& ANNUAL

“S GG NIEEARE= NICIEREME'X P O 20 2 2

Developing a quality level
with semi-supervised learn
classification for UV lamps

WWW.IISE.ORG/ANNUAL
#IISEANNUAL2022



Content

* Introduction

* Related works

* Proposed quality level prediction model
* Experiments

* Results

e Conclusions & future work

? ANNUAL

CONFERENCE & EXPO 2022




Introduction

e Applications of deep learning in manufacturing processes
— No need of handcrafted feature extraction
— Frequent tasks: quality prediction, anomaly detection, prognostics and health management (PHM), etc.

— Applications: molding, additive manufacturing, joining, machining, etc.

e Limitations

— Require large-scale labeled data

* Labels: faultiness, quality level, anomalous score, etc.
* Generating annotations: high cost, time, and domain expertise

— Relatively abundant data
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Introduction

* Semi-supervised Learning (SSL)

— Train models with both labeled and unlabeled data

— Enhanced performance compared to solely supervised learning 4 i )
Dy = {(z;,y;) : i € (1,...,B)} E
. SSL . : Y,
D, = {(J}J) 1] € (1,...,,&B)} f.:::..... N
e Quality prediction with deep neural networks \ '-',-;‘\;',';:8/

— Predict quality levels (e.g., low, medium, high levels) of a product

— Levels of quality with ordinality (c.f., classification, fault detection)
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Introduction

- A case study with real-world data from a manufacturing process of UV lamps

B 08558

Step 1: Step 2: Step 3: Step 4:
Unloading cargo = Cargo hold empty < Loading cargo = Cargo hold full
Ballast water pumped into = Ship sails with full % Water discharged at £ Ship sails with empty tank
ship at source port ballast tank destination port
@ choleragerms [l ballast water cargo
 An UV lamp is used for Ballast Water Treatment Systems. - Abundant unlabeled data
« An UV lamp is an eco-friendly lamp for purifying ballast water. - Difficulty in product quality inspection

- More insightful analysis required than

» Expected useful life is associated with qualities , ,
conventional anomaly detection

— >1000 hours for best quality products

“A quality level prediction framework with
semi-supervised learning and ordinal classification for UV lamps is proposed”
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Related works

=  Applications for solving real-world problems in a manufacturing domain

* Deep neural networks

* CNN-based fault diagnosis;
* Sparse deep stacking network-based fault detection,

* MLP-based fault classification;

e Semi-supervised learning
e SSL-based fault diagnosis,
e SSL-based quality controls

* CNN-based fault classificationg
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Related works

=  Ordinal classification

* Naive approaches

* Using standard regression or classification scheme

e K-1 formulation

* Soft ordinal vector (SORD)

- Able to use conventional classification models

- Semi-supervised learning approaches can be applied
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Proposed quality level prediction model

Labeled data
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Step 1

Step 2

Step 3

Step 4

Step 5

Render original label vectors into SORD vectors

Train the DNN prediction model on
labeled samples with the rendered targets

Generate pseudo-labels for X, and
compute prediction confidences using ordinal entropy

Compute unlabeled losses only with
highly confidently predicted unlabeled samples

Train the model using both labeled and unlabeled losses
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Proposed quality level prediction model

Step 1 Render original label vectors into SORD vectors

- Utilize SORD as a method for taking label ordinality into the model training.
- Following the original SORD formulation with an L1-norm, as a distance function ¢, the

original target vectors are transformed into SORDs, where original targets Y = {y;,

¥Y2,Y3, "'JyC—lin} .

e~ ?(yt,yi) v
r. — 2 . E
‘ Zle e—d’(yt,CUC) o y
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Proposed quality level prediction model

Step 2 Train the DNN prediction model on labeled samples with the rendered targets

- Utilize the type, known as a multi-layer perceptron (MLP) for the

prediction model.

-  Employ for mitigating the overconfidence issue of the DNN model

on the final outputs of the prediction model.

