Baekjune Kang

Department of Physics

Ulsan National Institute of Science and Technology (UNIST)

50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea

baekjunekang@unist.ac.kr / (+82)-10-5556-1497 /

https://scholar.google.com/citations?user=VrUgebAAAAAJ&hl=ko/ https://sites.google.com/view/baekjune-kang/home

Research Interest

Strongly Correlated Systems, Frustrated Spin Systems, Quantum Materials, Heterostructure, Optical Spectroscopy

Education and Employment

Basic Science Institute, UNIST

Postdoctoral Researcher

2025.09-Current

Advisor: Prof. Changhee Sohn

Department of Physics, UNIST

Ph.D. in Physics

2020.03-2025.08

Advisor: Prof. Changhee Sohn

Thesis: Optical Spectroscopy Studies on the Electronic and Magnetic Structure of Triangular and Hexagonal Layered Oxides

Multi-disciplinary majors of Physics and Computer Science and Engineering, UNIST

B.S. in Physics and Computer Science and Engineering

2016.03-2020.02

Selected Publication List

- **B. Kang[†]**, U. Choi, T. Jung, S. Noh, ... & C. Sohn, "Optical detection of bond-dependent and frustrated spin in the two-dimensional cobalt-based honeycomb antiferromagnet Cu₃Co₂SbO₆." *Nature Communications*, **16**, 1323 (2025). https://doi.org/10.1038/s41467-025-56652-w
- J. Jeong, <u>B. Kang</u>[†], J. Song, ... & C. Sohn, "Transparent conducting oxides SrNbO₃ thin film with record high figure of merit." *Journal of the European Ceramic Society*, **44**, 6764 (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.04.050
- **B.** Kang[†], M. Park, S. Song, S. Noh, ... & C. Sohn, "Honeycomb oxide heterostructure as a candidate host for a Kitaev quantum spin liquid." *Physical Review B*, **107**, 075103 (2023) https://doi.org/10.1103/PhysRevB.107.075103
- G. H. Kim, M. Park, S. Samanta, U. Choi, B. Kang, U. Seo, ... & C. Sohn, "Suppression of

antiferromagnetic order by strain-enhanced frustration in honeycomb cobaltate." *Science advances*, **10**, eadn8694 (2024). https://doi.org/10.1126/sciadv.adn8694

J. Mun, E. K. Ko, **B. Kang**, B. Gil, ... & M. Kim, Extended oxygen octahedral tilt proximity near oxide heterostructures. *Nano Letters*, **23**, 1036 (2023). https://doi.org/10.1021/acs.nanolett.2c04633

B. Kang[†], J. Shin, M. Kang, U. Choi, ... & C. Sohn, "Colossal optical anisotropy in wide-bandgap semiconductor CuAlO₂." *arXiv preprint arXiv:2412.12697*. (2024) *under review in Physical Review Letters*, https://arxiv.org/abs/2412.12697

Selected Conference Presentation

Oral Presentation APS March Meeting 2025

"Observation of Bond-Dependent Frustrated Spins via Spin-Exciton Coupling in the Cobalt Honeycomb Antiferromagnet Cu₃Co₂SbO₆"

Oral Presentation 2025 KPS Spring Meeting

"Colossal optical anisotropy and two-dimensionally confined exciton in delafossite CuAlO₂"

Oral Presentation UNIST Solid-State Physics Symposium

"Two-dimensional Exciton of CuAlO₂"

Oral Presentation 2022 KPS Fall Meeting

Selected Award/Honor/Scholar

Research Excellence Award in "UNIST"	No. 2024-5
Outstanding Presentation Award in "the Korean Magnetics Society"	KMS 2023-232
Outstanding Student Paper Award in "the Korean Physical Society"	BUG 2023-007
National Science & Technology Scholarship	2018.09 - 2020.02
Magna Cum Laude in "UNIST"	No. 3913

Research and Technical Expertise

Pulsed Laser Deposition: Design and Fabrication of instrument, Synthesis of heterostructure Material Characterization: Measurement and analysis of diverse physical properties Optical Measurements: Ellipsometry, FTIR (Low temperature to room temperature) Synchrotron-Based Experiments: (Tr-) XAS, XMLD, XMCD, Diffraction techniques Experimental Automation: LabVIEW-based automated control setup (PPMS, FTIR, etc..)

[&]quot;Heterostructure approach of quantum spin liquid"

References

Changhee Sohn

Assistant Professor

Department of Physics, UNIST

E-mail: chsohn@unist.ac.kr