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Abstract

 Titanium alloy is one of the most popularly used materials in various industries
because of its desirable mechanical properties. However, it is also a difficult-
to-cut material because of its low specific heat and thermal conductivity. This
influences an end milling process of titanium alloy through tool wear that
affects not only product quality but also productivity. Therefore, accurate tool
wear prediction is required to improve titanium alloy quality and replace the
tool at an appropriate time. Furthermore, since the effects of tool wear
prediction on the overall machining process are significant in terms of cost
and time, the uncertainty of tool wear prediction should be taken into account.
In this work, a deep learning-based uncertainty-aware tool wear prediction
model using Bayesian learning approach is proposed. The proposed
probabilistic model could produce a predictive distribution over estimated tool
wear with uncertainty awareness. Experiments with real-world end milling
processes have proven the effectiveness of the proposed method. The results
indicate that the proposed method outperforms existing comparative tool wear
prediction models.




1. Introduction

« Manufacturing process
« Additive manufacturing (i.e., 3D printing)

« Mass production, flexible design, eco-friendly
 Inaccuracy and irregularity of precision, durability
» Post-processing required
* Relying on cutting/milling (e.g., surface milling)
« Casting

« Liquified material - solidification inside cavity (mold)

* Machining (i.e., subtractive manufacturing)
« High precision
« Established theoretical analysis methods
» Wide industrial applications (e.g., aerospace)




1. Introduction

* Titanium (Ti-6Al-4V)
» Desirable mechanical properties
* High strength-to-weight ratio
« Use of titanium alloys

» Various industries
* e.g., aerospace, ocean engineering, automotive, medical, etc.
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1. Introduction

« Machining of titanium
» High precision required - complex 3D machining process

* Milling process
» High labor cost, tool cost required
* End milling, slot milling, up/down milling, face milling
« Rough machining, surface finish machining

* End milling using titanium
» Tool wear - surface quality degradation
« Rapid tool breakage
» Tool wear replacement
« Domain knowledge-based
« Experience-based
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1. Introduction

« Main strategy of machining process

« Status: tooling costs account for more than 60% of titanium-based
aviation parts machining

» Purpose: increased productivity, reduced tooling cost via tool wear
prediction!

* Method:
» Establishment of basic machining database for titanium milling process
» Preprocessing of data for Al-based application
» Development of tool wear prediction model using Al
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1. Introduction

* Needs for automated tool wear prediction

» Accurate prediction
* For high-cost decision

 Reliability, uncertainty-aware prediction

Machined surface topography

o
>
Z
S
2
-
-
13
S
%
&)
s
7 &
g 8
— ]
= L
ES
z
7 8
g g
¢ @ |5
|8
S |
3 Y B
n
B
g
T
P
A |E
5 WS B
T2 -
e |8
4 / S
07 =
./t 3
Y8 e
% s
7 )

v

Tool wear stages

* Deep learning (DL)-based tool wear prediction

(—[ Conventional approaches h

1. Complexity
2. Long running time and prediction time
3. Low accuracy

\_

(—[ DL-based approaches h

1. Flexibility
2. Raw inputs (e.g., force, vibration, etc.)
3. Real-time
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2. Preliminaries and Literature Review

 Traditional tool wear prediction approaches

* Machining process with highly non-linear and complex dynamics
» Temperature, material properties, vibration

* Analytical methods
« Empirical models

* Numerical methods

 Finite element method (FEM)
* Finite differential method (FDM)

 Limitations:
« Difficult to use, low accessibility
* High computational cost and time




2. Preliminaries and Literature Review

« Data-driven tool wear prediction approaches
« Data obtained from multiple sensors (e.g., dynamometer, audio, etc.)
« Multivariate time-series inputs - supervised regression task

» Two-stage approaches;
» 1) Feature extraction, selection (feature engineering)
» 2) Regression using extracted features (tool wear prediction)

« Conventional machine learning (ML) prediction algorithms
» Feature extraction/data compression
« PCA, SVD, etc.
» Transformation techniques
« FFT, WPD
 Prediction algorithms (e.g., SVM, GBM, HMM)




2. Preliminaries and Literature Review

» DL-based tool wear prediction
» High prediction performance, expressive power
« Use of raw input signals without handcrafted feature extraction

* Models capable of handling multivariate time-series sensor signals

» Recurrent neural network (RNN), convolutional neural network (CNN),
transformer, etc.

