
A New Trajectory Similarity Measure for GPS Data

Anas Ismail
anas.ismail@kaust.edu.sa

Antoine Vigneron
antoine.vigneron@kaust.edu.sa

Visual Computing Center
King Abdullah University of Science and Technology (KAUST)

Thuwal 23955-6900, Saudi Arabia

ABSTRACT
We present a new algorithm for measuring the similarity be-
tween trajectories, and in particular between GPS traces.
We call this new similarity measure the Merge Distance
(MD). Our approach is robust against subsampling and su-
persampling. We perform experiments to compare this new
similarity measure with the two main approaches that have
been used so far: Dynamic Time Warping (DTW) and the
Euclidean distance.

Categories and Subject Descriptors
I.5 [PATTERN RECOGNITION]: I.5.3 Clustering—
Algorithms, Similarity measures

Keywords
Trajectory similarity measure, GPS trajectories, DTW

1. INTRODUCTION
Tracking devices are becoming more and more widely used,
for instance in location based services, transportation sys-
tem management, navigation planning, congestion control,
vehicle fleet management, wildlife tracking. . . The amount of
trajectory data is therefore increasing rapidly. In order to
support these applications, databases management systems
have been specifically designed for handling spatial trajec-
tories [7, 18].

Many applications require to be able to perform classifica-
tion or clustering on this type of data, for instance identify-
ing traveling patterns or frequent behaviors, path planning,
video surveillance [3, 6, 8, 9, 11]. Classification and clus-
tering require a distance function to measure the similarity
between two trajectories. Several such similarity measures
are known, for instance Sum of Pairs Distance [1], Edit Dis-
tance on Real Sequences [2], Edit Distance with Real Penalty
[4], Longest Common Subsequence [23], and Dynamic Time
Warping [19]. Liu and Schneider [12] also considered mea-
sures that are not only geographic, but also semantic. Vla-

chos et al. presented another similarity measure that is ro-
bust against noise [16]. Surveys comparing these algorithms
can be found in [13, 15, 17, 22], and an introduction is given
in the book by Zheng and Zhou [24, Chapter 2.3.2].

In this paper, a trajectory p is a sequence of points p1, . . . , pn.
For instance, a GPS trace would be given as a sequence
of triples (xi, yi, ti), where xi and yi are the coordinates,
and ti is a timestamp. In this case, we have pi = (xi, yi).
The length of this trajectory is `(p) =

∑
i d(pi, pi+1), where

d(pi, pi+1) is the distance between pi and pi+1. We will
not use the timestamps explicitly, but we will only assume
that the points are given in chronological order, and hence
t1 < · · · < tn.

Our goal is to design a new distance function for measuring
similarity between two trajectories that is suitable for GPS
data. In particular, we would like it to be robust under sub-
sampling and supersampling, as GPS devices only provide
sampled points along the actual trajectory. Our new dis-
tance function, called the Merge Distance (MD), is based
on the length of the shortest trajectory that is a superse-
quence of both trajectories. (See Section 2.) Intuitively,
this length should be short when the two trajectories come
from the same curve. The Merge Distance can be computed
in quadratic time, like DTW. Then we perform an experi-
mental comparison between MD, the Euclidean distance and
DTW [19].

2. COMPUTING THE MERGE DISTANCE
In this section, we give a detailed description of our new
similarity measure, that we call the Merge Distance (MD),
and we give an efficient algorithm for computing it. We
assume that two trajectories a and b are given as point se-
quences a1, . . . , an and b1, . . . , bm. We only need to assume
that we can compute the distances between any two of these
points in constant time. So for any 1 ≤ i < i′ ≤ n and any
1 ≤ j ≤ j′, we know d(ai, ai′), d(bj , bj′) and d(ai, bj) where
d is any metric—for instance, in our experiments, the tra-
jectories a and b are sequences of points in R2, and we use
the 2-dimensional Euclidean distance.

