Development of a deep learning-based anomaly detection model using multivariate time series manufacturing data

Industrial Intelligence Lab

구민주(석사과정), <u>임성훈(교수)</u> 울산과학기술원 산업공학과 {minjooku614, sunghoonlim}@unist.ac.kr

Contents

- Introduction
- Related works
- Proposed framework
- Experiments
- Results
- Conclusion

Applications of deep learning in anomaly detection

- Manufacturing
 - Fault detection
 - Prognostics and health management (PHM)
- Cyber security
 - Cyber intrusions
- Finance
 - Fraud detection
- Healthcare
 - Disease detection

In manufacturing fields

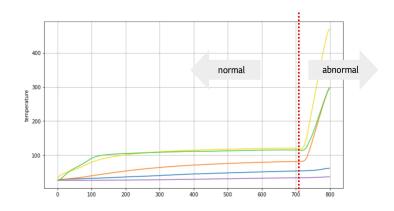
- With various data types, including time series and image data, quality prediction and prognostics and health management (PHM) are mainly conducted.
- Data imbalance between normal and abnormal data is existed.

- To address a data imbalance issue, semi-supervised anomaly detection methods have been widely used.

Semi-supervised anomaly detection

- Using **normal data** only for training.
- Called "one-class anomaly detection"

• A case study with real-world data from industrial electronics



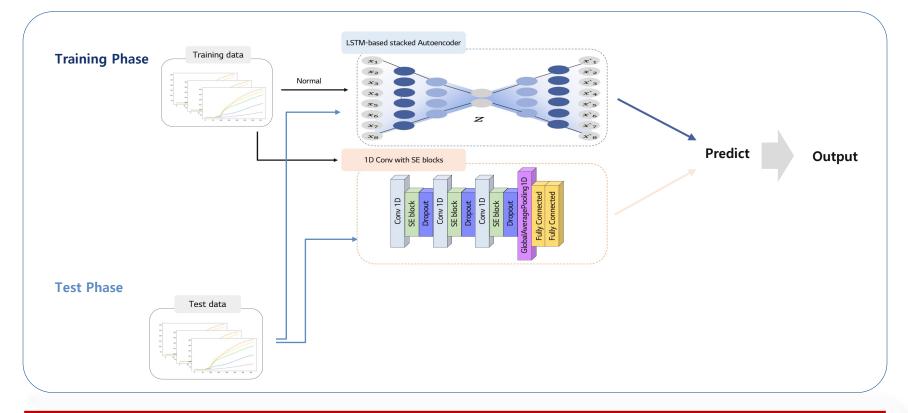
Task : To predict abnormal points with real-world data using a deep-learning framework.

The characteristics of the data:

- Multivariate time series data
- Two types of abnormal status
- All data are labeled

Proposed framework

Combining semi-supervised and supervised methods to predict abnormal points.



Related works

• Deep learning (DL)-based approach for anomaly detection

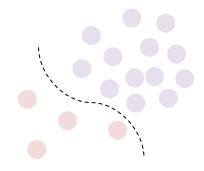
- Supervised anomaly detection
 - Required labeled data
 - Learn the boundary between normal and abnormal data
 - Superior performance in accuracy and speed-wise
 - Difficult to apply for real-world data
 - \rightarrow ARIMA, Tree-based models, RNN-based models
- Semi-supervised anomaly detection
 - Required normal data only
 - Learn the features of training (normal) data
 - Overfitting problems

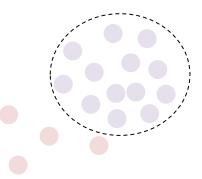
Representation learning from reconstruction

→ Autoencoders (AE), PCA, LSTM-AE,

Generative learning

→ Variational autoencoders, GAN-based models (TadGAN, MadGAN, TAnoGAN, BeatGAN,,)



