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Let P be a path between two points s and t in a polygonal subdivision T with obstacles
and weighted regions. Given a relative error tolerance ε ∈ (0, 1), we present the first

algorithm to compute a path between s and t that can be deformed to P without
passing over any obstacle and the path cost is within a factor 1+ ε of the optimum. The

running time is O(h
3

ε2
knpolylog(k, n, 1

ε
)), where k is the number of segments in P and

h and n are the numbers of obstacles and vertices in T , respectively. The constant in

the running time of our algorithm depends on some geometric parameters and the ratio
of the maximum region weight to the minimum region weight.
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1. Introduction

Given a path P in the plane, the shortest homotopic path problem is to find a

minimum-cost path that can be deformed to P without crossing any obstacle. The

problem originates from research in VLSI 4,9,15. In some planning system, a user

makes a path sketch for vehicles or people and then the system generates the detailed

optimized path homotopic to the sketch 7. It is natural to consider non-Euclidean

cost models because different regions incur different costs; for example, traveling

in swamps is harder than traveling on roads. Besides applications, the shortest

homotopic path problem is a natural variant of the classical shortest path problem.

1
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With Euclidean cost, the shortest path problem in the plane can be solved in

optimal time using the algorithm of Hershberger and Suri 11. Given a homotopy con-

straint (specified by an input path P with k segments), Hershberger and Snoeyink

showed how to compute the shortest homotopic path in O(kn) time after triangu-

lating the space, where n is the number of obstacle vertices 10. Efrat, Kobourov, and

Lubiw reduced the running time when P is simple: O(kout + k log n+ n
√
n) worst-

case time and O(kout+k log n+n log1+ε n) expected time for any ε > 0, where kout is

the output size 5. Bespamyatnikh improved it further: O(kout+k log n+n log1+ε n)

time when P is simple and O(k log2 n+ n2+ε) time otherwise 2.

The weighted region model is the first non-Euclidean cost model and there has

been much work on it 1,14,16,17. The environment is a polygonal subdivision, each

region f has a weight wf , and the subpath cost within a region f is wf times the

subpath length. Computing the exact shortest path seems hard and only approxima-

tion algorithms are known so far. The first algorithm of Mitchell and Papadimitriou

runs in O(n8 log nNρ
ε ) time, where n is the number of subdivision vertices, the ver-

tices have integer coordinates in [0, N ], and ρ is the ratio of the maximum region

weight to the minimum region weight 16. Subsequently, other algorithms have been

proposed whose running times have a lower dependence on n. The most notable

approach is to compute the shortest path in a graph obtained by discretizing the

input subdivision, so as to approximate the true shortest path 1,17. Sun and Reif

gave an algorithm that runs in O(nε log n
ε log 1

ε ) time, where the hidden constant

depends on some geometric parameters 17. Aleksandrov et al. achieved the best

dependence on n and ε with a running time of O( n√
ε
log n

ε log 1
ε ), where the hidden

constant depends on ρ and some geometric parameters 1. No result is known so far

on the shortest homotopic path problem in weighted regions.

The main result in this paper is a (1 + ε)-approximate shortest homotopic path

algorithm for any ε ∈ (0, 1) in weighted regions. Let P be a path between two

points s and t in a polygonal subdivision T with obstacles and weighted regions.

Self-intersections in P are allowed. Given ε ∈ (0, 1), our algorithm computes a path

between s and t that can be deformed to P without passing over any obstacle

and the path cost is within a factor 1 + ε of the optimum. The running time is

O(h
3

ε2 knpolylog(k, n, 1
ε )), where k is the number of segments in P and h and n are

the numbers of obstacles and vertices in T , respectively. The hidden constant in

our running time depends on ρ and some geometric parameters. These geometric

parameters and the dependence on them are of the same kind as in the work of Sun

and Reif 17 as we use their result as a subroutine.

2. Preliminaries

We denote the input polygonal subdivision by T , which consists of vertices, edges,

and polygonal faces. Some polygonal faces are marked as inaccessible and each con-

nected component of inaccessible faces forms an obstacle. The remaining polygonal

faces are accessible and they are called the regions of T . Each region f is associated
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with a positive weight wf > 0. Without loss of generality, we assume that T is

connected, every obstacle is a simple polygon, every region is a triangle, and the

minimum region weight is equal to 1. We use ρ to denote the maximum region

weight in T .
Consider a line segment pq and a region f . Let |pq| denote the length of pq.

We use int(·) to denote the interior of the operand. If int(pq) ⊂ int(f) or pq is

contained in an edge adjacent to f only, we define costT (pq) = wf |pq|. If pq is

contained in an edge shared between f and another region g, we define costT (pq) =
min{wf , wg}·|pq|. A polygonal path Q is a polyline in T with finitely many segments.

A link of Q is a maximal segment in Q that lies in a region of T . An endpoint of

a link is called a node. We use |Q| to denote the length of Q. We use costT (Q) to

denote the sum of the costs of its links. Notice that |Q| ≤ costT (Q) ≤ ρ|Q|.
We use P to denote the input polygonal path. We use s and t to denote the

endpoints of P and we enforce them to be vertices of T by splitting regions if

necessary. Two paths with the same endpoints are homotopic if one can be deformed

to the other without passing over any obstacle.

3. Overview

We present a simplified version of our strategy to highlight the main ideas. This sim-

plified strategy cannot be turned into an effective algorithm, for instance, because

no algorithm is known for computing an exact shortest path in weighted regions.

We are given a triangulated domain with obstacles, and we want to find a

shortest path homotopic to a given input path P , with endpoints s and t. We first

need to encode the homotopy of P . To this end, we build a spanning tree of the

obstacles, with an extra edge connecting it to a point us on the outer face of our

domain. The edges of this spanning tree are denoted by e1, e2, . . .. We choose each

such edge ei to be a shortest path between two points lying on obstacles, or between

us and a point lying on an obstacle.