The shortest supertrajectory s(a, b) through the sequence a, b
is the trajectory with shortest length and such that a and b
are subsequences of s(a, b). (See Fig. 1, left.) its length is
denoted by `(a, b). We first compute `(a, b) in quadratic time
O(mn) by the following dynamic programming approach.

b1

a1

a2
a3

a4
b2

b3
b

a

s(a, b)

Figure 1: (Left) The green trajectory s(a, b) is the shortest tra-
jectory through a and b. (Right) The red and blue trajectories
come from the same green path. The lengths of the red, green
and blue path are approximately the same.

Let a[1, i] and b[1, j] denote the subtrajectories (a1, a2, . . . , ai)
and (b1, b2, . . . , bj), respectively. We denote by Aj

i (resp.

Bj
i) the length of the shortest trajectory that is a superse-

quence of a[1, i] and b[1, j], and such that its last point is ai

(resp. bj). These quantities satisfy the following relations.
For any 2 ≤ i ≤ m and 1 ≤ j ≤ n, we have

Aj
i = min

(
Aj

i−1 + d(ai−1, ai), B
j
i−1 + d(bj , ai)

)
,

and for any 1 ≤ i ≤ m and 2 ≤ j ≤ n, we have

Bj
i = min

(
Aj−1

i + d(ai, bj), B
j−1
i + d(bj−1, bj)

)
.

The boundary cases are given by the relations

Aj
1 =

(
j−1∑
k=1

d(bk, bk+1)

)
+ d(bj , a1), and

B1
i =

(
i−1∑
k=1

d(ak, ak+1)

)
+ d(ai, b1).

So we can compute all the values Ai,j and Bi,j by dynamic
programming in O(mn) time, and the length of the shortest
supertrajectory is `(a, b) = min(An

m, Bn
m).

After computing the length `(a, b) of the shortest supertra-
jectory, we obtain the merge distance MD(a, b) from the
lengths `(a) and `(b) of the trajectories a and b by the fol-
lowing expression:

MD(a, b) =
2`(a, b)

`(a) + `(b)
− 1.

We now briefly explain why we chose this expression. The
merge distance MD(a, b) is at least as large as `(a) and `(b),
so we normalize it by dividing it by the average of `(a) and
`(b). After subtracting 1, this ensures that MD(a, b) ≥ 0
for any two trajectories a and b, and that MD(a, b) = 0
when a = b. This expression also ensures that MD(a, b) is
invariant under rigid motions. In addition, MD(a, b) is large
when a and b are far apart, because in this case `(a, b) is
much larger than `(a) and `(b).

Intuitively, the merge distance MD(a, b) should be close to
0 when the trajectories a and b are sampled densely enough
from the same curve, because in this case `(a), `(b), and
`(a, b) are roughly equal. (See Fig. 1, right.) It should there-
fore be appropriate for performing similarity search on GPS

Figure 2: Subsampling experiment: Taxi data set consisting of
348 trajectories. A value v on the x-axis represents a threshold
distance ∆ of v percent of the total length of the trajectory.

Figure 3: Subsampling experiment: Taxi data set consisting of
1157 trajectories.

traces, as two GPS traces of the same actual trajectory are
point sequences sampled from the same curve. This was the
original motivation for this work.

3. EXPERIMENTS AND RESULTS
In order to test our algorithm, we conducted several experi-
ments on two real data sets, following the recommendations
of Keogh and Kasetty [10]. We tested our algorithm against
DTW and Euclidean distance.

Similarity measures. The Euclidean distance between two
trajectories a and b is

∑n
i=1 d(ai, bi) where d denote the 2-

dimensional Euclidean distance (we need to assume that the
two trajectories have the same number of points n = m).
DTW [14] is a commonly used similarity measure for time
series which, similarly to our method, can be computed in
quadratic time by dynamic programming, but the quantity
that is minimized is the sum of the distances d(ai, bj) over all
pairings (ai, bj), and not the length of the supertrajectory.

Data sets. We used two data sets of real trajectories. The
truck data set comes from a fleet of trucks[5]. The advantage
of this data set is that it is clustered into two subsets, which
we use it in our classifications experiments. The taxi data
set is the T-Drive data set [20, 21]. It contains data for
thousands of taxis and millions of data points. We divided
the data into different sets of subtrajectories.

