

Type 2 Diabetes Risk Scoring via Bayesian Neural Networks

<u>Hyewon Cho</u>, Sujin Jeon, Sunghoon Lim Industrial Engineering, Ulsan National Institute of Science and Technology (UNIST) hyewon@unist.ac.kr

> WWW.IISE.ORG/ANNUAL #IISEANNUAL2022

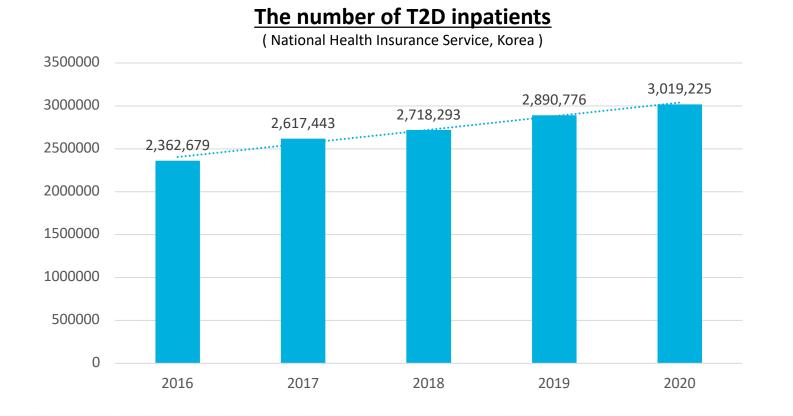
INDEX

Research backgrounds and motivations

Methods and preliminary results

Discussions and future works

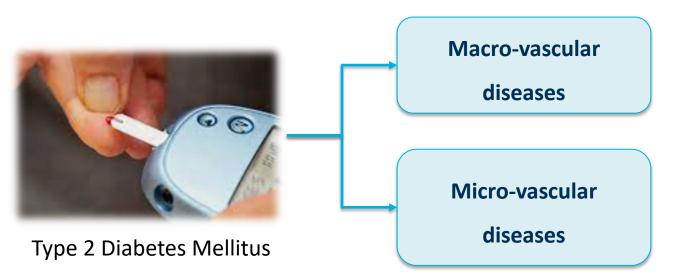
Type-2 diabetes (T2D) mellitus in Korea : One of the main chronic diseases, with fast increasing prevalence



- Within last 5 years, the number of inpatients, diagnosed with <u>Type 2 Diabetes has increased</u> approximately 28%
- The risk of cardiovasculr disease increases with rising number of T2D patients
- T2D ranked <u>the 6th highest</u> cause of death in Korea, followed by cancer¹⁾, cardiovascular²⁾, pneumonia³⁾, brain-cerebovascular disaese⁴⁾, and suicidal death⁵⁾.

Source : National Health Insurace Sharing Service (2021), Korean Statistical Information of Service (2021)

Usually, T2D tends to bring out other complications or can be developed from underlying diseases

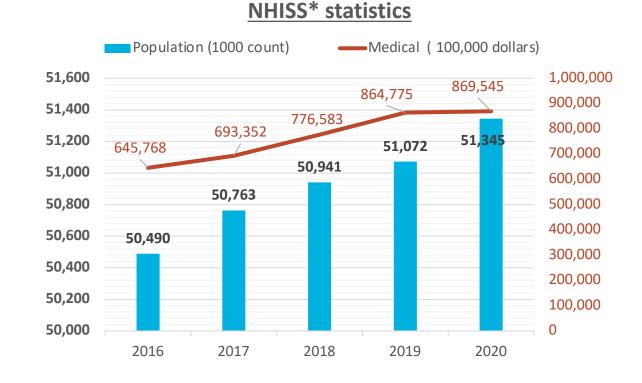


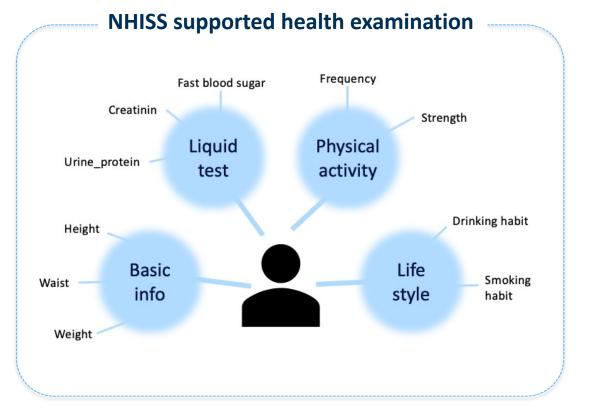
- Cardiovascular diseases : Heart attack,
- Cerebrovascular diseases : stroke, ...
- **Opthamological diseases** : Glaucoma, cataracts, ...
- **Neuropathy** : Diabetic foot, peripheral, ...
- Nephropathy