We follow P from s to t to trace the edges that it crosses as well the crossing

directions (determined with respect to an arbitrarily chosen orientation of the ei’s).

In Fig. 1, the trace is −→e1←−e3−→e3←−e3←−e2 , where ←−ei means crossing ei from right to left

and −→ei means crossing ei from left to right. We call it the crossing sequence of P . If
←−ei and −→ei appear consecutively in the crossing sequence, we can cancel them. This

corresponds to making a shortcut along ei between the two crossings as illustrated

in Fig. 1. The important point is that the above cancellation does not change the

homotopy of the path. When all cancellations are done, we obtain the canonical

crossing sequence, a unique encoding of the homotopy of P . Indeed, two paths P

and Q with the same endpoints are homotopic iff their canonical crossing sequences

are identical.

Since the tree edges are shortest paths, a shortcut (canceling two adjacent sym-

bols in the crossing sequence) does not increase the path cost. This is ideal because it

means that for any path P , there is a shortest path P ∗ homotopic to P that crosses
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us

P
s

t

−→e1 ←−e1

←−e3−→e3−→e2 ←−e2

−→e1 ←−e1

←−e3−→e3−→e2 ←−e2

us

P
s

t

Fig. 1. The obstacles are shaded. After canceling one ←−e3 and one −→e3, the path P becomes a new
path P ′ that crosses the edge e3 once.

the spanning tree as dictated by the canonical crossing sequence of P . The path P ∗

makes no redundant crossings. A natural approach to compute such a shortest path

is as follows. Assume that the canonical crossing sequence starts with −→e1←−e3←−e2 . . . .
We know that P ∗ will first reach e1 from the left. As we do not know at which point

of e1 it arrives, we can discretize e1 by placing many vertices along it. For each of

these vertices, we compute an approximate shortest path from s, treating the edges

ei of our tree as obstacles. As these paths avoid our spanning tree, they lie in a

simply connected region, so we do not need to consider their homotopy class. Thus,

we can apply known algorithms for approximate shortest paths in weighted regions.

After crossing e1, we know that P ∗ will reach e3 from the right. So we perform

a second round of approximate shortest paths computation (where the paths are

not allowed to cross our spanning tree). We perform this computation with multiple

sources, each source being one of the vertices placed on e1, and each such vertex

having an additive weight which is the approximate shortest distance from s to this

vertex. The target points, again, are the vertices placed densely along e3. We repeat

this process for each symbol in the canonical crossing sequence, and we obtain an

approximate shortest path homotopic to P .

Our actual algorithm follows similar ideas, but there are important differences as

we face several difficulties. The most obvious one is that no algorithm is known for

computing an exact shortest path in weighted regions. Second, the spanning tree

calls for repeated shortest path computations in order to connect the obstacles,

which is rather wasteful. So we replace the spanning tree above by another tree,

the anchor tree, which is basically an approximate shortest path tree from us to

one vertex of each obstacle. The homotopy encoding is still based on the crossings

between P and the anchor tree, but we change it slightly for technical convenience.

Since the paths in the anchor tree are not exact shortest paths, we cannot expect

a shortest path homotopic to P to cross the anchor tree exactly as dictated by

the canonical crossing sequence. To eliminate the redundant crossings, we have to

reroute the optimal path along the anchor tree in the analysis. This demands a

careful construction of the anchor tree so that the rerouting error is small. Another

major efficiency issue is that we need to keep the canonical crossing sequence short

because the running time of our algorithm is directly related to it. Finally, to make
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our algorithm run faster, we will not discretize the anchor tree. We will still run one

round of approximate shortest paths computation for each symbol in the canoni-

cal crossing sequence, but in the absence of vertices on the anchor tree, multiple

crossings of the anchor tree (instead of just one) may have to be taken at the end

of a round. We need to do this quickly while conforming to the canonical crossing

sequence. The rest of this paper explains how to handle these difficulties.

4. The subdivision S and the graph Hε

We introduce a graph Hε which is the discretization of some subset of T based

on the scheme of Sun and Reif 17. We briefly review their construction below.

Given a subdivision K with triangular regions, Sun and Reif place O( 1ε log
1
ε ) Steiner

points on each edge of K, where the hidden constant depends on some geometric

parameters. The vertices of K and these Steiner points form the vertex set of a

graph which we denote by Gε(K). Every two vertices p and q of Gε(K) on the

boundary of a region are connected by the edge pq with weight costK(pq). There are
O( 1ε |K| log 1

ε ) vertices and O( 1
ε2 |K| log

2 1
ε ) edges in Gε(K). So Dijkstra’s algorithm

returns a shortest path or a shortest path tree in Gε(K) in O( 1
ε2 |K| log

|K|
ε log 1

ε )

time 8. A shortest path in Gε(K) is a (1 + ε)-approximate shortest path in K. Sun
and Reif gave a faster shortest path algorithm that avoids generating the edges of

Gε(K), but we do not need this as other tasks will prove to be more time-consuming.

Aleksandrov et al. has a related construction, which places Steiner points in the

interior of each triangle 1. It has better dependence on ε, but we cannot use it due

to some technical difficulties.

The graph Hε is Gε(S) for some refinement S of a subset of T . We will run

multiple rounds of Dijkstra’s algorithm on a subgraph Halg of Hε to generate the

(1+ ε)-approximate shortest homotopic path. A dense enough discretization is suf-

ficient for this purpose. We will use another subgraph Hfen of Hε to compute the

anchor tree for encoding the homotopy of P . This requires Hfen to have some extra

properties as we explain later in this section. Although Halg and Hfen serve different

purposes, the (1+ε)-approximate shortest homotopic path (in Halg) has to interact

with the anchor tree (in Hfen), i.e., cross it. The relations among Hε, Halg, and Hfen

facilitate the analysis.