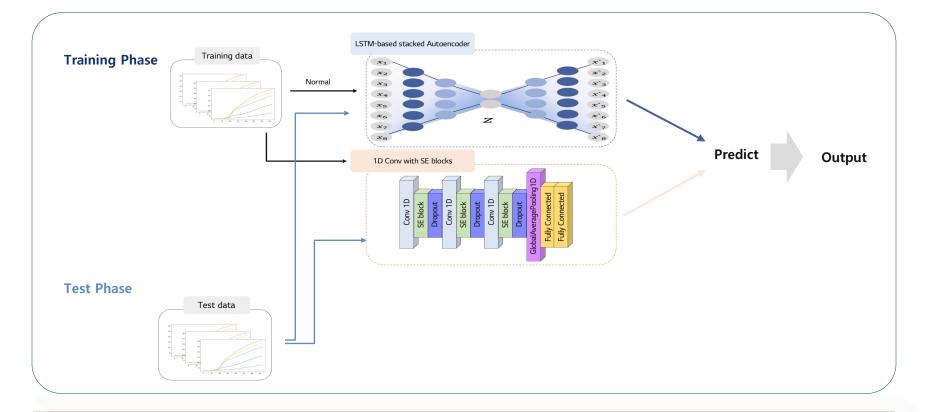


Related works

- Applications of semi-supervised anomaly detection in real indu stry
 - Convolutional recurrent autoencoder for IoT time series anomaly detection (Yin et al. 2022)
 - GAN variants called MADGAN for medical anomaly detection with brain MRI data (Han et al. 2021)
 - LSTM-based encoder-decoder for multi sensor anomaly detection (Malhotra et al. 2016)
- Hybrid models for anomaly detection
 - Combining unsupervised and supervised learning for detecting financial fra uds (Carcillo et al. 2021)
 - Combining LSTM-based models and DBN for PHM of aircraft (Che et al. 2019)
 - Combining three unsupervised algorithms to detect real-time cyber attacks (Carrera et al. 2022)

Proposed framework

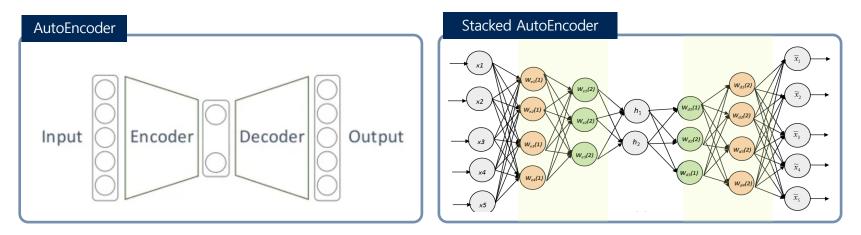
Combining LSTM-based stacked AE and 1D Conv to predict abnormal points more precisely.



Model

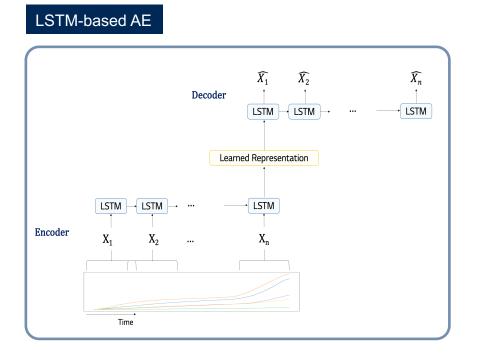
LSTM-based stacked autoencoder

- → Autoencoder variant which can learn compressed representation of sequence data
- \rightarrow Encoder compresses input data into the representation vector.
- \rightarrow Decoder decompresses and reconstructs the representation vector.
- \rightarrow Extract more features than autoencoder.



Model

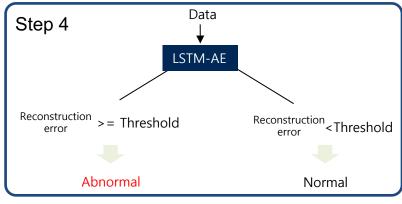
LSTM-based stacked autoencoder



Step 1. Train with normal data.

Step 2. Set the threshold.

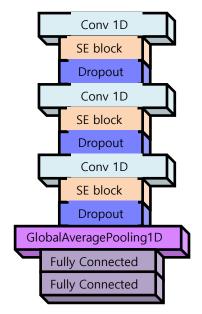
Step 3. Test with abnormal data.



Model

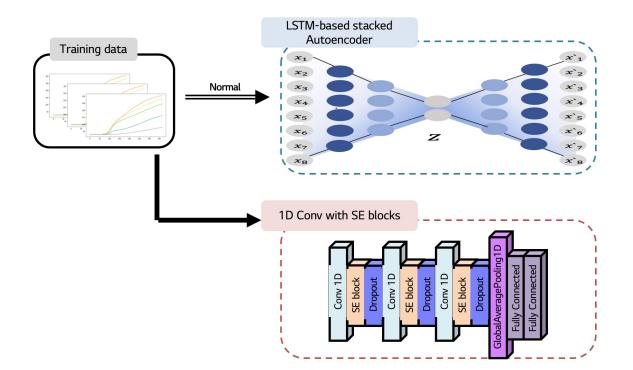
1D-Conv-based model

- \rightarrow Contemplate spatial correlation in data
- \rightarrow Suitable for multivariate time series data
- \rightarrow By adding SE blocks, consider the global feature



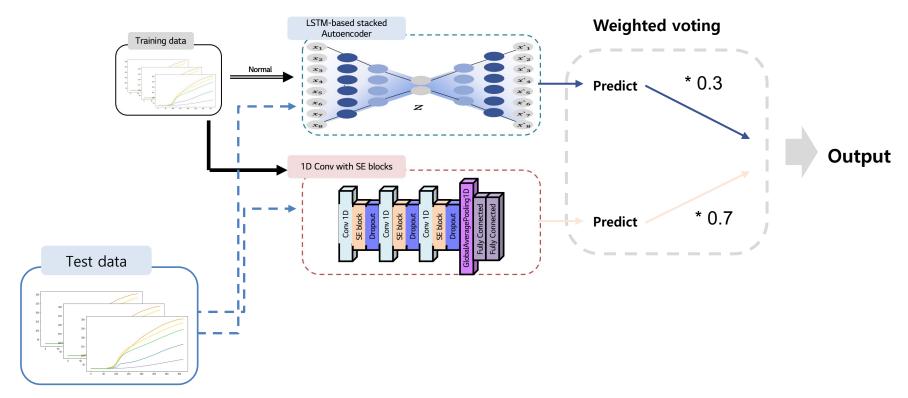
The proposed 1D-Conv based model

Training Phase



- Train two models separately.
- LSTM-based stacked autoencoder trained with normal data.

