

MCS Photon Physics

2017.01.31

Prof. Deokjung Lee

UNIST

CONTACT

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 0114 Web. www.unist.ac.kr

Teach photon physics

- Particle interaction
- Photon data
- Theoretical basis of formulas
- Teach state of the art Monte Carlo methods applied to photon physics
 - Interpolation laws
 - Random sampling techniques
- Provide full understanding of MCS photon-transport subroutines
 - Implementation choices
 - Validation cases

Outline

- **1. Overview of photon transport physics**
- 2. Rayleigh (coherent) scattering
- 3. Photoelectric effect
- 4. Pair production
- 5. Compton (incoherent) scattering
- 6. Atomic relaxation
- 7. Thick-Target Bremsstrahlung (TTB)
- 8. Photon KERMA
- 9. Verification & Validation

1. Photon transport physics

Overview 9 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

Context

Motivation: complex deep-penetration shielding problems

יבורובו

5

- Photon KERMA / body-equivalent dose
- Spent nuclear fuel transport/storage casks
- Reactor shielding

- Implementation in MCS version 0.0.76 (4) (2017, Dec. 12):
 - Fixed-photon-source simulation only
 - Photon energy simulation domain: 1 keV to 20 MeV
 - For all elements $1 \le Z \le 100$

Reference document for the whole lecture:

Implementing a photon physics model in Serpent2, Toni Kaltiaisenaho, Master thesis, Aalto University, 2016

MCS photon-transport physics module

Add source photon to queue Start Yes Queue empty No Get photon from queue Yes $E_{\mathbf{k}}$ No, $E_{\mathbf{k}} = E'_{\mathbf{k}}$ $E'_{\rm k} < E_{\rm cut}$ Transport process Photon interactions $E'_{\mathbf{k}} = E_{\mathbf{k}}$ Rayleigh scattering Secondary processes Vacancy $E'_{\mathbf{k}} < E_{\mathbf{k}}$ Atomic relaxation Compton scattering $e^- \times l$ $\times m$ Vacancy Absorption Photoelectric effect e^{-} e^{-} TTB Absorption Pair production e^+ $\times n$ Annihilation $\times 2$

Transport kernel

- Rayleigh scattering
- Photoelectric effect
- Pair production
- Compton scattering

Photon production

- Atomic relaxation (fluorescence / X-ray)
- Electron/positron annihilation
- Thick-Target Bremsstrahlung (TTB)

Add photons to queue

Schematics of the main photo-atomic reactions

Figure 3.1: Schematics of the four main photon interactions with matter: (a) photoelectric effect, (b) Rayleigh scattering, (c) Compton scattering, and (d) electron-positron pair production. In the figure, $E_{\rm k}$ is the energy of the incident photon, $E'_{\rm k}$ is the energy of the scattered photon, θ is the polar scattering angle of the photon, $T_{\rm e}$ and $T_{\rm p}$ are the energies of the emitted electron and positron, and $\theta_{\rm e}$ and $\theta_{\rm p}$ are the polar emission angles of the electron and positron. Note that for Rayleigh scattering $E'_{\rm k}$ is equal to $E_{\rm k}$.

COMPUTATIONAL Reactor Physics & Experiment lab in UNIST 1. Photon transport physics 2018-01-31 7

Photon energy (MeV)

CORE COmputational Reactor Physics & E

8

Photon energy (MeV)

Photon XS from XCOM database

- http://www.nist.gov/pml/xcom-photon-cross-sections-database
- Neutron XS from ENDF/B-VII.1 (OECD/NEA JANIS4.0)

	Mean free path (cm)							
	Water		Al27		Fe56		U238	
Energy	neutron	photon	neutron	photon	neutron	photon	neutron	photon
1 keV	0.7	2E-04	12.0	3E-04	1.2	1E-05	2.2	2E-05
10 keV	0.7	0.2	15.8	0.01	2.7	7E-04	3.5	0.001
100 keV	1.0	5.9	3.1	2.1	3.1	0.3	4.0	0.1
1 MeV	1.8	14.2	6.9	5.9	4.2	2.0	6.7	1.5
10 MeV	9.4	45.1	9.5	15.7	3.6	4.1	8.1	2.3
20 MeV	11.5	55.2	9.1	16.8	5.0	3.8	7.7	1.9