Let Lst denote the length of a minimum-length path homotopic to P . Let B

denote an axis-parallel box centered at s with width 4ρLst. The cost of the shortest

path homotopic to P is between Lst and ρLst. So for any ε ∈ (0, 1), the box B

contains any (1 + ε)-approximate shortest path homotopic to P , which means that

only the obstacles inside B are relevant. The restriction to B controls the costs

of the paths in the anchor tree, which helps to bound the length of the canonical

crossing sequence of P .

For each obstacle inside B, we pick one of its vertices to be an anchor. We

compute the anchor triangulation, a triangulation of the anchors as well as the

four corners of B. We superimpose the anchor triangulation on B ∩ T to obtain a
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(a) (b)

Fig. 2. The obstacles are shaded. We ignore the box B for simplicity. In (a), the black dots denote
the anchors and the dashed segments form the anchor triangulation. In (b), the circles have radii

δfen and the white dots are the extra vertices inserted.

subdivision T ′. Notice that an anchor triangulation edge may be split into several

edges in T ′ by the obstacles and the edges of B ∩ T . Fig. 2(a) gives an illustration.

The anchor triangulation edges provide shortcuts in T ′ that one can take in building

the anchor tree. This controls the length of the canonical crossing sequence of P .

We also need to prevent any path in the anchor tree from spiraling around

the obstacles in order to keep the canonical crossing sequence of P short. For this

purpose, for each edge uv in the anchor triangulation, the subset of uv within a

distance δfen = εLst/Θ(ρkn)O(1) from u or v plays a special role in building the

anchor tree. (We do not allow the tree to cross it.) Either this subset consists of

two segments ux and vy or it is the whole edge uv. In the former case, we insert x

and y as extra vertices into T ′ if they do not fall inside obstacles. Fig. 2(b) shows

an example. The exact value of δfen will be specified in the proof of our main result

Theorem 7.1.

Finally, the subdivision S is the refinement of T ′ so that all regions become tri-

angles. Without loss of generality, we assume that S is connected. It has O(hn) ver-

tices and O(hn) edges. We construct the graph Hε as Gε(S), which has O(hεn log 1
ε )

vertices and O( h
ε2n log2 1

ε ) edges.

5. Anchor tree

We introduce an anchor tree A to connect the anchors. The crossings between A
and P will be used to encode the homotopy of P . Let us be a highest vertex in S.
The anchor tree A consists of two parts, a non-self-intersecting subtree in S that

is rooted at us and spans all anchors, and a ray that shoots upward from us to

infinity. So A is a rooted tree with the root at vertical infinity.

Let a1, a2, . . . , ah be the enumeration of anchors in A in post-order. Let αi

denote the directed tree path in A from ai to vertical infinity. Although the paths

α1, α2, . . . may overlap, we view them as non-crossing and side by side. Fig. 3(a)

shows an example. The crossing sequence of P is built by traversing P from s to t,

appending a symbol ←−ai or −→ai whenever P crosses αi. We append −→ai if αi is crossed

from left to right with respect to its direction. We append ←−ai otherwise. Fig. 3(b)
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α1α2 α3
α4
α5

a1 a2 a3 a4
a5

a5
a1 a2 a3 a4

(a) (b)

Fig. 3. In (b), the crossing sequence of the solid path is −→a1
−→a2
−→a3
−→a4
−→a5
←−a5
←−a4
←−a3
−→a3
←−a3
−→a3
−→a4
−→a5. It can be

reduced to the crossing sequence −→a1
−→a2
−→a3
−→a4
−→a5 of the dashed path.

(a) (b)

Fig. 4. The shaded regions are obstacles. We ignore the box B for simplicity. In (a), the black dots

denote the anchors, the dashed segments form the anchor triangulation, and the dashed circles
have radii δfen. In (b), the fences are shown as bold segments and the refined subdivision is S.
Notice that a fence may consist of several edges of S.

shows an example. If←−ai and −→ai are adjacent in the crossing sequence, we can cancel

them. It corresponds to a path deformation that does not pass over any obstacle.

Repeating until no other symbol can be deleted gives the unique canonical crossing

sequence as implied by Lemma 5.1 below. Cabello et al. 3 used vertical lines though

obstacles to define the crossing sequence when the path cost is its length. The anchor

tree generalizes this idea. The same idea of using a tree to encode homotopy was

also used by Kaufmann and Mehlhorn 13. For completeness, we include a proof of

Lemma 5.1 in the appendix.

Lemma 5.1. Let H denote R
2 minus the obstacles with anchors. Two paths in

H with the same endpoints are homotopic if and only if their canonical crossing

sequences are identical.

We construct the subtree of A rooted at us as a shortest path tree in some

subgraph of Hε as follows. For edge uv of the anchor triangulation, the subset

of uv within a distance δfen from u or v consists of collinear edges in S. Due to

obstacles, these collinear edges may form several connected components and we call
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each connected component a fence. Fig. 4 shows an example. To keep the canonical

crossing sequence of P short, we should prevent any path in A from spiraling around

the obstacles and hence anchors. We achieve this by making the interior of fences

impenetrable. This is easily done by splitting some vertices of Hε as follows. We

split every vertex v of S in the interior of a fence into two copies, one on each side

of the fence, and these two copies are not connected. Any edge incident to v is made

incident to the copy of v on the same side of the fence. Notice that one can still

pass through a fence at its endpoints. We use Hfen to denote the resulting graph,

which is like a subgraph of Hε in the sense that every edge in Hfen is contained in

Hε. We compute the subtree of A rooted at us as the shortest path tree in Hfen

from us to all anchors. The next result states several properties of A.

Lemma 5.2. A does not intersect itself, has O(hεn log 1
ε ) size, and can be computed

in O( h
ε2n log n

ε log 1
ε ) time. Let γi, i ∈ [1, h], denote the paths in A between us and

the anchors.