- Temperature scaling uses a scalar parameter T for all classes in order to calibrate the

model predictions.
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Proposed quality level prediction model

Step 3 Generate pseudo-labels for X, and compute prediction confidences using ordinal entropy
- Generate samples.
- In semi-supervised learning, with entropy minimization is employed in this
framework.
- To reflect the inherent ordinality of the label, the is proposed
k—1
Hopg(X) = AH(X) + Y _ hj(X).
j=1

h](X) = _P( 5:1 Xi)lOgP( 321 XZ) - P(Z?:ﬂ_l Xi)log(P Z?:j+1 Xz)
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Proposed quality level prediction model

Step 4 Compute unlabeled losses only with highly confidently predicted unlabeled samples

Step 5 Train the model using both labeled and unlabeled losses

- During the training framework, the cross-entropy loss for labeled samples L, and

selected unlabeled samples L, constitutes total loss data.

L:Ll"‘Lu
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Experiments

Data: Real-world data collected during the UV lamp manufacturing process

*  The number of labeled instances: 6,203
*  The number of unlabeled instances: 27,492
* Types of the faults: 1) Cracks, 2) Sidelines
* The labels are divided into 4 classes:
0 for the item of the best quality without any faults,

1 for the item with a single minor fault,
2 for the item with middle-level faults,
3 for the item with major faults that must be disposed

Experimental setup:
* Kolmogorov-Smirnov (KS) test for labeled and unlabeled data

Types of the defects (a) cracks, (b) sidelines

A description of data variable

e dropout and batch-normalization Category Variable Unit Description
e with SGD and ADAM optimizer Gas Amount of oxygen L/min The amount of oxygen injected into the quartz tube
Amount of hydrogen ~ L/min The amount of hydrogen injected into the quartz tube
Burner Burner speed - (no specific metric used)
Evaluation criteria: Burner rotation Hz The frequency rotation of the burner that heats up the quartz tube
. Lamp  Distance of electrodes ~ mm  The measured distance between two electrodes placed at each end
* precision, recall, accuracy, F; score, and MAE Seal Upper thickness mm The measured thickness of the upper sealing part
caling Lower thickness mm The measured thickness of the lower sealing part
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Results

Compare the performance of the prediction model

e Metric (lilnlabeled
Precision Recall Accuracy F} score MAE ala usage

SWM 04952 + 0.0212 04959 £0.0197 09745 £ 0.0029  0.4954 £ 0.0204  0.0348 + 0.0059 X

LR 0.5020 £ 0.0072  0.5210 £ 0.0501  0.9793 £ 0.0049  0.5032 £ 0.0012  0.0444 + 0.0098 X

NB 0.5262 + 0.0476  0.5087 £ 0.0015  0.7032 £+ 0.0433  0.4771 £ 00092  0.7974 £ 0.1471 X

DT 0.5155 £ 00118  0.5153 £0.0105  0.9696 £ 0.0025  0.5150 £ 0.0105  0.0673 £ 0.0057 X

XGBoost 0.5196 + 0.0194  0.5845 £0.0736  0.9840 £+ 0.0014  0.5299 £ 0.0300  0.0377 £ 0.0050 X

DNN wlo SORD 0.6124 £ 0.0108  0.5861 £ 0.0389  0.9826 £ 0.0029  0.5927 + 0.0281  0.0351 + 0.0039 X

DNN w/ SORD (proposed)  0.6208 £+ 0.0394  0.6087 £ 0.0472 09825 £ 0.0027  0.6133 + 0.0428  0.0349 + 0.0047 X

The backbone model (DNN) outperforms with SORD-based rendering
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Results

Compare the performance to find best configuration of the framework

Effects of SORD prediction performances F, score comparison of confidence measures used
0.66 A B Precision . EEN Entropy
. Recall B Ordinal entropy
0.64 - B Fy score

0.62 1

0.60 -

0.58 +

Score

0.56 1

0.54 -

0.52 1

0.50 - 10% 20% 50% 100%

DNN w/o SORD DNN w/ SORD :
Pseudo-label proportion
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Results

Compare the performance to find best configuration of the framework

Effects of temperature T on prediction performances

m  Precision
0.700 | wmm Recall

BN F, score
0.675 -
0.650 1
0.625 *  When T=0.5, it shows the highest precision.
: *  When T=0.2, it shows the most effective in terms of recall.
& 0.600 1

0.575 1

0.550 +

0.525 1

0.500 “

T=2
Temperature
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Results

With real-world data from the UV lamp manufacturing process, various experiments have been conducted to find the best

configuration of the framework with the proof as follows:

* Our backbone model (DNN) outperforms the conventional supervised machine learning algorithms.