ENDF/B-VII.1 photo-atomic library

- 100 ENDF files (1 for each natural element,)
 - 1 $\leq Z \leq 100$
 - Photo-atomic XS only depend on Z !
- ENDF/B-VII.1 library processed by NJOY2012:
 - Creation of 100 ACE files

Each ACE file contains a ESZG block: 5 arrays of size NXS(3)

- Energy points: ln(E), unit(E) = MeV
- Photoelectric XS: $\ln(\sigma)$, $unit(\sigma) = barn$
- Rayleigh XS: $\ln(\sigma)$, $unit(\sigma) = barn$
- Compton XS: $\ln(\sigma)$, $unit(\sigma) = barn$
- Pair production XS: $\ln(\sigma)$, $unit(\sigma) = barn$

The energy grid is the same for the 4 photo-atomic reactions

- But the energy grid depends on the element:
 - Hydrogen (Z = 1) : NXS(3) = 278 energy points
 - Uranium (Z = 92) : NXS(3) = 1330 energy points
 - Fermium (Z = 100): NXS(3) = 1348 energy points

ULLIEL

Reconstructing the total photo-atomic XS with MCS

- In ACE files: logarithms of energy and XS
- MCS reads the ACE files, quantities are stored as <u>logarithms</u> too
- 1 binary search per element: $E_i \le E < E_{i+1}$ (Fast ! Max(NXS(3)) = 1348)
- Recommended interpolation: linear interpolation of log quantities

$$XS(E) = exp\left(\frac{ln(E) - ln(E_i)}{ln(E_{i+1}) - ln(E_i)}\left[ln(XS(E_{i+1})) - ln(XS(E_i))\right] + ln(XS(E_i))\right)$$

(Implementation detail: careful with log for pair production! XS = 0 below 1022 keV)

• Total photo-atomic XS = sum of 4 interpolated partials

 $XS_{TOTAL} = XS_{PHOTOELECTRIC} + XS_{RAYLEIGH} + XS_{COMPTON} + XS_{PAIR PRODUCTION}$

⇒Sampling of distance to collision ⇒Sampling of photo-atomic reaction

CORE COmputational Reactor Physics & Experiment lab in UNIST 1. Photon transport physics 2018-01-31 11

Full content of MCS photon library

- 100 ACE files "ZZZ000.04p"
 - Photo-atomic cross-sections ($1 \le Z \le 100$)
- cohff.dat
 - Coherent form factors for Rayleigh scattering (1 $\leq Z \leq 100$)
- ComptonProfiles.dat
 - Compton profile data for Compton scattering ($1 \le Z \le 100$)
- incohsf.dat
 - Incoherent scattering functions for Compton scattering (1 $\leq Z \leq 100$)
- gsconfig.dat
 - Atomic configurations of conduction band electrons for bremsstrahlung ($1 \le Z \le 100$)
- pdebr.dat
 - Scaled bremsstrahlung cross-sections ($1 \le Z \le 99$)
- relax.dat
 - Atomic relaxation data (fluorescence X-ray, Auger electrons) (1 $\leq Z \leq 100$)
- xspess.dat
 - Subshell photoelectric cross-sections ($1 \le Z \le 100$)
- xspetot.dat
 - Total photoelectric cross-sections ($1 \le Z \le 100$)