(i) costT (γi) = O(ρ2nLst).

(ii) The subpath of γi between any two nodes p and q has cost at most dpq +

O(ρhδfen), where dpq is the shortest path cost in Hε between p and q.

(iii) Let y be a crossing point between γi and an edge vw of the anchor triangula-

tion. If |vy| < δfen, then y lies on an obstacle.

(iv) Suppose that γi intersects an edge of the anchor triangulation at two points x

and y. If xy does not intersect any obstacle, the subpath of γi between x and

y has cost at most costT (xy).

Proof. Since A is a shortest path tree in Hfen, if two edges pq and p′q′ of A indeed

cross each other, they must do so inside a region of S. Thus, pq and p′q′ are the

diagonals of a convex quadrilateral inside this region. But then replacing pq and

p′q′ by pp′ and qq′ would shorten some paths in A, a contradiction. The size of A
follow from the previous discussion.

Consider (i). A geodesic path in S from us to any anchor has O(n) segments,

each with length O(ρLst). So the geodesic path has cost O(ρ2nLst) and so does

γi. Consider (ii). The shortest path in Hε between p and q may cross a fence ℓ

several times and it is easy to reroute around ℓ with detour length O(|ℓ|) and cost

O(ρ|ℓ|). Rerouting around all fences gives a path in Hfen between p and q, which

cannot be shorter than the subpath of γi between p and q. The fences form O(h)

collinear groups, each has a total length no more than 2δfen. So the total rerouting

error is O(ρhδfen). Consider (iii). If |vy| < δfen, then y lies on a fence. So y is a

fence endpoint as γi can only cross a fence at its endpoints. By construction, if an

endpoint of a fence on vw is at distance less than δfen from v, this endpoint lies on

an obstacle. Consider (iv). Observe that xy consists of a linear sequence of edges in

Hfen. If (iv) is false, we can shorten γi as shown in Fig. 5, a contradiction. �
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γiγi

xyxy

Fig. 5. Rerouting along xy to shorten γi.

γ

x′

ℓ
x

γ

x′

ℓ
x

γ

ℓ

x′x

Fig. 6. Morph xx′ to follow the dashed curve. This eliminates the crossings x and x′ on the left,
x in the middle, and x′ on the right.

We prove a bound on the length of a canonical crossing sequence that has a low

dependence on n and ε. This is the key to achieving a running time nearly linear in

kn.

Lemma 5.3. The canonical crossing sequence SP of P has length O(ρh2k log ρkn
ε ).

Proof. We break the k segments in P at their crossings with the vertical ray in A.
There are at most k such crossings, so P is partitioned into at most 2k subsegments

such that each subsegment may cross the subtree of A rooted at us but not the

vertical ray. Our strategy is to deform each subsegment and show an O(ρh log ρkn
ε )

bound on the number of crossings between the deformed subsegment and any path

from us to an anchor in A.
Take a subsegment ℓ and a path γ in A from us to an anchor. Let x and x′ be

two crossings between ℓ and γ that appear consecutively along γ. The subpath of γ

between x and x′ forms a simple cycle with xx′. If no obstacle lies inside this cycle,

we deform ℓ by morphing xx′ to a curve next to the subpath of γ between x and

x′ as shown in Fig. 6. This eliminates the crossing x, x′, or both. The deformation

does not pass over any obstacle as no obstacle lies inside the cycle. So the deformed

ℓ is homotopic to ℓ. The deformed ℓ has no new crossing with A because xx′ is
replaced by a curve next to a subpath in A. The choices of x and x′ imply that

γ does not cross ℓ between x and x′. So the deformed ℓ does not cross itself. We

repeat until no more crossings with A can be eliminated. In general, as the current

deformed ℓ is not straight, we need to morph its subpath between the crossings x

and x′ instead of the segment xx′. But the morphings are similar to those in Fig. 6.

The next proposition follows by induction.

Proposition 5.1. Any subsegment ℓ can be deformed to a homotopic curve

σ such that σ does not cross itself, and if a path γ in A from us to an anchor

crosses σ at x and x′ consecutively along γ, then some obstacle lies inside

the cycle formed by the subpaths of γ and σ between x and x′.
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Let σ be the curve homotopic to ℓ in Proposition 5.1. Take a path γ in A from

us to an anchor. We define γ(p, q) to be the subcurve of γ between two points p and

q on it. The subcurve σ(p, q) is similarly defined. Let x1, x2, . . . denote the crossings

between γ and σ. All these crossings lie on ℓ. Consider the set of cycles {Cij =

σ(xi, xj) ∪ γ(xi, xj) : xi and xj are consecutive along γ}. We order the subscripts

of Cij such that us is closer to xi than xj along γ. Each cycle Cij is simple because

σ(xi, xj) does not cross itself by Proposition 5.1.

Proposition 5.1 allows us to cluster cycles that enclose the same anchors, and

cycles in the same cluster are nested. Rotate the plane so that the subsegment ℓ

is horizontal. We divide a cluster into a left-group and a right-group, depending

on whether xi lies to the left or right of xj on ℓ. There are at most 2h left- and

right-groups. We show that a left-group has O(ρ log ρkn
ε ) cycles as follows. The size

of a right-group can be analyzed similarly.

Refer to Fig. 7(a) which illustrates a left-group {Ci1j1 , Ci2j2 , . . . , Cimjm}. There
exists an edge e of the anchor triangulation that cuts through all cycles in the left-

group and ends at some anchor a inside the innermost cycle. (The existence of e is

ensured because we include the corners of the box B in the anchor triangulation.)

Walk along e away from a. Identify the first crossing between e and each cycle in

the left-group. Label these crossings as y1, y2, . . . , ym at increasing distances from

a. Label the cycles so that yk lies on Cikjk for k ∈ [1,m]. It follows that Cikjk is

nested in Cik+1jk+1
for k ∈ [1,m− 1].