Figure 4: Subsampling experiment: First truck data set con-
sisting of 53 trajectories.

Figure 5: Subsampling experiment: Second truck data set con-
sisting of 53 trajectories.

Subsampling experiments. In our first set of experiments,
we compare the three similarity measures (Euclidean, DTW
and MD) under subsampling, and using taxi and truck data
sets. Our subsampling depends on a parameter ∆. The
query q (see below) is subsampled as follows: We pick the
first point q1, then the first point qi, i > j that is at distance
at least ∆ from q1, and we repeat the process until we reach
the end of the query trajectory q. Instead of using this fixed
threshold ∆, the trajectories in the data set are subsampled
using a random threshold taken from a random Gaussian
variable, with mean 0, standard deviation ∆, and ignoring
negative values. This random variable is recomputed at each
step, that is, for each point of the subsampled trajectory.
(We use this random threshold so that the queries are not
subtrajectories of the data, nor the converse.)

For each query trajectory q, we compute the subsampled
version q′ of q as described above. We then find, by brute
force, the trajectory n(q′) in the whole subsampled data set
that is closest to q′. If this point n(q′) is equal to q, we call
it a hit, and otherwise a miss. We repeat this process for
each possible query trajectory q in our data set, and count
the number of hits.

We varied the threshold distance and counted the number
of hits. We compared against DTW and the Euclidean Al-
gorithms. The performance of MD was superior as shown in
figures 2, 3, 4 and 5. The graphs show the number of hits for
MD, DTW, and the Euclidean distance. MD outperforms

Figure 6: Adding Gaussian noise, taxi data set consisting of
796 trajectories. The value v on the x-axis means that we added
random Gaussian noise with mean 0 and standard deviation v×
average distance between two consecutive points in the trajectory.

Figure 7: Adding Gaussian noise, taxi data set consisting of 307
trajectories.

the other two similarity measures, which is not surprising as
we designed it specifically to be robust to subsampling.

Classification experiment. In this experiment, we only
use the truck data set, because the taxi data set is not clus-
tered. The trucks were given in two clusters. The experi-
ment goes as follows. We first pick a query trajectory q in
the data set. We compute the distance between q and all
the other trajectories in D. Let n(q) ∈ D \ {q} denote the
closest such trajectory. If the label of n(q) is the same as q,
we call it a hit, and otherwise a miss. We repeat this process
over all possible query trajectories q ∈ D, and we count the
number of hits. Out of 53 trajectories, MD achieved 47 hits
which is the same as DTW.

Adding Gaussian noise. In this experiment, instead of
changing the resolution, we modify the query trajectory q by
adding Gaussian noise with zero mean and fixed standard
deviation to each point. The standard deviation is a multi-
ple of the average distance between two consecutive points
in the trajectory. We thus obtain a perturbed trajectory
q′, and we find the nearest point n(q′) in the dataset. If
n(q′) = q, we call it a hit. The results of the experiments
can be found in figures 6 and 7. The results show that DTW
and MD are comparable, and outperform the Euclidean dis-
tance in this experiment.

Figure 8: Supersampling experiment. Taxi data set consisting
of 384 trajectories. The value on the x-axis is the percentage of
new points in the trajectory.

Supersampling experiment. In this experiment, we insert
new points along the query trajectory q. These points are
added as follows: Pick two consecutive points at random in
the trajectory, and insert the midpoint. Repeat this process
until the desired number of points is reached; We denote by
q′ the supersampled trajectory obtained this way. Then we
find the closest trajectory n(q) to q′ in the data set according
to the Euclidean distance, DTW, and MD. If n(q) = q, we
call it a hit.

The results of this experiment appear in Figure 8. MD gives
a perfect answer, as the supersampled trajectory q′ has the
same length as the original trajectory q. DTW does not
always give the right answer, and the Euclidean distance
gives worse results.