A view at the photon ACE data file format

NXS(1): number of elements in XSS	JXS(1): ESZG , energy points + XS of 4 main photo-atomic reactions				
NXS(2): 2, atomic number NXS(3): NES, number of energy points	JXS(2): JINC, incoherent scattering function				
NXS(4): NFLO, length of fluorescence	JXS(3): JCOH, coherent form factors				
data <mark>NXS(5):</mark> NSH, number of electron shells	JXS(4): JFLO, fluorescence data (edge energies, relative probabilities of ejection from shells, yields, fluorescent				
ESZG block:	energies)				
NES energy points ! ln(E)	JXS(5): LHNM, average heating numbers				
Compton XS ! ln(σ)	JXS(6): LNEPS, number of electrons per shell				
Coherent XS $! \ln(\sigma)$	JXS(7): LBEPS, binding energy per shell JXS(8): LPIPS, probability of interaction per shell				
Photoelectric XS $! \ln(\sigma)$					
Pair production XS ! ln(σ)					
Note: the total XS must be calculated as the sum of the 4 partial XS (all the	JXS(9): LSWD, location of Compton profile data				
time!)	JXS(10): SWD, Compton profile data				

2. Rayleigh scattering

Coherent scattering 5 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

Angular differential Rayleigh cross-section

- Incident photon
 - Energy E_k
- Outgoing photon
 - Polar angle $\Theta \in [0;\pi]$

- One task only: <u>set the polar scattering angle θ</u>
- Thomson cross-section with free-point charge form factors:

$$\frac{d\sigma_R}{d\Omega} = \frac{r_e^2}{2} \left(1 + \cos^2\theta\right) |f(x,Z)|^2$$

- $\frac{\sigma_R}{d\Omega}$: differential angular Rayleigh cross-section
- r_e : classical electron radius
- $x = sin(\theta/2) \frac{E_k}{hc}$: the momentum transfer (unit = Å⁻¹) (h Planck constant, c speed of light)
- Z : atomic number of target element
- *f* : atomic form factor (cf. next slide)

UCIST

Non-relativistic atomic form factor (1)

- File available for download on SERPENT2 website: "cohff.dat"
 - Extracted from EPICS2014 library by SERPENT2 developers
 - Form factors for all elements $1 \leq Z \leq 100$ and $0 \leq x \leq 10^9 \, {\rm \AA}^{-1}$
 - Recommended interpolation: linear interpolation on log-log scale

UCIST

- Coherent form factors treated by NJOY2012 and available in ACE files
 - Block JCOH at location JXS(3) in XSS block
 - + For each element, legacy grid of 55 momentum transfers from 0 ${\rm \AA}^{-1}$ to 6 ${\rm \AA}^{-1}$
- But! Problem with the NJOY truncation at 6 $Å^{-1}$
 - Too many backscattered photons are neglected
 - It is NOT recommended to use the JCOH block from NJOY/ACE [1]
 - This problem might be solved in new ACE format/NJOY releases to come [1]
- Current solution: read EPICS2014 form factors from an external file
 - SERPENT2 solution shown in previous slide and adopted for MCS
 - Each element has its own momentum transfer grid (size 90 to 170 depending on element)
 - In all cases, the EPICS2014 grid covers from $\underline{0\ \text{\AA}^{-1}}$ to $10^9\ \text{\AA}^{-1}$

[1] J.S. Hendricks, B.J. Quiter, "MCNP/X form factor upgrade for improved photon transport," Nuclear Technology, 175, pp. 150-161, 2011

MCS sampling of polar angle Θ for given E_k

- Starting point: $\frac{d\sigma_R}{d\Omega} = \frac{r_e^2}{2} (1 + \cos^2 \theta) |f(x, Z)|^2$ $x = \frac{\sin(\theta/2)E_k}{hc}$ • Max. value of x: $x_{max} = \frac{E_k}{hc}$ Trigonometry: $\cos \theta = 1 - 2 \frac{x^2}{x_{max}^2}$
- Then the differential XS can be rewritten as:

$$\frac{d\sigma_R}{d\Omega} = C.\,\varphi(x^2).\,g(x^2)$$

$$C = r_e^2 \int_0^{x_{max}^2} |f(x,Z)|^2 \, \mathrm{d}x^2 \quad \varphi(x^2) = \frac{1}{2} \left(1 + \left[1 - 2\frac{x^2}{x_{max}^2} \right]^2 \right) g(x^2) = \frac{|f(x,Z)|^2}{\int_0^{x_{max}^2} |f(x,Z)|^2 \, \mathrm{d}x^2}$$