Hence, understanding T2D disease landscape along with

landscape of its complications is essential for analyzing and studying T2D risk factors

Over 95% of Korean people have national health insurance, and go through health examination annually





Source : National Health Insurace Sharing Service (2021), Korean Statistical Information of Service (2021)

Electric Health Records (EHR) database approach: Diagnosis information and health examination information

< Data Overview>

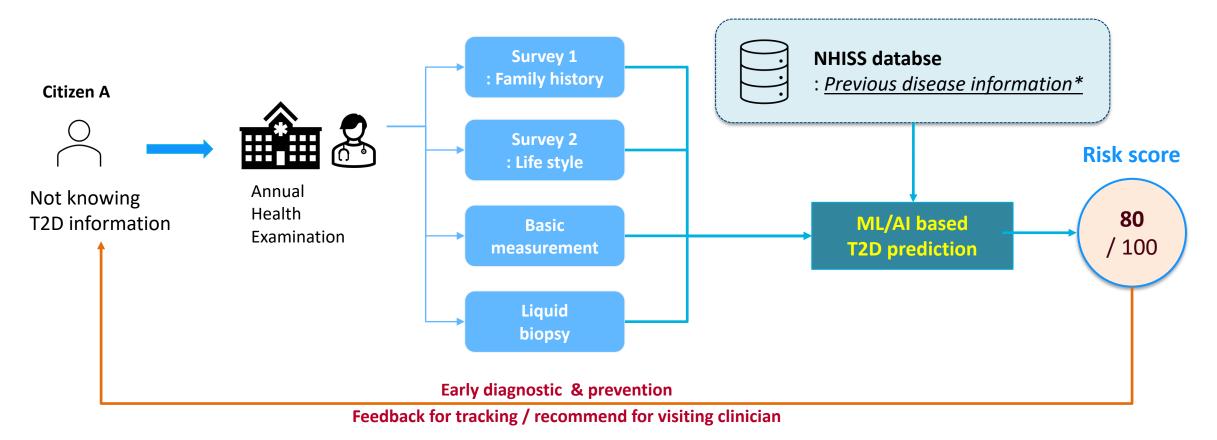
1. Diagnosis information

KEY	Date	Main Disease	Sub Disease
А	2009	E10	E10.1
А	2010	D10	D20
А	2014		
А	2015		
В	2011		
В	2014		
В	2015		
С	2009		
С	2015	C18	C18.3

2. Health checkup information

KEY	Date	Basic	History	Family histoty	Life style	result
А	2011	Age,.	Prev,	Mom/da d,		measure d
А	2012					
А	2013					
А	2015					
В	2010					
В	2014					
В	2015					
С	2009					
С	2015					

Therefore, exploring T2D landscape via health examination along with complications can bring out social health improvement



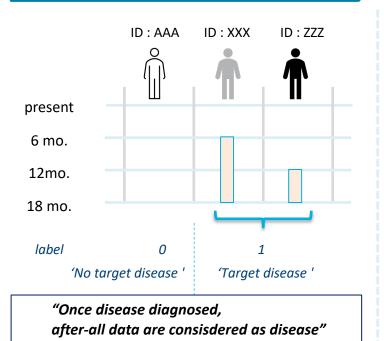
Conventional studies of risk scoring with EHR

	Disease	Title	Published	Data	Note
Chronic diseases	T2DM	Early detection of type 2 diabetes mellitus using machine learning-based prediction models	2020	EHR(Electronic health record) collected from 10 institutions	Stacked Deoising Autoencoder, Boosting (Adaboost, RF)
	Hypertension	Predicting hypertension using machine learning: Findings from Qatar Biobank Study	2020	Qatar Biobank study data	Randon Forest, 5 fold cross validation