« Two categories of DL-based approaches
» 1) Supervised regression
» Feature extraction using a deep neural network (DNN) architecture
« 2) Unsupervised anomaly detection

 Reconstruction-based architecture
* Autoencoder-based




2. Preliminaries and Literature Review

» Bayesian learning (for parameter estimation)
« Given data D: (x, y), parameter w
 v.s. Maximum likelihood estimation (MLE)
» Maximize the likelihood P(D[w)
« Bayes theorem (Bayes rule)

p(D]w)p(w) p(D]w)p(w)

D) =20y T TeDlaw(@) di

* Inference
p(y|z, D) = /p(ylil?. w)p(w|D) dw.

 Predictive distribution instead of point estimate (MLE)

« Approximation (sampling-based, variational inference (VI), stochastic
gradient descent (SGD)-based)




3. Proposed Method

 Tool wear prediction in the end milling process
« Data collection is difficult (time/cost)
* Lengthy multivariate time-series inputs

* Architecture
 CNN (1-dimensional) > RNN-based algorithms (e.g., LSTM, GRU)

» Faster speed, parallelization, adjustable receptive field

* Multi-scale convolutional operation
» Using multiple different-sized convolutional kernels in parallel

l
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3. Proposed Method

Input: multivariate time-series signal

* Deep multi-scale CNN (DMSCNN)

 Feature extraction |

cr v v ¥ ¥
* Multiple stacks of MS-Conv blocks 5 | | comio 7 {comi
» Adjustable, various size of receptive fields g [ aﬂ
. . . . © | Batch normalization
* Information fusion via concatenation : —
=E' | Average Pooling '“
!
« Batch normalization, dropout multiple stacks Ty
ConviD, k=3 WD, k=9

. . . [ Concatenate )
 Final tool wear prediction p———

 Layers for regression : ”°"° m
» Global average pooling (GAP) ;

I Global Average Pooling ﬂ

prediction layers Teed Forward

Output: tool wear prediction

An architecture of the proposed deep multi-scale CNN (DMSCNN)
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3. Proposed Method

« Bayesian DMSCNN
* Finding a posterior distribution p(w|D)...
 Variational inference (VI)

 Variational distribution q(w|D)
» Optimization of an evidence lower bound (ELBO)

KLD = Dic1(a(w|D)||p(w|D)) p(D) = logp(D)
_ q(w|D) _
— /q(w|D) lng(w|D) dw —log/p(D,w) dw( |
= w|D)[log q(w|D) — log p(w|D)] dw =lo Dw-qu)d =log E p(D,w)
[ atwlD)itog o |D) 9p(w|D) 0 [3(D.w) L85 dw=tog B L2
= [ atwiDog B2 ~ toa atwiD > Eyllog 51 = [ atwlD)tog Bk
p(D,w
= logp(D) —/Q(w|D)[log (( D ))]d = /q w|D)[log p(D, w) — logq(w|D)]
= logp(D) — /q(w|D)[log () (|D|)w | dw = FLBO.

= logp(D) — ELBO.

]
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3. Proposed Method
« Bayesian DMSCNN

» Objective: LeLso = Dk1(q(w|D)||p(w)) — Eqlog p(D|w)].
« Reparameterization trick (from Variational Bayes, Bayes by Backprop)

w =+ p-€ where e ~ N(0,1).
« ELBO approximation using Monte Carlo sampling

Bayesian
w~q(w|D)

. 1 —
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4. Experiments

 Data collection

* End milling experimental setup
» 5-axis CNC machine

TABLE I
DETAILED PARAMETERS OF THE END MILLING CUTTING TOOL. TABLE II
T e EXPERIMENT CONDITION.
C?lfz)l:)rllgdfaﬁgtlgron ] 6W;:m Machining condition Value
Hone radius 0.012 mm Cutting speed 60 mm/min
Nose radius 5 v Feed per tooth 0.08 mm/rev
Clearance angle 15t 9°, 274 20° Axial depth 5 mm
Rake angle 13° Radial depth 1 mm
Helix angle 44° Machining distance 9400 mm
- Dynamometer sensor measurement ‘-....
[ 2Pass 20Pass 40Pass 60Pass 80Pass 94Pass >
* Pass-wise tool wear measurement ....
» Laser confocal scanning capability Tool wear by machining length
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4. Experiments

 Tool wear calculation
 Tool flank wear estimated with the Levenberg-Marquardt (LM) method
VB—dlaa br
TABLE III

T . f i -1 4T
Pry1 = Pr — (J,. Sk Mk dzag(.]r Jr)) Jr r(pk), k >0 ESTIMATED LEARNABLE PARAMETER VALUES OF THE VB EQUATION.