- C is a constant
- φ is a rejection function: $\forall x^2, \frac{1}{2} \leq \varphi(x^2) \leq 1$
- *g* is the PDF of x^2 in the interval [0; x_{max}^2]

Sampling algorithm:

- **1)** Sample x^2 using the PDF g (cf. next slide)
- 2) Compute $\varphi(x^2)$ and get uniform 0 < r < 1
- 3) Accept x^2 if $r \le \varphi(x^2)$ else go back to step 1)
- 4) Compute $\cos \theta = 1 2 \frac{x^2}{x_{max}^2}$

Sampling algorithm to sample x^2 from the PDF g (fixed E_k)

- **1)** Calculate $x_{max} = \frac{E_k}{hc}$
- 2) Calculate $I_{max} = \int_0^{x_{max}^2} |f(x, Z)|^2 dx^2$
- 3) Get uniform $0 < \xi < 1$
- 4) Solve for x^2 the equation $\xi = \left(\int_0^{x^2} |f(u, Z)|^2 du^2\right) / I_{max}$
- Main question: how to compute $\int_0^{x^2} |f(u, Z)|^2 du^2$ for $x^2 \in [0, x_{max}^2]$?
- MCS formulas:
 - cohff.dat contains $(x_i, f(x_i))$, i = 1, 2, ..., N, for linear interpolation on log-log scale
 - MCS stores x_i^2 ; $ln(x_i^2)$; $f(x_i)^2$; $c_i = \frac{\ln f(x_{i+1}) \ln f(x_i)}{\ln x_{i+1} \ln x_i}$; $CDF(x_i^2) = \int_0^{x_i^2} |f(u, Z)|^2 du^2$
 - $CDF(x_i^2)$ calculated recursively: for $x^2 \in [x_i^2, x_{i+1}^2]$, $CDF(x^2) = CDF(x_i^2) + A(x^2)$

• if
$$c_i \neq -1 A(x^2) = \frac{x_i^2 f(x_i)^2}{1+c_i} \left[\frac{(x^2)^{1+c_i}}{(x_i^2)^{1+c_i}} - 1 \right] \Leftrightarrow x^2 = x_i^2 \left[(1+c_i) \frac{A(x^2)}{x_i^2 f(x_i)^2} + 1 \right]^{\frac{1}{1+c_i}}$$

• if $c_i = -1 A(x^2) = x_i^2 f(x_i)^2 \ln \left(\frac{x^2}{x_i^2} \right) \quad \Leftrightarrow x^2 = x_i^2 \exp \left(\frac{A(x^2)}{x_i^2 f(x_i)^2} \right)$

UORE COmputational Reactor Physics & Experiment lab in UNIST 2. Rayleigh scattering

3. Photoelectric effect

Photon absorption 9 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

LIAN NATIONAL INSTITUTE OF Editoric AND TECHNIQUESY 2 0.0 9

Incident photon

- Energy E_k
- Outgoing electron
 - Energy T_e
 - Polar angle $\theta_e \in [0;\pi]$

 $T_e = E_k - W_X$

 W_X is the binding energy of the electron subshell x (x = K, L, M, etc.)

- Two tasks:
 - Set the energy T_e (=> bremsstrahlung / KERMA)
 - Set the angle θ_e (=> bremsstrahlung)
- To sample the energy *T_e* :
 - Binding energy W_X must be determined
 - Electron subshell x must be sampled (=> atomic relaxation)

Sampling the electron subshell

 Total and subshell photoelectric cross-sections available in ENDF/BVII.1 library (ENDF files)

Subshell is sampled using partial subshell XS

Figure 37: The first nine photoelectric subshell cross sections for uranium from ENDF/B-VII.0. Black is the S subshell $(1s^{1/2})$, red is the L1, L2, and L3 subshells $(2s^{1/2}, 2p^{1/2}, 2p^{3/2})$, and green is the M1 through M5 subshells $(3s^{1/2}, 3p^{1/2}, 3p^{3/2}, 3d^{3/2}, 3d^{5/2})$.

