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Introduction

* Abstract:

* Monitoring and estimating the remaining useful life (RUL) of industrial machinery are important tasks in the
field of prognostics and health management (PHM). Based on current health status and real-time sensor
measurements, RUL 1s estimated to provide time left for potential failures so that repair and replacement can be
planned 1n advance to improve the productivity and efficiency of machinery operations. Considering the nature
of machinery operation time, there exists a data imbalance problem 1n the existing RUL estimation dataset,
such as the C-MAPSS dataset. As the data imbalance problem can have detrimental effects on the performance
of RUL estimation methods, this research addresses the problem by proposing an adaptive reweighting
technique that rebalances the effects of samples with different ground-truth RULs. In addition, this research
proposes a novel estimation method that uses a transformer architecture, which 1s effective in the C-MAPSS
dataset. For subsets FD0O1 and FDO0O3, the proposed method shows the state-of-the-art estimation performance
with the highest RMSE and score values of 11.39, 194.08, and 11.29, 144.02, respectively.

* Keywords:
* Industrial Applications, Prognostics and Health Management, Remaining Useful Life Estimation, Deep
Learning
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Introduction

* Prognostics and health management (PHM)

* Industrial machinery, electronics
* Automated maintenance
* Increased efficiency, cost saving

* Remaining useful life (RUL) estimation
* Accurate prediction of remaining life
* Key aspects:

* Using raw measurements from multiple sensors

 Feature selection
e Feature extraction, fusion
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Introduction

* Existing RUL estimation approaches
* Physical model-based approaches
* Domain expertise, human error effects, complexity of parameter modeling
* Data-driven approaches
* Information from sensor measurements
o Statistical model-based approaches = Machine learning (ML) & deep learning (DL) applications

* Benchmark dataset: commercial modular aero-propulsion system simulation (C-MAPSS)
* NASA’s Ames Research Center

Fan Combustor N1  LPT

LPC  HPC N2
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Existing Works

* Conventional RUL estimation approaches
* Physical model-based approaches
* Stochastic process-based approaches
* Particle filter (PF), Kalman filter (KF)

* ML-based approaches
» Feature extraction (e.g., Wavelet transform) = supervised prediction models (e.g., SVM)

* DL-based approaches
* Multivariate time series =2 supervised regression problems
* High expressive power
* RNN-based approaches
« LSTM, GRU, Bidirectional, etc.
* CNN-based approaches
* 1D, 2D, multi-scale, residual, etc.
* Transformer-based approaches
* Not quite studied yet

* Hybrid DL-based approaches
* Multiple models/techniques used in a hybrid manner
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Proposed Method

* Existing problems of RUL estimation
* Complex mput data from sensor measurements
* Multivariate time-series data

* Unique data imbalance
* Not quite studied yet

* Most of data collected during normal operation time (1.€., before onset of degradation)

o #sample of maximum RUL >> others (1.e., #sample of smaller RULS)
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Proposed Method .
=

* Transformer-based estimation model (ot multivariate Gme-serics data ﬂ g
, * 2

e Transformer Learnable embedding (Time2Vec) U g
* Based on architecture proposed in Vaswanai et al. (2017) | e R — 3

* Short-, long-term dependencies & high expressive power
* An encoder architecture 1s mainly employed

L
Multi-head Attention ﬂ

i Dropout L E
| r_Add & Layer normj i
i [ :
* Proposed model NXx : v ;

* 1) embedding layers " Feed Forward H

.. . . . Feed Forward
» positional embedding - Time2Vec encoding Add & Layer norm |J

SJ 8/\B| uolloellxa ainles)

, , w; + b, or 1 =0.
Time2Vec(t)|i] = ! v / N f' """""""""""
F(w; +b;), fori>1. )
Global Average Pooling |j
where: ! -
t: timestamp ( Fully Connected Layer ﬂ %
2. variable index Batchnorm  |) =
J: periodic function (e.g., the sine function) bl d
, Fully Connected Layer ﬂ 2
w, b: learnable parameters i ®
wn
» 2) feature extraction layers RUL prediction

