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Abstract
• Titanium alloy is one of the most widely used materials in various industries, such as aerospace, medical,
and automotive industry because of its desirable mechanical properties. However, titanium alloy is also a
difficult-to-cut material due to the low thermal conductivity and low specific heat. In particular, in an end
milling process using titanium alloy, tool wear influences not only the cutting force but also material
removal volume per a single tool as well as the quality of the material surface. Therefore, accurate tool
wear prediction is necessary during an end milling process to improve product quality and replace the
tool at an appropriate time. Furthermore, because the effects of tool wear prediction on the overall
process are significant both in terms of cost and time, uncertainty-aware tool wear prediction should be
performed. In this work, a deep learning-based tool wear prediction model, which uses a Bayesian
approach, is proposed. First, a CNN-based architecture that integrates multi-scale information extracted
from raw sensor measurement data, named deep multi-scale CNN (DMSCNN) is proposed. Second,
using a Bayesian approach, DMSCNN is transformed into a probabilistic model that outputs a predictive
distribution with uncertainty awareness. Experiments with data collected from the real-world end milling
process with three distinct setups have proven the effectiveness of the proposed DMSCNN in tool wear
prediction. In addition, Bayesian DMSCNN has shown promising results, outperforming existing
comparative deterministic methods, as well as probabilistic methods for tool wear prediction.
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1. Introduction
• Manufacturing process

• Additive manufacturing (i.e., 3D printing)
• Mass production, flexible design, eco-friendly
• Inaccuracy and irregularity of precision, durability
• Post-processing required

• Relying on cutting/milling (e.g., surface milling)
• Casting

• Liquified material à solidification inside cavity (mold)

• Machining (i.e., subtractive manufacturing)
• High precision
• Established theoretical analysis methods
• Wide industrial applications (e.g., aerospace)
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1. Introduction
• Titanium (Ti-6Al-4V)

• Desirable mechanical properties
• High strength-to-weight ratio

• Use of titanium alloys
• Various industries

• e.g., aerospace, ocean engineering, automotive, medical, etc.
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1. Introduction
• Machining of titanium

• High precision required à complex 3D machining process
• Milling process

• High labor cost, tool cost required
• End milling, slot milling, up/down milling, face milling

• Rough machining, surface finish machining

• End milling using titanium
• Tool wear à surface quality degradation
• Rapid tool breakage
• Tool wear replacement

• Domain knowledge-based
• Experience-based
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1. Introduction
• Needs for automated tool wear prediction

• Accurate prediction
• For high-cost decision

• Reliability, uncertainty-aware prediction

• Deep learning (DL)-based tool wear prediction
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Tool wear stages
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1. Complexity
2. Long running time and prediction time
3. Low accuracy

1. Flexibility
2. Raw inputs (e.g., force, vibration, etc.)
3. Real-time
4. High accuracy

Conventional approaches DL-based approaches
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2. Preliminaries and Literature Review
• Traditional tool wear prediction approaches

• Analytical methods
• Tool wear models, equations
• e.g., finite element method (FEM), simulation-based methods

• Data-driven tool wear prediction approaches
• Data obtained from multiple sensors (e.g., dynamometer, audio, etc.)
• Multivariate time-series inputs à supervised regression task
• Two-stage approaches;

• 1) Feature extraction, selection (feature engineering)
• 2) Regression using extracted features

• Conventional machine learning (ML) prediction algorithms
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2. Preliminaries and Literature Review
• DL-based tool wear prediction

• High prediction performance, expressive power
• Use of raw input signals without handcrafted feature extraction
• Models capable of handling multivariate time-series sensor signals

• Recurrent neural network (RNN), convolutional neural network (CNN), 
transformer, etc.