	Disease	Title	Published	Data	Note
Cancer	Breast Cancer	Predicting factors for survival of breast cancer patients u sing machine learning techniques	2019	Hospital based dataset from Malay Med Cent (8066)	-Decision tree (CART, Random Forset) - MLP based ANN - SVM
	Gastric Cancer	Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning	2020	Chinese PLA hospital data w/ stained cell imaging	- CNN
	Disease	Title	Published	Data	Note
Pandemic	COVID-19	A Bayesian machine learning approach for spatio- temporal prediction of COVID-19 cases	2022	Aggregation of 245 healthzones in community of Spain	Bayesian with Graphical, LSTM model

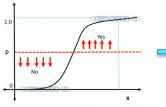
T2D risk scoring modeling summary

(1) Patient data preprocess - diagnostic data & checkup data



(2) T2D risk logistic reg. model without complications

Pt ID	label	FBS	CRTN	BMI
AAA	0	100	0.3	19
XXX	0	90	0.7	21
XXX	1	125	125 0.8	
ZZZ	1	120	0.9	27

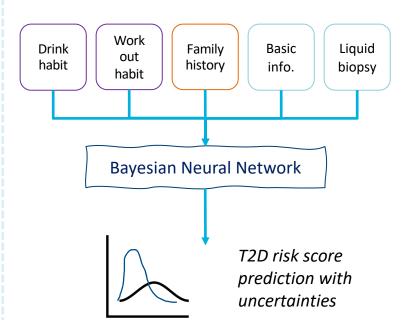


"Apply logistic regression model for basic risk score analysis upon tabular data"

T2D risk score

prediction

(3) BNN based T2D risk scoring with complications



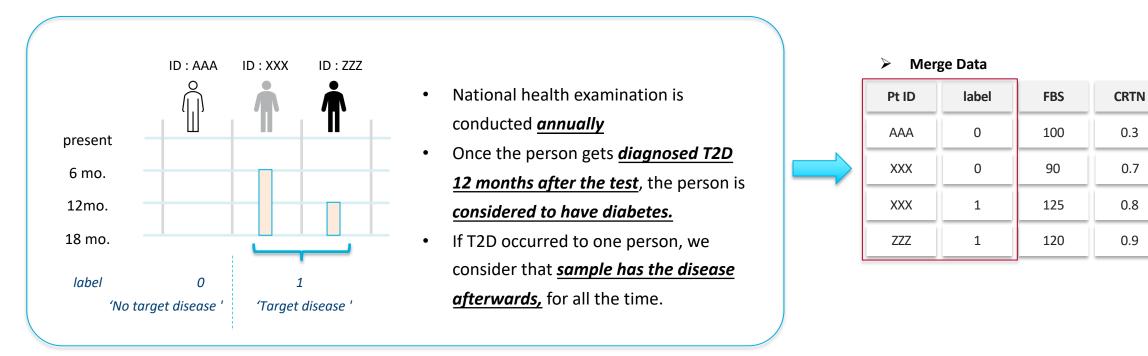
(1) Prepare dataset: label including 12-month ahead health examination

A. Merge dataset from NHISS : there are 2 database which need to be merged _ diagnosis and health checkup information

. Dia	gnosis ir	nformation		2. He	ealth cl	neckup	o informa	ation			> Mer	ge Data			
KEY	Date	Main Disease	Sub Disease	КЕҮ	Date	Basic	History	Family histoty	Life style	result	Pt ID	label	FBS	CRTN	
А	2009	E10	E10.1	А	2011	Age,.	Prev,	Mom/da		measure					l.
А	2010	D10	D20					d,		d	AAA	0	100	0.3	
А	2014			A	2012							0	00	0.7	íľ.
A	2015			A	2013						XXX	0	90	0.7	JL,
В	2011			А	2015						XXX	1	125	0.8	
				В	2010										Į.
В	2014			В	2014						ZZZ	1	120	0.9	
В	2015														1
С	2009			В											
С	2015	C18	C18.3	С	2009										
			0.00	С	2015										