* 3) prediction layers
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Proposed Method .
3
° Proposed mOdel i Input: multivariate time-series data ﬂ g
* 1) embedding layers ) v S
° 2) feature eXtraCtlon layers Learnable embedding (Time2Vec) U g
* Multi-head attention blocks P ] 3
* Residual connection, layer normalization | ¢ ———— ﬂ :
i Multi-head Attention : -
I 1 ()
WO (KWK)T i Dropout_J &
h; = so ftmax(Q l i) WWY § r_Add&'-aVlif "0"“1 ] 3
v Nx| ; mE
MultiHead(Q,K,V) = [hy, ..., hg]W©° E Feed Forward H f g
E Feed Forward E o
where: : Add & Layer norm |} E :.T
i s
(): query —. f. I
K: key P
V' value Global Average Pooling U
We WHE WV WO: learnable parameters ' T
r Fully Connected Layer U &
Batch norm D_U %‘
. . Dropout ol
* 3 ) pI’GdlCthIl layers Fully Connected Layer ﬂ %
* Two FC layers v A
» Feature representation = final RUL prediction RUL prediction
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Proposed Method
* Adaptive RUL-wise reweighting

* To tackle unique data imbalance problems
* Prone to overfitting to data w/ maximum & higher RUL
* Related to: long-tailed recognition, imbalance
* Possible strategies: under/over-sampling, augmentation, etc.

* Sample-wise reweighting + Rebalancing
* Prevent from overfitting majority samples (w/ higher RULS)

* Adaptively arranging weights by RULSs
* During training, every step (e.g., epoch)

 RUL follows a continuous distribution
» c.f., 1image classification (every independent class)
» Kernel smoothing = maintain continuity of target (RUL) =1

where:
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Proposed Method

* Adaptive RUL-wise reweighting

Algorithm 1 Adaptive RUL-wise Reweighting (ARR).

Input: training dataset Dyyqin, = {(zi,v:); © € (1,...,n)}, validation dataset Dq1:da = {(z;,9;); 7 € (1,...,m)}, total training
epochs 7', RUL weights C', Gaussian kernel smoother GK S, estimation model fy, loss function £

I: Initialize fy > Initialization of learnable parameters 6
2: Initialize C': [¢q,Ca, ..., c125] = [1,1, ..., 1] > RUL weights having 125 values initialized with 1
3: for epoch =1tot —1 do > Warm up training
& L(0) =5 2 L(fo(xi), yi)

5: 0 < 0 —~yVoLl(0)

6: end for

7. for epoch =1t to 1" do > Apply reweighting after warm up
8: Initialize E : [61, €2y nuny 6125]

9: for 7 =1 to m do > Calculate an RUL-wise error using a validation set
10: ey,-append(L(fo(z;),y;))
[1: end for
12: for rul =1 to 125 do > Average validation errors by RUL
13: Crul 4— SUM(Eryl)/|€rull
14: end for
15: C+— GKS(C) > Apply Gaussian kernel smoothing on an error distribution
16 C' < Normalize(C) > Normalize a smoothed distribution to use as weights
17: L0)==3" 1 L(fo(xi),y:) - Clys] > Use adaptive weights during training
18: 0« 0 —~VoL(0)
19: end for
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Proposed Method

* Overview of the proposed RUL estimation method
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Experiments

e RUL estimation benchmark dataset: C-MAPSS

e 21 sensor measurements

A DESCRIPTION OF THE VARIABLES IN THE C-MAPSS DATASET.

Variable Description Unit
Sensor 1 Total temperature at fan inlet °R
Sensor 2 Total temperature at LPC outlet °R
Sensor 3 Total temperature at HPC outlet °R
Sensor 4 Total temperature at LPT outlet °R
Sensor 5 Pressure at fan inlet psia
Sensor 6 Total pressure in bypass-duct psia
Sensor 7 Total pressure at HPC outlet psia
Sensor 8 Speed of physical fan rpm
Sensor 9 Speed of physical core rpm
Sensor 10 Ratio of engine pressure (P50/P2) -
Sensor 11 Static pressure at HPC outlet psia
Sensor 12 Ratio of fuel flow to Ps30 pps/psi
Sensor 13 Corrected fan speed rpm
Sensor 14 Corrected core speed pm
Sensor 15 Bypass ratio -
Sensor 16 Ratio of fuel-air at burner -
Sensor 17 Bleed enthalpy -
Sensor 18 Demanded fan speed rpm
Sensor 19 Demanded corrected fan speed pm
Sensor 20 HPT collant bleed Ibm/s
Sensor 21 LPT collant bleed Ibm/s

+ 4 subsets (FD0OO1, FD002, FD003, FD004)

DETAILED INFORMATION ON THE C-MAPSS DATASET.