* Given the improvement in performance with SORD-based rendering, it is efficacy to reflect inherent ordinality.

* The experiment conducted with unlabeled data shows better performance than supervised learning methods.

* When p=10% and ordinal entropy are used, it shows the best performance in semi-supervised learning.

* Through the diverse experiments based on T, it is represented that T=0.5 has shown the best precision and T=0.2 has

shown to be the most effective in terms of recall and F1 score.
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Conclusions and future works

The contributions of this research

e Abundant unlabeled data are utilized in a SSL framework.

* The ordinality of the labels is taken into account via application of a label rendering method and a novel information measure for
confidence computation.

* Avariety of configurations of the proposed framework is validated with extensive experiments using real-world manufacturing data.

Future works
e Application of the proposed framework in other type of data
- to predict the lifespan of UV lamps

* Manufacturing process parameter optimization
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Appendix

Compare the effects of temperature scaling on prediction performance

Metric
Temperature Confidence measure
Precision Recall Accuracy Fy score MAE
Ia] ordinal entropy — 0.6473 £ 00145 0.6598 £ 0.0148 09855 £ 0.0006  0.6527 £ 0.0135  0.0323 £ 0.0011
(temperature removed)
T=2 ordinal entropy 06284 £ 0.0010  0.6277 & 0.0078  0.9852 £ 0.0005 06275 4 0.0048  0,0300  0.0005
T=05 ordinal entropy 0,681 £ 0.0460  0.6819 £ 0.0427 09825 £ 0.0024  0.6809 £ 0.0419 00346  0.0023
T=02 ordinal entropy  0.6776 £ 00422 0.6923 £ 00304  0.9854 £ 0.0029  0.6819 £ 0.0346  0.0302 £ 0.0054

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1046416).
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Appendix

Performance comparisons of ablation experiments of the proposed semi-supervised method

Pseudo-labels Confidence measure Metric Unlabeled
proportion Entropy Or((:; :s:’z::rd(;py Precision Recall Accuracy F score MAE data usage
0.6390 0.6288 0.9853 0.6303 0.0248
p=10% O . (4£0.0604)  (£0.0759)  (40.0034)  (£0.0707)  (40.0027) O
» o 0.6473 0.6598 0.9855 0.6527 0.0323 o
(£0.0145)  (£0.0148) (£0.0006) (£0.0135) (£0.0011)
o v 0.6283 0.6048 0.9524 0.6141 0.0369 o
p = 20% (£0.0373)  (£0.0583) (£0.0705) (£0.0472) (£0.0082)
0.6425 0.6421 0.9838 0.6391 0.0320
X O (£0.0231)  (£0.0566)  (£0.0041) (£0.0409) (£0.0069) O
o v 0.6263 0.6177 0.9852 0.6197 0.0307 o
p = 50% (£0.0048) (£0.0171)  (£0.0009) (£0.0099) (£0.0008)
» o 0.6285 0.5950 0.9795 0.6032 0.0303 o
(£0.0304)  (£0.0505) (£0.0047) (£0.0437) (£0.0152)
o « 0.6245 0.6120 0.9810 0.6112 0.0351 o
p = 100% (£0.0183)  (£0.0552) (£0.0046) (£0.0436) (£0.0062)
% o 0.6249 0.6250 0.9830 0.6244 0.0362 o
(£0.0212)  (£0.0235) (£0.0012) (£0.0223) (£0.0021)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1046416).
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