Al 513] KOSCO SYMPOSIUM &3 (20159 % 78t 3]) 25

Minh Bau Luong” -

Tad - FEA

A DNS Study of RCCI Combustion - Chemical Aspects

Minh Bau Luong®, Gwang Hyeon Yu®, Chun Sang Yoo™
ABSTRACT

The chemical

conditions are investigated to provide

characteristics of RCCI combustion. Chemical

aspects of primary reference fuel
fundamental

(PRF)/air mixture under RCCI
insights into the ignition
explosive mode analysis (CEMA) is

adopted to understand the ignition process of the lean PRF/air mixture by identifying
controlling species and elementary reactions at different locations and times.
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In this
reactivity

study, the chemical aspects of
controlled  compression  ignition
(RCCI) combustion are investigated by
analyzing two-dimensional direct numerical
simulation (2-D DNS) data with the chemical
explosive mode (CEM) analysis. The DNSs
were performed with a 116-species reduced
mechanism of primary reference fuel (PRF).
RCCI combustion uses two fuels with different
reactivity. For example, mheptane (2-C;Hig)
and iso-octane (i-CgHis) can be used because
they are representative of highly reactive and
less reactive fuels, respectively. The overall
low-temperature (L), intermediate-
temperature (IT), and high-temperature (HT)
reaction pathways of n-heptane and 7so-octane
oxidation relevant to RCCI combustion are
shown in Fig. lhe details of the pathways can
be found in [1-2].

The initial conditions of mean pressure,
mean temperature, mean equivalence ratio, and
mean global PRF number for 2-D DNS are p,
= 40 atm, 7, = 900 K, and ¢, = 045, and
PRF50, respectively. Fig. 2 shows the temporal
evolutions of the mean heat release rate (HRR)
and the mean fractions of important species
for 2-D  DNS, which exhibit a staged
consumption of more reactive fuel, n-heptane,
and less reactive fuel, 7iso-octane. n-Heptane is
primarily consumed during the first-stage
ignition, following the LT reaction pathway in
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Fig. 1 Schematic of reaction pathways

Fig. 1. Then, the remaining mheptane and
most 7so-octane are consumed by the IT and
HT reaction pathways. During these stages,
n-heptane and iso-octane are decomposed into
HO,, CHyO, CoH4, and other smaller molecules.
Consumption of CH20, decomposition of HyO,
and production of OH appear to coincide with
the consumption of all remaining sso-octane,
followed by the oxidation of CO into COs.

It is believed that local mixtures with high
n-heptane concentration (e.g.~ PRF30 in the
present study - a mixture of 30% iso-octane
and 70% n-heptane by volume) auto-ignite
first and then initiate adjacent less-reactive
mixtures, resulting in a sequential ignition
process. Therefore, the CEM analysis is first
applied to the O0-D ignition of PRF30/air
mixture under conditions of p,= 40 atm, 7; =

812 K, and ¢, = 0.74
concentration with low 7' due to evaporative

(high n-heptane
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Fig. 2 Temporal evolutions of the mean HRR
and mean mass fractions of important species.
The 0-D ignition is also added for comparison.
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Fig. 3 Temporal evolutions of temperature,
HRR, Da., Aegp=sign(Re(Ae))xlog(1+|Re(rel), El
of important species for 0-D ignition

cooling effect) as shown in Figs. 3 and 4.
Readers are referred to [3-4] for the details of
the CEMA formulation and the application of
the CEMA can be found in [5-8]. Note that
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Fig. 4 Temporal evolutions of Pl of important
reactions for 0-D ignition

(1) a mixture with a negative Re(}),) is

already burned while the ignition of mixture
with a positive Re(A,) is still underway; (2)

important species and reactions are identified
by relative magnitudes of EI and PI values,
respectively. As shown in Fig. 3 and Fig. 4,
during the early stage of combustion, RO,
0,Q00H, and HO2 are controlling species, and
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Fig. 5 Isocontours of sign(Re(Ae))xlog(1+/Re(\el)),
and El of important species at the first-stage
ignition.
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ignition, n-C;H;s and CH-O become the most second-stage ianition
important species. Right after the first-stage ge g
ignition, HyO; + M — OH + OH + M (R16)  .,mhustion process compared to  the

becomes active, and temperature becomes the
most important factor governing the

contributions of 7-C7His, i~CgHig, and HzOq. At

the main combustion event, together with
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temperature, HyO,, OH, and CO become
controlling variables, and H + O, — O + OH
(R1) and CO + OH — CO, + H (R24) are
controlling reactions.

Next, the same EI and PI analyses are
applied to the 2-D DNS and the contours of
EI and PI of critical species and reactions at
different locations and time are shown in Figs.
5-7. The corresponding conditional means on
temperature are calculated and shown in Fig. 8
for <El(vars)|7> and Fig. 9 for <Pl(vars)|7>.
The 2-D CEM results are consistent with the
findings from the O0-D ignition discussed
above. However, it further reveals that at the
low temperature regions (77 < 900 K),
temperature, CH.O and n-C;Hys are the key
variables, while at the intermediate temperature
regions (900 K < 7" < 1000 K), HO, and H-O,
become the most critical species as readily
seen in Fig. 8 Moreover, as shown in Fig. 9,
at 77 ~ 1000-1200 K, the chain-branching
reaction of H.O» via H:O, + M — OH + OH +
M (R16) becomes highly reactive, which
subsequently  results in  initiating  high
temperature chemistry. Moreover, heat 1is
primarily released at the locations of very thin
flame-like  fronts (deflagrations) via the
reaction CO + OH — CO; + H (R24), which is
triggered by the chain branching reaction, H +
0O, — O + OH (R1) as readily observed in
Figs. 7 and 9.

The chemical aspects of the ignition process
of PRF/air mixture under RCCI conditions
were investigated by using CEM analysis. low
temperature, CH>O and n-C;Hjs are identified
as the predominant factors contributed to the
CEM at the first-stage ignition, while the
chain branching reaction of H>O, and the
production reaction of HO; are the main
reactions of the IT combustion. During thermal
ignition, however, temperature is found to be
the predominant factor and high-temperature
reactions represented by H + O, — O + OH
are responsible for the thermal ignition. At
deflagrations, temperature, CO, and OH are the
most important species while the conversion
reaction of CO to CO, and high-temperature
chain branching reaction of H + O, — O +
OH are identified to be important to the CEM.
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