) Subset
Variable
FDOO1 FD002 FDO003 FDO004
Number of engine units | 57 54 100 248
in the training set
Number of engine units
in the test set 100 259 100 249
Operation conditions 1 6 1 6
Fault modes 1 1 2 2

* Data preprocessing

* Piecewise linear RUL transformation (max=125)
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Experiments

* Evaluation metrics
* Root mean squared error (RMSE)

] )
RMSE = \ NZ(% — ;)2

1=1

* Score function (Saxena et al., 2008)

N di
e"13 —1, ford; <0.
score = Z Siy Si =1 a
. eto —1, ford; > 0.

where:

y; = ground-truth RUL
y; = predicted RUL

d; = v; - y;: difference between predicted and true RULS

* Implementation
* Loss function: mean squared error (MSE)
* Optimizer: Adam
* Regularization & more: early stopping, layer normalization, He initialization
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Results and Discussion

15

Transtformer-based estimation model

* Various configurations of hyperparameters
* fattention block (N), #head (h), #dimensionality of feed-tforward layers (df ), #dimensionality of key (dy)

RESULTS OF THE ABLATION EXPERIMENT USING THE PROPOSED TRANSFORMER-BASED MODEL.

h

dff

FDOO1

RMSE

Score

RMSE

FDO002

Score

FDO0O03

RMSE

Score

RMSE

FD004

Score

base

12.37+0.29

238.54+3.38

19.57£0.26

4792.06£125.55

12.13£0.27

245.80£51.77

21.74x0.08

4936.79+£292.95

(A)

12.594-0.05
13.2540.46
12.7940.42

255.68+£23.59
325.96£47.26
295.16£48.26

19.344-0.44
19.2140.52
19.50£0.20

4202.85£101.59
4328.87L£76.23
5271.34+118.27

12.31£0.18
13.13£0.81
13.73£0.88

262.80£54.78
319.59+49.24
640.28+£37.02

21.91%0.35
21.75£0.30
22.59+0.41

5547.87£118.56
6453.471+239.13
6087.831+£72.23

(B)

12.5540.25
13.7841.53
12.9640.20

254.86£27.35
366.11£31.38
290.36£34.59

20.11x0.14
19.30£0.51
19.3440.34

5772.45+£61.56
4676.25+£139.80
5319.92499.68

13.10£0.87
13.54+£2.62
12.66£0.31

423.23+272.85
650.71£54.96
342.96£81.52

22.21£0.70
21.96+0.26
22.40£0.30

6200.261390.43
6571.54+126.08
7264.96188.69

(©)

12.854:0.28
12.744-0.58
12.4610.36
12.924-0.23

299.942+35.19
281.15444.20

261.692142.62
304.21£32.17

19.091-0.43
19.364:0.40
19.544-0.46
19.284-0.30

4056.67138.01
4458.631115.30
5523.61+£106.88
5171.73x£127.75

12.51£0.36
13.17£1.02
13.19£0.68
13.27+£0.65

267.66133.87
506.474135.03
369.74£106.11
502.11£216.34

22.0940.26
21.8440.08
21.5040.21
21.90£0.11

5992.654136.64
4749.66165.76
4306.0864.59

5464.941169.23

(D)

12.90£0.48
12.961-0.44
13.1840.34

290.154430.19
284.13+£35.37
313.54£32.25

19.87+0.08
19.584-0.30
19.10£0.20

6042.431+87.37
6291.631169.84
5210.581+64.58

12.16£0.66
11.941-0.71
13.03£0.45

269.61£66.53
238.64+44.12
328.95+£38.60

22.33+0.24
22.27+£0.42
21.90£0.42

7044.58+113.29
6360.03+£148.10
5205.144560.33
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Results and Discussion

* Adaptive RUL-wise reweighting (ARR)

» Using the best configurations, warm-up epochs=50

THE EFFECTS OF ARR. WHERE WARM-UP EPOCHS = 50.

* Various warm-up epochs (10, 50, 100)

EFFECTS OF ARR WITH VARIOUS WARM-UP EPOCHS DURING TRAINING.