Proposition 5.2. For k ∈ [2,m], we have |ayk| ≥ (1 + 1/ρ)k−2|ay2|.
Proof. By construction, yk+1 is the first crossing between e and Cik+1jk+1

when we walk along e from the anchor a. Let zk be the last crossing between

e and Cikjk before we hit yk+1. So zkyk+1 ⊆ ykyk+1.

We prove the proposition by induction. The base case of k = 2 is trivial.

Assume that the proposition is true for some k ∈ [2,m− 1]. We show that

if the proposition is false for k + 1, it is possible to shortcut the path by

connecting yk+1 and zk. Suppose that xik , xjk , xik+1
and xjk+1

appear in

this order along γ from us.

Refer to Fig. 7(b). The curve γ(xik+1
, yk+1) ∪ yk+1zk ∪ γ(zk, xjk) forms a

loop with the horizontal segment xik+1
xjk that encloses the anchor a. Thus,

|γ(xik+1
, yk+1)|+ |zkyk+1|+ |γ(zk, xjk)| ≥ |ayk+1|, which implies that

|γ(xik+1
, yk+1)|+ |γ(zk, xjk)| ≥ |ayk|. (5.1)

Recall the assumption that xik , xjk , xik+1
and xjk+1

appear in this order

along γ from us. Thus,

γ(zk, xjk) ∪ γ(xik+1
, yk+1) ⊂ γ(zk, yk+1). (5.2)

The segment yk+1zk is sandwiched between Cik+1jk+1
and Cikjk , which en-

close the same set of anchors. Thus, yk+1zk does not intersect any obstacle

and Lemma 5.2(iv) is applicable. It implies that the cost of γ(zk, yk+1) is
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xj3xi3

σ
xi1 xj2xj1xi2

y1

a

e
y3

y2

xik
xjk

zk

a

yk+1

yk

xik+1
xjk+1

(a) (b)

Fig. 7. (a) The shaded triangles are obstacles. The dashed line denotes ℓ. The polygonal curve
denotes σ. The bold curves denote γ(xi1 , xj1), γ(xi2 , xj2 ), and γ(xi3 , xj3 ). (b) The segment zkyk+1

does not intersect any obstacle.

at most costT (zkyk+1) ≤ ρ|zkyk+1|. Combining this inequality with (5.1)

and (5.2), we obtain |zkyk+1| ≥ |ayk|/ρ. By a similar argument, we obtain

the same inequality when xik+1
, xjk+1

, xik , and xjk appear in this order

along γ from us. Hence, |ayk+1| = |ayk| + |ykyk+1| ≥ |ayk| + |zkyk+1| ≥
(1 + 1/ρ)|ayk|, which is at least (1 + 1/ρ)k−1|ay2| by induction. �

We claim that |ay2| ≥ δfen. If not, Lemma 5.2(iii) implies that y2 lies on an

obstacle, which must be sandwiched between Ci1j1 and Ci2j2 or between Ci2j2 and

Ci3j3 . This is a contradiction because the cycles in the left-group enclose the same

set of anchors. By Proposition 5.2, (1 + 1/ρ)m−2δfen ≤ (1 + 1/ρ)m−2|ay2| ≤ |aym|.
As aym lies inside the box B enclosing the subdivision S and the graph Hfen,

|aym| is at most the length of the diagonal of B, which is O(ρLst). Thus, m =

O( 1
log(1+1/ρ) log ρLst

δfen
) = O(ρ log ρLst

δfen
) = O(ρ log ρkn

ε ) as δfen = εLst/Θ(ρkn)O(1).

Since there are at most 2h groups of cycles and h paths in A, the number of

canonical crossings between A and ℓ is O(ρh2 log ρkn
ε ). As P has k segments, the

canonical crossing sequence length becomes O(ρh2k log ρkn
ε ). �

6. Rerouting along A

Our algorithm will run |SP |+1 rounds of shortest path computation starting from

the source s in a subgraph of Hε. In each round, A is treated as an obstacle. At

the end of each round, we cross A in a way compatible with the remaining symbols

in SP . We reroute the optimum along A in the analysis so that the structure of

the rerouted optimum is similar to ours. So our path is as short as the rerouted

optimum. It is thus important to to bound the rerouting error. In this section, we

explain the rerouting for a path Q in Hε with canonical crossing sequence SQ.

Split Q into a concatenation of subpaths and edges Q1 · u1v1 · Q2 · u2v2 · · ·
such that each subpath Qi has no canonical crossing and each uivi crosses A at

one or more canonical crossings in SQ. In the following, we describe successive

conversions of Qi, Qi → Q1
i → Q2

i → Q3
i , such that Q3

i and Qi are homotopic.
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A A A

(a) Qi (b) Q1
i (c) Q2

i

Fig. 8. Qi → Q1
i → Q2

i .

All crossings between Qi and A are cancellable and canceling two adjacent symbols

can be implemented by rerouting Qi along A as illustrated by the conversion from

Fig. 8(a) to Fig. 8(b). After doing all cancellations, we get a path Q1
i that does not

cross A. For each path γ in A from us to some anchor, we shortcut Q1
i along the

right side of γ between the first and last contact points of Q1
i (in order along Q1

i )

on the right side of γ, and we shortcut analogously along the left side of γ. The

resulting path is Q2
i . This step is illustrated by the conversion from Fig. 8(b) to

Fig. 8(c).

Finally, we convert Q2
i to a homotopic path Q3

i in Hε as follows. The path Q2
i

consists of several disjoint maximal subpaths that are delimited by some vertices

of Hε. (The remaining nodes of Q2
i are turns that Q2

i make at the edges of A.)
Each such maximal subpath lies in a region of S with the subpath endpoints on the

boundary of this region. We straighten Q2
i by replacing each such subpath by the

edge between the subpath endpoints. This produces Q3
i .

