eddies which shows a good agreement with recently-reported experiments.
We show that adsorption rate and electrostatic repulsion are key factors to generate Marangoni eddies.
The effects of surfactants are further investigated by systematically varying adsorption rates, strengths
of repulsion, and initial concentrations of surfactants.
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2.2 Configurational Hamiltonians
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2.2.1 Convective Hamiltonians (Hcony)
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2.2.2 Sorption Hamiltonian for Surfactants (Hsorp)
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2.2.3 Repulsion Hamiltonian for Surfactants (Hejec)
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2.3 Monte Carlo Simulation
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Fig. 1 Time evolutions of surfactant particle
motions during evaporation at the interval of
MCS = 100 from (a) to (o). The used values
1000 and n,s = 1000, Ceony = 10-3,
10.3, and Cge. = O.

are Nggs =
and Cgomp =
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Fig. 2 Final deposit patterns when the

strengths of adsorption are Ciorp
10.3 and Csp, = 10.8 in (a) and (b),
respectively, and side views at MCS
= 850 when Cyp = 103 and Cyop =
10.8 in (c) and (d), respectively.
Other variables are the same for both
cases: nys = 3000, n, = 2000, Ceony
= 10E-3, and MCS = 1500.
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Fig. 1 shows the cross-sectional view of the time
evolution of surfactant transport toward the contact
line when Cgpp = 10.3 at the equal time interval.
In the early time regime, particles near the
substrate are convecting faster than those near the
subsurface to the contact line because of the
Marangoni effect on the surface.

Fig 2 shows the effect of the adsorption strength
Csorp Of surfactants. In general, when the strength of
sorption is larger, Cyrp = 10.8, in Fig 2 (a), the
Marangoni effects are increased, making more
distributed patterns. The comparison is made in Fig
2 (c¢) and (d) when MCS=850.

In Fig 3, we tracks a particles in a droplet with
and without Marangoni effects, respectively. In the
absence of a Marangoni flow, a particle moves
straight to the contact line (in Fig 3(a)), resulting
in a coffee ring, while in the presence of a
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Fig. 3 Tracking of a single particle during
evaporation of a droplet (a) without
surfactants, and (b) with surfactants. The
horizontal axis is radius of a droplet from
0 to 50, and the wvertical axis is MCS
time from 1 to 1500.

Marangoni flow, a particle moves back and forth
near the contact line because of the coupling
effects of a convective flow forward and a
Marangoni flow backward (in Fig 3 (b)).

Further, the change in the strength of adsorption is
possible with varying the initial number or
concentration, of surfactants. The effects are shown
in Fig 4. When the Marangoni effects become
stronger as in Fig 4, the deposition of colloidal
particles at the contact line is delayed until the
final drying time, thus there are fewer particles
deposited at the contact line. Most of particles are
deposited inside of the droplet at the later time

regime.
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Electrostatic repulsion can affect a sorption
kinetics. As shown in Fig 5, adsorption is impeded
until particles aggregate to the enough amount to
overcome the electrostatic repulsion, making more
distributed multi-ring patterns. Fig 5 (b) shows a
tracking of a representative particle when there is
the impedance of adsorption due to repulsion. It
shows the ’Z’ shape motion: Initially a particle is
moving inward with a Marangoni flow, then
outward with a convection, and then finally inward
with a Marangoni flow. The first dominance of a
Marangoni flow occurs due to the surfactants at its
aggregation boundary near center because
concentration gradient or surface tension is highest
there. On the other hand, the third Marangoni flow
occurs with the convected particles aggregated at
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Fig. 4 The effect of ny, when n, =
1000 and (a) ngs = 1000 and (b) ngs
= 6000

the contact line to the center. The results agree
well with the observed in experiments of Still et al
[15].

Fig 6 shows the effect of the strength of repulsion
on particle distributions in the increasing order of
Ceiec at the fixed strengths of Cyop and Ceenv. The
first and the second rows are the distributions of
surfactants and colloidal particles, respectively.

Fig 6 (a) shows the distribution without the
electrostatic repulsion, Cge. = 0, for surfactants. The
surfactant skin distributed on the entire surface is
highlighted while particles near the substrate are
convected to the contact line. When Cgec # 0 as
in Fig 6 (b) and Fig 6 (c), the surface surfactants
are reduced to the number that is predefined by the
strength of repulsion, Cge. Since the uniform
distribution of surfactants on the surface cannot
generate Marangoni eddies, Fig 6 (b) and (e) for
colloidal particles show that the Marangoni eddy
region is mainly restricted to near the CL. The
concentration gradients is locally non-zero due to
the newly arriving particles from the center. Since
the larger Cee induces the stronger repulsion of
particles near the contact line, the region of
Marangoni eddy become larger toward the center,
leading to the wider distribution of colloidal

particles with Cge,, as shown in Fig 6 (f).
4. 2 B

In summary, we have investigated deposit patterns
left after evaporation of a colloidal droplet

containing small ionic surfactants. Based on a
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Fig. 5 The effect of electrostatic repulsion (1)
the top view of final deposits of colloidal
particles, (2) the tracking of a particle, and
(3) the side view of the deposit pattern.
When RT=10E-6; x ,=10E-6; Csun=10-6;

coarse-grained lattice model, the role of surfactants
in the transport and the deposition of colloidal

particles have been systematically investigated.

We found sorption kinetics and electrostatic
repulsion alter the dynamic process of deposition
formation, resulting in distinct patterns. Further, the
electrostatic repulsion plays a crucial role in
generating Marangoni eddies. It is responsible for
the  convection-adsorption-desorption  cycles  of
surfactants. We have also discussed the effect of

concentration of surfactants on the resulted patterns.
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Fig. 6 Side views of SP particles in the
first row and CP particles in the second
row at MCS=680. With the increasing
order of Cge comparison of deposits of
surfactants in the first row and colloidal
particles in the second row. From left to
right, Ceee = (a) 0; (b) 10E-12; and (c)
10E6. Other values are Cyp = 10.3, MCS
= 1500, n,s = 1000, nys = 1000.
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