4. CONCLUSION
In this paper we presented a new distance function, the
merge distance (MD), for measuring trajectory similarity.
We benchmarked it against DTW and the Euclidean dis-
tance through several experiments on real datasets. The re-
sults indicate that MD is robust under subsampling and su-
persampling, and that it has comparable results with DTW
in several other settings. At this point, we do not know
whether MD is a metric or not.

5. ACKNOWLEDGEMENTS
Anas Ismail was supported by KAUST base funding.

6. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity

search in sequence databases. In Proc. 4th International
Conference on Foundations of Data Organization and
Algorithms, FODO ’93, pages 69–84, 1993.

[2] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In Proc.
ACM SIGMOD International Conference on Management
of Data, SIGMOD ’05, pages 491–502, 2005.

[3] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular
routes from trajectories. In Proc. 27th IEEE International
Conference on Data Engineering, ICDE ’11, pages 900–911,
2011.

[4] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie.
Searching trajectories by locations: An efficiency study. In
Proc. ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 255–266, 2010.

[5] E. Frentzos. R-tree portal truck data.
http://www.rtreeportal.org. Online; accessed
December-2014.

[6] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P.
Sondag. Adaptive fastest path computation on a road
network: A traffic mining approach. In Proc. 33rd

International Conference on Very Large Data Bases,
VLDB ’07, pages 794–805, 2007.

[7] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A
foundation for representing and querying moving objects.
ACM Trans. Database Syst., 25(1):1–42, 2000.

[8] W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank.
Semantic-based surveillance video retrieval. IEEE Trans.
Image Processing, pages 1168–1181, 2007.

[9] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid
prediction model for moving objects. In Proc. 24th IEEE
International Conference on Data Engineering, ICDE ’08,
pages 70–79, 2008.

[10] E. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: A survey and empirical demonstration.
Data Min. Knowl. Discov., 7(4):349–371, Oct. 2003.

[11] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering:
A partition-and-group framework. In Proc. ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’07, pages 593–604, 2007.

[12] H. Liu and M. Schneider. Similarity measurement of
moving object trajectories. In Proc. 3rd ACM
SIGSPATIAL International Workshop on GeoStreaming,
IWGS ’12, pages 19–22, 2012.

[13] B. Morris and M. Trivedi. Learning trajectory patterns by
clustering: Experimental studies and comparative
evaluation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, CVPR ’09, pages 312–319, 2009.

[14] C. Myers, L. Rabiner, and A. Rosenberg. Performance
tradeoffs in dynamic time warping algorithms for isolated
word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(6):623–635, 1980.

[15] K. Toohey and M. Duckham. Trajectory similarity
measures. SIGSPATIAL Special, 7(1):43–50, 2015.

[16] M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering
similar multidimensional trajectories. In Proc. 18th
International Conference on Data Engineering, ICDE ’02,
pages 673–684, 2002.

[17] H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou. An
effectiveness study on trajectory similarity measures. In
Proc.24th Australasian Database Conference, ADC ’13,
pages 13–22, 2013.

[18] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving
objects databases: issues and solutions. In Proc. 10th
International Conference on Scientific and Statistical
Database Management, pages 111–122, 1998.

[19] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping. In
Proc. 14th International Conference on Data Engineering,
ICDE ’98, pages 201–208, 1998.

[20] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with
knowledge from the physical world. In Proc. 17th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, pages 316–324,
2011.

[21] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: Driving directions based on taxi
trajectories. In Proc. 18th SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, GIS ’10, pages 99–108, 2010.

[22] Z. Zhang, K. Huang, and T. Tan. Comparison of similarity
measures for trajectory clustering in outdoor surveillance
scenes. In Proc. 18th International Conference on Pattern
Recognition, ICPR ’06, pages 1135–1138, 2006.

[23] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In Proc. 18th International Conference on
World Wide Web, WWW ’09, pages 791–800, 2009.

[24] Y. Zheng and X. Zhou. Computing with Spatial
Trajectories. Springer, November 2011.