Lemma 6.1. Let Q be a path in Hε with canonical crossing sequence SQ. We can

convert Q to a homotopic path Q3 in Hε such that:

(i) Q3 is the concatenation Q3
1 · u1v1 ·Q3

2 · u2v2 · · · such that Q3
i does not cross A

and the edge uivi crosses A at one or more canonical crossings in SQ.

(ii) costS(Q3) ≤ costS(Q) +O(ρh2δfen|SQ|).

Proof. Consider (i). Since we preserve the edges uivi that cross A at one or more

canonical crossings in SQ, it suffices to show that Q3
i does not cross A. By construc-

tion, Q2
i does not cross A. When we convert Q2

i to Q3
i , we shortcut maximal sub-

paths delimited by some vertices of Hε. Let (w, . . . , w
′) be one such subpath. Note

that (w, . . . , w′) lies in some region f of S, the intermediate nodes of (w, . . . , w′)
lie in the interior of f , and w and w′ are vertices of Hε on the boundary of f . If

an edge e of A crosses the segment ww′, then e is a chord of f and e must cross

(w, . . . , w′) too. This is impossible as Q2
i does not cross A. Hence, the correctness

of (i) follows.

Consider the example in Fig. 9, where γj is a path in A from us to an anchor
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γj

Q2
i

Qi

a b
p

q

u vcd

x
y

Fig. 9. The dashed polyline denotes Qi \Q
2
i .

Q2
i

βj,L

a b
p

q

u vcd

x

y

(a)

Q3
i

β′j,L
a b

p

q

u vcd

(b)

Fig. 10. In (a), subpaths between Qi and γj for j ∈ [1, h] are swapped to yield Q2
i and βj,L for

j ∈ [1, h]. In (b), Q2
i and βj,L for j ∈ [1, h] are straightened to yield Q3

i and β′
j,L for j ∈ [1, h].

aj . To bound the rerouting error, it is instructive to view the conversion from Q2
i to

Q3
i as swapping some subpaths of Qi and γj for j ∈ [1, h] from Fig. 9 to Fig. 10(a)

to yield Q2
i and βj,L for j ∈ [1, h], followed by path straightening in Fig. 10(b) to

yield Q3
i and β′j,L for j ∈ [1, h]. The straightening of Q2

i is the conversion from Q2
i

to Q3
i as explained previously. We apply the same straightening to obtain β′j,L from

βj,L. We label βj,L and β′j,L with a subscript L to signify the swapping done for the

overlap between Q2
i and γj on the left side of γj . In general, Q2

i may also overlap

with γj on its right side and the swapping and straightening would produce another



January 2, 2011 17:19 WSPC/INSTRUCTION FILE paper

14

βj,R and β′j,R. Therefore,

h∑

j=1

(costS(β
′
j,L) + costS(β

′
j,R)) + costS(Q

3
i )

≤
h∑

j=1

(costS(βj,L) + costS(βj,R)) + costS(Q
2
i )

=

h∑

j=1

2 costS(γj) + costS(Qi).

By Lemma 5.2(ii), we have

h∑

j=1

2 costS(γj) ≤
h∑

j=1

(costS(β
′
j,L) + costS(β

′
j,R)) +O(ρh2δfen).

It follows that costS(Q3
i ) ≤ costS Qi + O(ρh2δfen) = costT Qi + O(ρh2δfen) and

hence

costS(Q
3) ≤ costT Q+O(ρh2δfen|SQ|).

�

7. Main algorithm

First, we construct A using Lemma 5.2 and superimpose it on S in time linear in

the size of A. Since A bends only at vertices of Hε on the edges of S, no new nodes

are generated, so the overlay has size O(hεn log 1
ε ) by Lemma 5.2.

Next, we obtain Halg from Hε as follows. The neighborhood of each vertex in

A is cut into 2 to h connected components by A. We split each vertex in A and

place one copy in each connected component. The copies of the same vertex have

a natural circular order around the vertex. We connect two copies of a vertex by

a dummy edge if they are adjacent in the circular order. In total, we add O(|A|)
copies and O(|A|) dummy edges. Then we obtain Halg deleting any edge of Hε that

intersecting A and all the dummy edges. (We do not need the dummy edges in

Halg, but we need to use them to cross A after each round of the shortest path

computation.)

Take a (triangular) region f of S. Each edge of A in f is a chord. Since A does

not intersect itself, its edges divide f into several zones. We partition the vertices

of Hε on the boundary of f according to the zones that they belong to. Vertices

in the same zone are given the same zone id. This can be done in O( 1ε log
1
ε ) time

by walking around the boundary of f once. Then, an edge pq of Hε in f intersects

an edge of A iff the zone ids of p and q are different. Hence, it takes O(1) time to

check one edge and hence Halg can be constructed in O( h
ε2n log2 1

ε ) time.
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We intersect A with P by brute force to find its canonical crossing sequence

SP in O(hε kn log 1
ε ) time. We run |SP |+ 1 rounds of shortest path computation in

Halg. In the initialization, for each vertex p of Halg, we set a vector p[i] = ∞ for

i ∈ [0, |SP |]. The entry p[i] is supposed to store the shortest path cost in Halg from

s to p subject to the constraint that the canonical crossing sequence of the path

consists of the first i symbols in SP .

In the first round, we set s[0] = 0 and compute shortest paths in Halg from s

to all other vertices. The shortest path cost of a vertex p is stored at p[0] during

this round. For each edge of Hε and each dummy edge pq, let σpq denote the

canonical crossing sequence of pq. At the end of the first round, for any edge of Hε

and any dummy edge pq such that σpq is a prefix of SP , we update q[|σpq|] to be

min{q[|σpq|], p[0] + costS(pq)}. The cost of pq is 0 if it is a dummy edge.

