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Introduction

• Applications of deep learning in anomaly detection
- Manufacturing

• Fault detection
• Prognostics and health management (PHM)

- Cyber security
• Cyber intrusions

- Finance
• Fraud detection

- Healthcare
• Disease detection
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Normal products

Defective products

Normal status

Abnormal status

- With various data types, including time series and image data, quality 
prediction and prognostics and health management (PHM) are mainly 
conducted.

- Data imbalance between normal and abnormal data is existed.

Semi-supervised anomaly detection

- Using normal data only for training.
- Called “one-class anomaly detection”

In manufacturing fields

Quality prediction PHM

- To address a data imbalance issue, semi-supervised anomaly detection 
methods have been widely used.



Introduction
• A case study with real-world data from industrial electronics
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Task : To predict abnormal points with real-world data using a deep-
learning framework.
The characteristics of the data:

- Multivariate time series data
- Two types of abnormal status
- All data are labeled



Introduction

Proposed framework
Ø Combining semi-supervised and supervised methods to predict 

abnormal points.
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Training Phase

Test Phase

OutputPredict
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• Deep learning (DL)-based approach for anomaly detection
– Supervised anomaly detection

• Required labeled data

• Learn the boundary between normal and abnormal data
• Superior performance in accuracy and speed-wise
• Difficult to apply for real-world data

à ARIMA, Tree-based models, RNN-based models 

– Semi-supervised anomaly detection
• Required normal data only
• Learn the features of training (normal) data
• Overfitting problems
Representation learning from reconstruction

à Autoencoders (AE), PCA, LSTM-AE,
Generative learning

à Variational autoencoders, GAN-based models (TadGAN, MadGAN,TAnoGAN, BeatGAN,, )
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• Applications of semi-supervised anomaly detection in real indu
stry
- Convolutional recurrent autoencoder for IoT time series anomaly detection (

Yin et al. 2022)

- GAN variants called MADGAN for medical anomaly detection with brain MRI 
data (Han et al. 2021)

- LSTM-based encoder-decoder for multi sensor anomaly detection (Malhotra et al. 
2016)

• Hybrid models for anomaly detection 
- Combining unsupervised and supervised learning for detecting financial fra

uds (Carcillo et al. 2021)

- Combining LSTM-based models and DBN for PHM of aircraft (Che et al. 2019)

- Combining three unsupervised algorithms to detect real-time cyber attacks 
(Carrera et al. 2022)



Proposed framework
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Training Phase

Test Phase

OutputPredict

Proposed framework
Ø Combining LSTM-based stacked AE and 1D Conv to predict abnormal 

points more precisely.
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Model

LSTM-based stacked autoencoder
à Autoencoder variant which can learn compressed representation of 

sequence data
à Encoder compresses input data into the representation vector.
à Decoder decompresses and reconstructs the representation vector. 
à Extract more features than autoencoder.

AutoEncoder Stacked AutoEncoder
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Model

LSTM-based stacked autoencoder

LSTM-based AE

Step 1. Train with normal data.

Step 2. Set the threshold.

Step 3. Test with abnormal data.

LSTM-AE

Data

>= Threshold <Threshold

Abnormal Normal

Step 4

Reconstruction
error 

Reconstruction
error 
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Model

1D-Conv-based model
à Contemplate spatial correlation in data 
à Suitable for multivariate time series data
à By adding SE blocks, consider the global feature 

Conv 1D

SE block

Dropout

Conv 1D

SE block

Dropout

Conv 1D

SE block

Dropout

GlobalAveragePooling1D

Fully Connected

Fully Connected

The proposed 1D-Conv based model
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Training Phase

- Train two models separately.
- LSTM-based stacked autoencoder trained with normal data. 
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Test data

Weighted voting

Output

Predict

Predict

* 0.3

* 0.7

- Test with both normal and abnormal data.
- Considering that the supervised method has higher accuracy, set the 

higher weighted for final prediction than the semi-supervised method. 

Test Phase
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Datasets:
• Real-world data from industrial electronics

– Total 417 experiments
Ø Normal experiments : 175 

Ø Abnormal experiments : 242 

: the number of normal status : 120117 

the  number of abnormal status: 23379

• Evaluation metrics: precision, recall, F1 score, AUC

abnormal

abnormal

normal

normal



Experiments

Experiment settings:
– Data split :

– Window size: 40
– Size of data shift: 4 (for training)

Training :  Validation : Test = 60:20:20

Ex) Size of data shift =2
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Results

Method Precision Recall F1 score AUC

Isolation forest 0.117 0.377 0.178 0.598

LOF 0.06 0.516 0.11 0.508

KNN 0.43 0.528 0.474 0.742

LSTM-AE (w/o curve shift) 0.05 0.029 0.037 0.655

LSTM-AE (w/ curve shift) 0.06 0.005 0.010 0.769

LSTM- stacked AE 
(w/o curve shift) 

0.055 0.034 0.042 0.827

LSTM- stacked AE 
(w/ curve shift) 

0.273 0.276 0.274 0.667

1D Conv with SE-blocks 
(w/o curve shift)

0.418 0.362 0.388 0.793

1D Conv with SE-blocks 
(w/ curve shift)

0.627 0.509 0.561 0.832

Proposed model 0.679 0.471 0.556 0.840
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Compare the performance of prediction models
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Visualization

abnormal

normal

* shade : real-abnormal point 



Conclusion

• Develop the DL-based anomaly detection model for real-world time 
series data.

• The proposed model which is combined with LSTM-AE and 1D-
Conv outperforms the base-line models.

Contribution
• Suggest the hybrid model (semi-supervised and supervised) to 

maximize the data usage and performance.
Future works 

• Apply better methods for combining the results.
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