• Two categories of DL-based approaches
• 1) Supervised regression

• Feature extraction using a deep neural network (DNN) architecture
• 2) Unsupervised anomaly detection

• Reconstruction-based architecture
• Autoencoder-based
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2. Preliminaries and Literature Review
• Bayesian learning (for parameter estimation)

• Given data D: (x, y), parameter w
• v.s. Maximum likelihood estimation (MLE)

• Maximize the likelihood
• Bayes theorem (Bayes rule)

• Inference

• Predictive distribution instead of point estimate (MLE)
• Approximation (sampling-based, variational inference (VI), stochastic 

gradient descent (SGD)-based)
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3. Proposed Method
• Tool wear prediction in the end milling process

• Data collection is difficult (time/cost)
• Lengthy multivariate time-series inputs

• Architecture
• CNN (1-dimensional) > RNN-based algorithms (e.g., LSTM, GRU)

• Faster speed, parallelization, adjustable receptive field
• Multi-scale convolutional operation

• Using multiple different-sized convolutional kernels in parallel

11



2022년 대한산업공학회추계학술대회

3. Proposed Method
• Deep multi-scale CNN (DMSCNN)

• Feature extraction
• Multiple stacks of MS-Conv blocks
• Adjustable, various size of receptive fields
• Information fusion via concatenation

• Batch normalization, dropout

• Final tool wear prediction
• Layers for regression
• Global average pooling (GAP)
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An architecture of the proposed deep multi-scale CNN (DMSCNN)
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3. Proposed Method
• Bayesian DMSCNN

• Finding a posterior distribution p(w|D)…
• Variational inference (VI)

• Variational distribution q(w|D)
• Optimization of an evidence lower bound (ELBO)
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3. Proposed Method
• Bayesian DMSCNN

• Objective:
• Reparameterization trick (from Variational Bayes, Bayes by Backprop)

• ELBO approximation using Monte Carlo sampling

• Inference (i.e., prediction)
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4. Experiments
• Data collection

• End milling experimental setup

• Dynamometer sensor measurement
• Pass-wise tool wear measurement

• Tool wear calculation: Levenberg-Marquardt algorithm
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Tool wear by machining length
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4. Experiments
• Data preprocessing

• Normalization (standardization)
• Sliding-window preprocessing

• Evaluation metrics
• MAE, RMSE, MAPE, R squared
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Sliding-window preprocessing
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5. Results and Discussion
• Training convergence analysis
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Convergence analysis of the training of the Bayesian DMSCNNConvergence analysis of the training of the DMCSNN
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5. Results and Discussion
• DMSCNN v.s. deterministic tool wear prediction models
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Prediction results of DMSCNN on dataset 2.Prediction results of DMSCNN on dataset 1.
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5. Results and Discussion
• DMSCNN v.s. deterministic tool wear prediction models
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5. Results and Discussion
• Bayesian DMSCNN v.s. probabilistic tool wear prediction models
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Prediction results of Bayesian DMSCNN on dataset 2.Prediction results of Bayesian DMSCNN on dataset 1.
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5. Results and Discussion
• Bayesian DMSCNN v.s. probabilistic tool wear prediction models

• c.f. performance of DMSCNN: 
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5. Results and Discussion
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Visualization of 95% prediction intervals of: (a) BNN, (b) MC dropout LSTM, (c) MC dropout CNN, and (d) Proposed Bayesian DMSCNN, on dataset 1.
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5. Results and Discussion
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Visualization of 95% prediction intervals of: (a) BNN, (b) MC dropout LSTM, (c) MC dropout CNN, and (d) Proposed Bayesian DMSCNN, on dataset 2.
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5. Results and Discussion
• Inference time
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• Network weight distribution

Histogram of trained weights from probabilistic models.
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6. Conclusion and Future Works
• Summary: Bayesian-based uncertainty-aware tool wear 

prediction model – Bayesian deep multi-scale CNN
• Main points:

• DL-based tool wear prediction using raw sensor measurement data
• Multi-scale convolutional neural network architecture (DMSCNN)
• Bayesian treatment of DMSCNN à Bayesian DMSCNN

• Superior performance on tool wear prediction
• Uncertainty-awareness, predictive distribution with confidence intervals
• Diversity of network weights

• Future works:
• Robust predictions, physics-informed tool wear prediction, active 

learning-based methods
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