In general, for j ≥ 1, the (j + 1)th round begins with selecting vertices v of

Halg such that v[j] 6=∞ and run Dijkstra’s algorithm in Halg from these vertices as

multiple sources. This is akin to the computation of a weighted Voronoi diagram.

The shortest path cost of a vertex p is stored at p[j] during this round. Similarly,

at the end of the (j + 1)th round, we find all the edges of Hε and dummy edges

pq such that σpq matches SP from the (j + 1)th to the (j + |σpq|)th symbols, and

update q[j + |σpq|]. That is, q[j + |σpq|] = min{q[j + |σpq|], p[j] + costS(pq)}. The
final shortest path cost from s to t is stored at t[|SP |].

At the end of each round, we have to find all eligible edges to update the entries

q[·]’s. A dummy edge has a canonical crossing sequence with length O(h). For an

edge pq in Hε, it lies inside a region. Such an edge pq may cross O( 1ε log
1
ε ) segments

in A and crossing one such segment corresponds to gaining up to O(h) symbols.

It means that |σpq| = O(hε log
1
ε ). It is time-consuming to check every edge in Hε

and every dummy edge to identify the eligible ones. Fortunately, we can do it more

efficiently by preprocessing.

Lemma 7.1. We can build a data structure in O(|SP | hε2n log2 1
ε ) time so as to

report the eligible edges in time proportional to their number at the end of each

round.

Proof. We first consider the regular edges in Hε. Each region f of S is split by A
into disjoint zones, each being a simple polygon. There are O( 1ε log

1
ε ) zones in f

because each zone contains some vertex of Hε in f . We can build a dual tree Tf to

model the adjacency of the zones in f . Each node of Tf represents a zone and two

zones are connected in Tf if they are adjacent. Building Tf takes O( 1ε log
1
ε ) time.

Fig. 11 shows the zones in a region f .

For each zone z in f , root Tf at z and attach z to a dummy parent. Then we

expand each edge between a zone z′ and its child zone z′′ into O(h) edges, each

containing one symbol that is gained by going from zone z′ to zone z′′. Denote

by Tf,z the resulting rooted tree. It has O(hε log
1
ε ) size. Fig.12 shows Tf,z1 for the

example in Fig. 11. In Tf,z, we can read off the symbol sequence from any vertex p in

zone z to any vertex q in another zone. But this sequence may not be canonical. To
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z1

us

a1
a2

a3

a4

a5

z2

z3

z4

z5
z6

Fig. 11. The division of a region into zones.

Tf,z1

←−a5

−→a2
z1 z2 z3

z5 z6−→a4

−→a5
−→a4

z4

←−a3
−→a1

−→a3

Fig. 12. Tf,z1 .

T̃f,z1

−→a4
z6

−→a3
−→a2

−→a1
z1

−→a4

z2 z3−→a5
−→a4

z4←−a3

z5

Fig. 13. T̃f,z1 .

obtain canonical sequences, we perform a BFS of Tf,z while modifying Tf,z on the

fly. Suppose that we visit a node x from its parent x′ and let φ be the symbol on the

edge xx′. The path from z to x′ gives a sequence of symbols φ1, φ2, · · · , φi−1, φi. If φ

does not cancel φi, we just continue with the BFS. If φ cancels φi, we detach x from

x′, make x a child of the grandparent x∗ of x′, and set φi−1 to be the symbol on the

edge xx∗. Then, we continue with the BFS. Basically, we are reducing the crossing

sequences while generating them. Let T̃f,z denote the final rooted tree converted

from Tf,z, which is a prefix tree of canonical crossing sequences from z to all other

zones in f . Fig. 13 shows T̃f,z1 obtained from Tf,z1 in Fig. 12.

Then, we find in SP the occurrences of all canonical crossing sequences in T̃f,z as

follows. We construct a suffix tree for SP in O(|SP |) time 6. Next, we traverse T̃f,z in

a depth-first manner while navigating up and down the suffix tree correspondingly.

It takes O(|T̃f,z| + |SP |) time to find for each sequence σ starting from z in T̃f,z

the subtree of the suffix tree that stores exactly the suffixes of SP beginning with

σ, which can then be traversed to output all occurrences of σ. There are O( 1ε log
1
ε )

sequences in T̃f,z and each appears at most |SP | times in SP . Therefore, the total
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time to find all the occurrences of the sequences in T̃f,z in SP is O(|T̃f,z|+ |SP |+
|SP | 1ε log 1

ε ) = O(|SP | 1ε log 1
ε ). Repeating for all zones in all regions gives a running

time of O(|SP | hε2n log2 1
ε ). We use |SP | lists to store the results. The jth list contains

all zone pairs (z, z′) such that the canonical crossing sequence from z to z′ matches

SP at the jth position. We also build a two-dimensional array E[·, ·] indexed by

zone pairs such that E[z, z′] stores the vertex pair (p, q) where p ∈ z and q ∈ z′.
This takes O( h

ε2n log2 1
ε ) time. At the end of the jth round, for each zone pair (z, z′)

in the jth list, we report all vertex pairs in E[z, z′].
Consider the dummy edges. For each dummy edge pq, we search for σpq in the

suffix tree of SP . We can find all the occurrences of σpq in SP in O(|SP |+ h) time,

since |σpq| = O(h). In total, it takes O(|SP |hεn log 1
ε ) time. We again use |SP | lists to

store the results. The jth list contains all the dummy edges such that σpq matches

SP at position j. Then, at the end of round j, we can report all the eligible dummy

edges by just outputting the jth list. �

Theorem 7.1. Let P be a polygonal path of k segments in a weighted subdivision

T with h obstacles and n vertices. For any ε ∈ (0, 1), we can compute a (1 + ε)-

approximate shortest path homotopic to P in O(h
3

ε2 knpolylog(k, n, 1
ε )) time, where

the hidden constant depends on ρ and some geometric parameters.