Test Phase

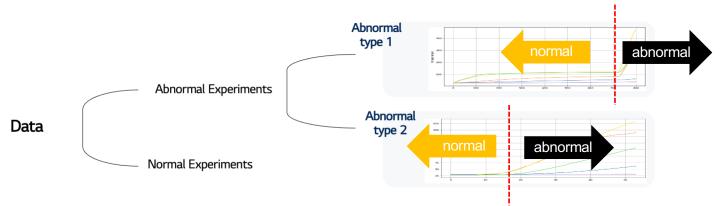


- Test with both normal and abnormal data.
- Considering that the supervised method has higher accuracy, set the higher weighted for final prediction than the semi-supervised method.

Experiments

Datasets:

- Real-world data from industrial electronics
 - Total 417 experiments
 - Normal experiments : 175
 - Abnormal experiments : 242
 - : the number of normal status : 120117
 - the number of abnormal status: 23379

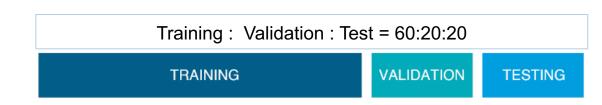


• Evaluation metrics: precision, recall, F1 score, AUC

Experiments

Experiment settings:

Data split :



- Window size: 40
- Size of data shift: 4 (for training)

	LeqOrigin_Moving	TopSensor	InverterPowerRMS	status
	4800.0	61.0	3237.0	0
	4824.0	61.0	3209.0	0
	4855.0	61.0	3210.0	0
)	4890.0	62.0	3213.0	0
)	4932.0	61.0	3210.0	1
1	4979.0	62.0	3184.0	1
2	5013.0	62.0	3192.0	1

Ex) Size of data shift =2

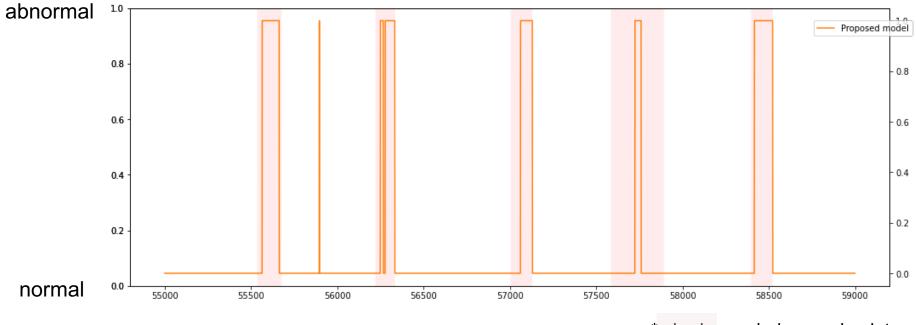
Results

Compare the performance of prediction models

Method	Precision	Recall	F1 score	AUC
Isolation forest	0.117	0.377	0.178	0.598
LOF	0.06	0.516	0.11	0.508
KNN	0.43	0.528	0.474	0.742
LSTM-AE (w/o curve shift)	0.05	0.029	0.037	0.655
LSTM-AE (w/ curve shift)	0.06	0.005	0.010	0.769
LSTM- stacked AE (w/o curve shift)	0.055	0.034	0.042	0.827
LSTM- stacked AE (w/ curve shift)	0.273	0.276	0.274	0.667
1D Conv with SE-blocks (w/o curve shift)	0.418	0.362	0.388	0.793
1D Conv with SE-blocks (w/ curve shift)	0.627	0.509	0.561	0.832
Proposed model	0.679	0.471	0.556	0.840

Results

Visualization



* shade : real-abnormal point

Conclusion

- Develop the DL-based anomaly detection model for real-world time series data.
- The proposed model which is combined with LSTM-AE and 1D-Conv outperforms the base-line models.

Contribution

• Suggest the hybrid model (semi-supervised and supervised) to maximize the data usage and performance.

Future works

• Apply better methods for combining the results.

감사합니다

Industrial Intelligence Lab

구민주(석사과정), <u>임성훈(교수)</u> 울산과학기술원 산업공학과 {minjooku614, sunghoonlim}@unist.ac.kr

This work was supported by the Advanced Technology Center Plus (ATC+) Program (20017932, 50% Accident Prevention Focus to reduce accident rate Development of Risk Detection System for Road Facilities Based on Artificial Intelligence) funded by the Ministry of Trade, Industry and Energy (MOTIE) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1046416).