(1) Prepare dataset: label including 12-month ahead health examination

A. Merge dataset from NHISS : there are 2 database which need to be merged _ diagnosis and health checkup information



BMI

19

21

24

27

(1) Prepare dataset: label including 12-month ahead health examination

B. Missing data imputation : there are missing values; the more missing values, the less accurate the model learns

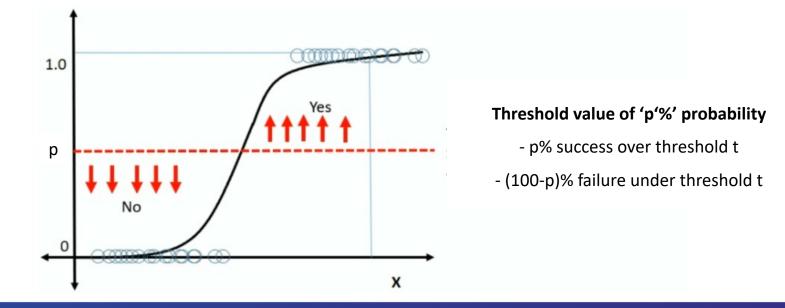
Features*	Missing ratio	
WSTC (waist)	0.02 %	
BMI	0.03 %	
HGB	0.01 %	
FBS	0.01 %	
TG	0.01 %	
Total Cholesterol	0.01 %	
GFR	28.1 %	
LDL	0.69 %	
HDL	0.01 %	

* Candidate of features (filtered later)

Impuation r	methods for I	missing value			
Method	MICE	Linear regression	Ridge	Lasso	Elastic Net
RMSE	0.0265	0.0197	0.0197	0.0200	0.0199
Method	GBM	XGB	Random Forest	Denosing AE	** Autoencoder
RMSE	0.0261	0.0195	0.0199	0.011	

✓ What is **Logistic regression** (multi-variate)

$$\ln \frac{p}{1-p} = \alpha + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3 + \dots + \beta_n * x_n$$



✓ What is **Logistic regression** (multi-variate)

$$\ln \frac{p}{1-p} = \alpha + \beta_1 * x_1 + \beta_2 * x_2 + \beta_3 * x_3 + \dots + \beta_n * x_n$$

✓ **Odd Ratio** : Compared to reference group, how experimental features are different

$$Odd\ ratio = \frac{experimental}{reference} = \frac{\frac{p'}{1-p'}}{\frac{p}{1-p}} = \exp(\beta_1)$$

- This allows for analyzing each risk factors.
- Relative risk scoring per features / control groups
- Useful for healthcare data analysis

✓ Result of logistic regression (1) : Reliability on features

								Ha	zard ratio					
Coefficients	:								1					
	Estimate	Std. Error	z value	Pr(> z)		405	au 1500000	1.05	i					
(Intercept)	-8.6183743	0.0420381	-205.013	< 2e-16	***	AGE	(N=1560089)	(1.05 - 1.05)						<0.001 ***
SEX	-0.0815289	0.0104250	-7.820	5.26e-15	***			2.51	1					
G1E_WSTC	2.8005984	0.1063096	26.344	< 2e-16	***	G1E_BMI	(N=1560089)	3.51 (2.97 - 4.15)		F	-			<0.001 ***
G1E_BMI	1.3978214	0.1495281	9.348	< 2e-16	***			4.50						
G1E_HGB	-0.5525061	0.0326036	-16.946	< 2e-16	***	G1E_WSTC	(N=1560089)	4.59 (4.10 - 5.15)			-			<0.001 ***
G1E_FBS	8.6436891	0.0321555	268.809	< 2e-16	***			0.66	_					
G1E_TOT_CHOL	-2.1096979	0.0255285	-82.641	< 2e-16	***	G1E_HGB	(N=1560089)	0.66 (0.64 - 0.68)	•					<0.001 ***
G1E_TG	0.7152311	0.0420040	17.028	< 2e-16	***			71.04						
AGE	0.0616911	0.0003573	172.675	< 2e-16	***	G1E_FBS	(N=1560089)	71.94 (70.31 - 73.60)						<0.001 ***
							au 45600000	0.42	-					<0.001 ***
Signif. codes	s: 0 (***)	0.001 (**)	0.01 (**	0.05 . '	0.1 ' ' 1	G1E_TOT_CHOL	(N=1560089)	0.42 (0.41 - 0.44)						<0.001
				•••••		# Events: 147101; Global p- AIC: 3696443.54; Concorda								
						AIC. 3090443.34; Concordai	ice index. 0.83		0.5 1	2	5	10 20	50	100

Features selected showed p-value under 0.001 which implies that the features are related to the disease prediction with high confidence.