Proof. Let O be the shortest path in T homotopic to P . Using the analysis of

Sun and Reif 17, the path O can be snapped to a 1 + ε homotopic approximation

O′ in Hε. Then, O
′ can be converted to a path O′′ that satisfies Lemma 6.1. Our

algorithm returns a path cost at most costS(O′′) ≤ costS(O′) + O(ρh2δfen|SP |) ≤
(1+ε) costS(O)+O(ρh2δfen|SP |). If we set δfen = εLst/(ρh

2|SP |), the additive term
becomes O(εLst) = O(ε costS(O)). Hence, our path cost is (1+O(ε)) costS(O). The

factor 1 +O(ε) can be made 1 + ε by manipulating the constants.

By Lemma 7.1, the preprocessing takes O(|SP | hε2 log
2 1

ε ) time. Consider the

shortest path computation. Since Halg has O(hεn log 1
ε ) vertices and O( h

ε2n log2 1
ε )

edges, one round of Dijkstra takesO( h
ε2npolylog(k, n, 1

ε )) time. We use eligible edges

pq to update the entries q[i]’s at the end of each round, which takes O( h
ε2n log2 1

ε )

time. Hence, the total running time of all rounds is O(|SP | hε2npolylog(k, n, 1
ε )) =

O(h
3

ε2 knpolylog(k, n, 1
ε )), where the hidden constant depends on ρ and some geo-

metric parameters. �
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Appendix A. Proof of Lemma 5.1

Let f, g : [0, 1] → |T | be two paths from s to t. We omit the analysis for the back-

ward direction because it is easy to deform f to g if they have the same canonical

crossing sequence. Assume that f and g are homotopic. Without loss of generality,

we can assume that the crossing sequences of f and g are canonical. We show that

their crossing sequences are the same using covering space and covering map in

topology 12.

We perturb the interior of every αi so that the perturbed paths are physically

interior-disjoint. Specifically, let βi denote the slightly displaced αi (ai is still the
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endpoint of βi), we ensure that int(βi) ∩ int(βj) = ∅, ai is the only contact point

between βi and the obstacles, and the left-to-right orders of the αi’s and the βi’s

along the vertical ray in A are the same. Hence, the path f crosses the βi’s in the

same order as the αi’s. So does g.

Recall that H is R2 minus the obstacles with anchors. So H is an open set and,

in particular, it does not contain any anchor. We cut H open by duplicating the

interiors of β1, β2, . . .. Denote the cut open H by S. There are two copies of the

interior of βi in S, and we denote the left copy by βi,0 and the right copy by βi,1

(with respect to the direction of αi). We create infinitely many labelled copies of

S, denoted by S(σk, k), where k is any non-negative integer and σk is a sequence

of k symbols in {β1,0, β1,1, β2,0, β2,1, . . .}, repetitions allowed. We glue S(σk, k) and

S(σk+1, k+1) together, whenever σk+1 is equal to σk appended with some βi,δ, by

identifying βi,δ in S(σk, k) with βi,1−δ in S(σk+1, k + 1). Denote the resulting set

by H̃, which is like a stack of copies of S glued together.

Define π : H̃ → H to be the “vertical projection” of points in H̃ onto H. We

claim that H̃ is a covering space and π is a covering map. It requires showing that

every point x ∈ H has an open neighborhood Bx such that π−1(Bx) consists of

disjoint sets homeomorphic to Bx. If x does not lie on any βi, we can choose a

small enough Bx that avoids all βi’s. Then, π
−1(Bx) consists of disjoint copies of

Bx, one from each S(σk, k) in H̃. If x lies on some βi, then x ∈ int(βi) because H

contains no anchor and we can choose a small enough Bx that avoids other βj ’s.

Then π−1(Bx) consists of disjoint copies of Bx, each straddling some S(σk, k) and

S(σk+1, k+1) in H̃ such that σk is a prefix of σk+1. This shows that H̃ is a covering

space and π is a covering map.

We also claim that H̃ contains no cycle of copies of S. If not, take the copy

S(σk+1, k + 1) in a cycle such that σk+1 is the longest. Then, S(σk+1, k + 1) is

connected to two different copies S(σk, k) and S(σ′k, k) in this cycle. So σk 6= σ′k
but both σk and σ′k are prefixes of σk+1 with length k, an impossibility.

Let x0 be the point in S(null, 0) such that π(x0) = s. By standard results in

topology 12, since f and g are homotopic, there are unique paths f̃ , g̃ : [0, 1] → H̃

such that f̃(0) = g̃(0) = x0, π ◦ f̃ = f , π ◦ g̃ = g, and f̃ and g̃ are homotopic. So f̃

and g̃ have the same endpoints.

Trace the path f̃ in H̃. We claim that if we leave some S(σk, k) by crossing some

βi,δ, we cannot reenter S(σk, k). Because there is no cycle of copies of S in H̃, the

only way to reenter S(σk, k) is to cross the same βi,δ in reverse direction. If this can

happen, then after leaving S(σk, k) and before reentering S(σk, k), we must enter

and leave some S(σk′ , k′), both by crossing the same βj,δ′ . But then an occurrence

of ←−aj is adjacent to an occurrence of −→aj in the crossing sequence of f , contradicting

its canonicity. This establishes our claim for f̃ . A similar claim holds for g̃.

If the crossing sequences of f and g are different, then f̃ and g̃ must enter

different copies of S at some point. Neither f̃ nor g̃ can visit the same copy of S

twice as proved above. So f̃ and g̃ cannot converge later because H̃ contains no

cycle of copies of S. That is, f̃ and g̃ end in different copies of S. This is impossible
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because f̃ and g̃ are homotopic and they have the same endpoints.