Metri
Subset | N drer | dg AKE e
usage RMSE Score

X 12.37+0.29 238.54+3.38
FDOOI | 6 6 64

v 11.39+0.40 194.08+12.96

X 19.09+0.43 4056.67+138.01
FD002 | 6 2 64

v 19.010.09 3234.99+171.27

X 11.94+0.71 238.64444.12
FDOO3 | 6 6 16

v 11.2940.19 144.02+18.18

X 21.50+0.21 4306.08+64.59
FDOO4 | 6 8 64

v 21.4130.15 4048.13+295.17

Subset ARR Warm-up epoch Metric
usage RMSE Score
10 11.58+0.21 196.997.21
FDOO1 v 50 11.391+0.40 194.08£12.96
100 12.02+0.33 235.10435.16
10 19.04+£0.36  3752.91£73.01
FDO002 v 50 19.010.09 3234.99+171.27
100 19.10£0.09  3591.41%46.63
10 11.6910.20 207.43143.88
FDO0O0O3 v 50 11.2910.19 144.021+18.18
100 11.85£0.45 230.09410.20
10 21.46x0.30  3628.19445.88
FD004 v 50 21.41£0.15 4048.134295.17
100 21.3940.13  3560.02+42.54
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Results and Discussion

* Comparison with existing methods in the literature

COMPARISON OF ESTIMATION PERFORMANCE WITH EXISTING METHODS.

Method number of 1 \p imum RUL | > o rbool rboo> Fooo> rboos

Sensors sliding-window | RMSE — Score | RMSE  Score | RMSE  Score | RMSE  Score
DLSTM [49 13 130 N/A 1472 26200 | 29.00 6953.00 | 17.72 452.00 | 33.43 15069.00
RBM-LSTM |36 14 130 N/A 1256  231.00 | 2273  3366.00 | 12.10 251.00 | 22.66  2840.00
MS-DCNN 38h 14 125 3020/30/15 | 11.44 19622 | 1935 3747.00 | 11.67 241.89 | 2222  4844.00
CNN [37 21 130 15 18.45 1286.70 | 30.29 13570.00 | 19.82 1596.20 | 29.16  7886.40
DCNN [40, 14 125 30 12.61 27270 | 22.36 10412.00 | 12.64 284.10 | 23.31  12466.00
RNN-AE |33 14 115-190 15 13.58 22800 | 19.59 2650.00 | 19.16 1727.00 | 22.15  2901.00
BIiLSTM [32 14 125 N/A 13.65 29500 | 23.18 4130.00 | 13.74 317.00 | 24.86  5430.00
HDNN |[51], [52 14 125 30 13.02 24500 | 1524 128242 | 1222 287.72 | 18.16  1527.42
Deep LSTM [30 21 130 10 16.14 33800 | 24.49 4450.00 | 16.18 852.00 | 28.17  5550.00
CNN-RNN [50 21 N/A 31 16.89  820.67 | 30.97 15917.00 | 17.82 950.94 | 29.73  7212.20
RecCNN [39 14 125 30 12.16 21248 | 20.85 2087.77 | 1201  180.76 | 24.97  3400.44
GP [22 21 125 N/A 32.61 1250.00 | 68.54 70100.00 | 49.89 3510.00 | 63.93 10900.00
LSTMBS 21 130 3121/38/19 | 14.89  481.10 | 2686 7982.00 | 15.11 493.40 | 27.11  5200.00
LSTM-MSCNN |53 14 125 30 1275 281.00 | 22.46 5170.00 | 11.35 278.00 | 24.10  4790.00
MT-CNN g]] 21 125 30 1248 22400 | 1977 2023.00 | 1211 33400 | 19.98  2097.00
DACL [54 21 130 32/22/39/19 | 14.41  288.00 | 2852 12004.00 | 1436 321.00 | 26.81  6594.00
DAST [45 14 125 40/60/40/60 | 11.43  203.15 | 1525 92496 | 1132 15492 | 1836 1490.72
Ours (proposed) 14 125 30/20/30/15 | 11.39  194.08  19.01 323499 | 1129 144.02 21.39  3560.02
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Conclusion and Future Works

* Importance of RUL estimation in the PHM domain
* Increasing complexity of the problem

* Proposed method
* 1) Transformer-based estimation model
* 2) Adaptive RUL-wise reweighting (ARR) technique

» Effectiveness of the proposed method
* Comparable estimation performance of the transformer-based model
* Improved performance when using ARR

* Future works
* Uncertainty quantification
* Active learning + manufacturing/industrial machinery
* DL-based anomaly detection
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