Also, FBS (Fast blood sugar) feature is the most relative factor, followed by WSTC (waist length), BMI and CRTN

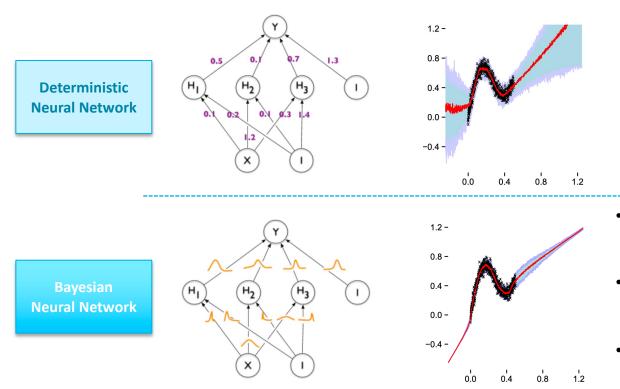
✓ Result of logistic regression (2) : Mean and standard deviation distribution of risk score in age groups

Ref. age	20's	30's	40's	50's	60's	70's
Mean	0.008	0.02	0.05	0.11	0.20	0.30
std	0.02	0.05	0.10	0.16	0.21	0.24
smal	_					BIG

- <u>The older reference group is, the higher risk score</u> distributes according to increasing mean value
- <u>The older reference group is, the wider risk score</u> distributes according to increasing standard deviation value

For the elders, overall, their health functions lower, which may accompany complications. It may lead to the high variance of risk score's distribution, as shown in the elderly groups.

[Development plan] complications and distribution wise risk analysis



- <u>A deterministic neural network</u> works by <u>maximizing the likelihood of</u> the seen data using backpropagation (point-estimation)
 - The model can be overfitted for 'observed data only',

and easy to fail on 'generalization'

- <u>A Bayesian neural network</u> uses <u>'Bayes rule'</u> with seen data to estimate <u>a full posterior distribution</u> of the parameters.
- *NN learns 'the distribution' of parameters*, unlike determinisited NN (distribution-estimation)
- **Ratio based on each events can be estimated**, hence, it can provide some insight for understanding data such as healthcare industries.

Source : Weight Uncertainty in Neural Networks(2015)

✓ What is a **Bayesian Neural Network (BNN)**?

What is **Bayesian Neural Network(BNN)**?

[Development plan] complications and distribution wise risk analysis

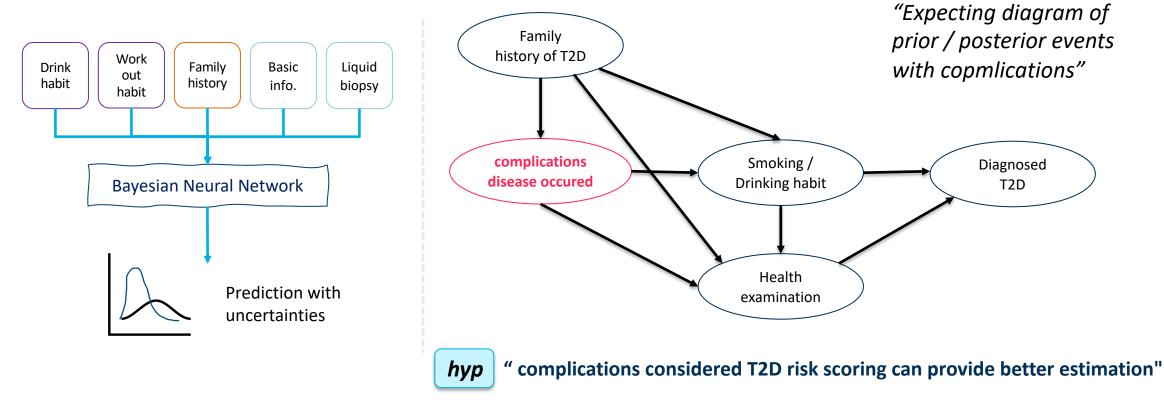
1.2 -A deterministic neural network works by maximizing the likelihood of • 0.8 the seen data using backpropagation (point-estimation) Deterministic 0.4 The model can be overfitted for 'observed data only', **Neural Network** ٠ 0.0 and easy to fail on 'generalization' -0.4 х 1.2 04 0.0 gradient Variational Inference ascent Bayesian $q_{\phi}(\mathbf{z})$ **Neural Network**

Source : Weight Uncertainty in Neural Networks(2015)

 \checkmark

[Development plan] complications and distribution wise risk analysis

✓ Furure plan with BNN



Q&A

hyewon@unist.ac.kr

Industrial Engineering || Ulsan National Institute of

Science and Technology (UNIST) Remember to complete your evaluation for this session within the app!

WWW.IISE.ORG/ANNUAL | #IISEANNUAL2022