- Or1(p) or1(p) T a b c d
Op1 T Opm -1.186 9824 -0.8471 306.9
']r(p) = 250 _
Orn (p) Orn (P) lk E;p:;::‘eesnst::ndrant:del
= 8pl U 8Pm . 200
g 117
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I'(p) o . — . 3
. . =
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| T'n (p)_ | Yn — f(xna P)_
0

4 L | 55
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Number of pass

Fig. 3. LM regression model and experimental data plot
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4. Experiments

« Data preprocessing

* Normalization (standardization) s =

« Sliding-window preprocessing
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n L ]
 Evaluation metrics

« MAE, RMSE, MAPE, R squared
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5. Results and Discussion

* Training convergence analysis

—— training loss
validation loss

0 50 100 150 200 250 300

Epoch
Convergence analysis of the training of the DMCSNN

Loss

validation loss
—— training loss

0 2000 4000 6000 8000 10000

Epoch
Convergence analysis of the training of the Bayesian DMSCNN
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5. Results and Discussion

« DMSCNN's deterministic tool wear prediction results

Predicted tool wear
200 | e Actual tool wear
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5. Results and Discussion

« DMSCNN v.s. deterministic tool wear prediction models

TABLE IV

PERFORMANCE COMPARISON OF DETERMINISTIC TOOL WEAR
PREDICTION MODELS.

Model MAE RMSE MAPE R?2

— 13.1047 22.8500 229.7708 0.8513
(4£0.2720)  (£0.7443)  (£305.1545)  (30.0100)

GRU 6.5810 10.2392 283.6626 0.9698
(40.4025)  (£0.4280) (£116.6763)  (40.0025)

P 6.5340 10.1571 500.1723 0.9703
(4£0.7912)  (£1.0522) (£318.6876)  (40.0062)

N 7.0196 10.3567 124.3978 0.9685
(£1.2387)  (£1.4657) (£170.0191)  (40.0089)

DMSCNN 5.9349 8.8442 41.2545 0.9766
(proposed) | (£1.2047) (£1.5927)  (£30.9068)  (£0.0094)
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5. Results and Discussion

« Bayesian DMSCNN's probabilistic tool wear prediction results

*  Predicted tool wear
200 = Actual tool wear
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Prediction results of Bayesian DMSCNN

23



5. Results and Discussion

« Bayesian DMSCNN v.s. probabilistic tool wear prediction models

TABLE V
PERFORMANCE COMPARISON OF PROBABILISTIC TOOL WEAR PREDICTION
MODELS.

Model MAE RMSE MAPE R2

— 23.1017 31.8312 272.6718 0.7139
(+£2.0104)  (£2.5667) (£202.3328)  (40.0476)

MC-dropout | 20.0668 78.0024 210.5684 0.8225
LSTM (+8.1623)  (£9.5189)  (£264.9961)  (40.0369)

MC-dropout | 12.2674 17.3275 250.3129 0.9137
CNN (£1.3735)  (4£2.2475) (£219.4896)  (40.0250)

g&yseéﬁ‘; 5.3151 7.8672 29.8444 0.9839
(+£0.5271)  (£0.7653)  (£32.9993)  (40.0037)

(proposed)
o c.f. performance of DMSCNN:
DMSCNN 5.9349 8.8442 41.2545 0.9766

(proposed) (£1.2047)  (£1.5927)  (£30.9068)  (40.0094)

24



5. Results and Discussion
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6. Conclusion and Future Works

« Summary: Bayesian-based uncertainty-aware tool wear
prediction model — Bayesian deep multi-scale CNN

* Main points:
« DL-based tool wear prediction using raw sensor measurement data

« Multi-scale convolutional neural network architecture (DMSCNN)
« Bayesian treatment of DMSCNN - Bayesian DMSCNN

» Superior performance on tool wear prediction
* Uncertainty-awareness, predictive distribution with confidence intervals
 Diversity of network weights

 Future works:

» Robust predictions, physics-informed tool wear prediction, active
learning-based methods
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