- But... only the total photoelectric XS is treated by NJOY2012 !
 - NJOY2012 manual p. 536 "The detailed sub-shell cross section for photoionization supported by the most recent version of the ENDF-6 photo-atomic format are not supported in this version of acepho"
 - Subshell cross-sections NOT available in ACE files

ORE COmputational Reactor Physics & Experiment lab in UNIST 3. Photoelectric effect

ULLIEL

- Available in EPICS2014 (ENDLX format) or ENDF/B-VII.1 (ENDF format)
- Example: uranium has data (energy grid + XS) for 29 electron subshells
 - K
 - L1-L2-L3
 - M1-M2-M3-M4-M5
 - N1-N2-N3-N4-N5-N6-N7
 - 01-02-03-04-05-06-07
 - P1-P2-P3-P3-P4-P5
 - Q1
- 29 different energy grids (one per subshell), different from the energy grid for the total photoelectric XS
 - This would require one binary search per subshell !
 - Energy edge of many subshells below 1 keV

Sampling the subshell: SERPENT2 approach

- ENDF data files directly preprocessed with Matlab scripts
 - Only electron subshells with edge energy > 1 keV are kept
 - Calculation of a photoelectric unionized energy grid per element
- Two files available for download on SERPENT2 website: "xspetot.dat" and "xspess.dat"
 - Extracted from EPICS2014 library by SERPENT2 developers
 - xspetot.dat: cross-sections of total photo-electric effect
 - xspess.dat: cross-sections for each individual subshell
 - For all elements Z = 1 to 100

Example: uranium

- 1 photoelectric energy grid: 911 energy points
- 1 total photoelectric XS array (consistent with ACE data): 911 energy points
- 12 subshells (instead of 29): size of XS array between 469 and 907
- 1 array of 12 integers: starting index of subshell data on energy grid
- 1 single binary search necessary to interpolate all the subshell and total XS

Sampling the subshell: more details

- Number of subshells per element (edge energy > 1 keV)
 - 0 for Z <= 10
 - 1 for 11 <= Z <= 27
 - 2 for Z = 28 and 29
 - 4 for 30 <= Z <= 53
 - 5 for Z = 54
 - 6 for Z = 55
 - 7 for 56 <= Z <= 59
 - 8 for Z = 60
 - 9 for 61 <= Z <= 84
 - 10 for 85 <= Z <= 87
 - 11 for 88 <= Z < = 91
 - 12 for 92 <= Z <= 98
 - 13 for Z = 99 and Z = 100

Recommended interpolation: linear interpolation of log quantities

- XS and energy are stored as logarithms in MCS
- CDF is build from total and subshell XS, starting with K-shell

Sampling the subshell / kinetic energy T_e in MCS

- •How many subshells with edge energy > 1 keV for the colliding element?
 - If number of subshells = 0 or $E_k < \min(W)$, nothing to do: $T_e = E_k$
- Get uniform 0 < r < 1
- CDF = 0
- I binary search on the total photoelectric energy grid
- Interpolate total photoelectric XS
- For each subshell (starting from K-shell)
 - If $E_k < W$ then cycle to next subshell
 - Interpolate subshell photoelectric xs
 - CDF = CDF + (subshell photoelectric xs / total photoelectric xs)
 - If CDF > r then accept subshell: $T_e = E_k W$
- If no subshell accepted (r > CDF): $T_e = E_k$

Relativistic Sauter cross-section

- Formally only valid for K-shell electrons in light elements
- Agreement is good for light elements, deviates for heavy elements
- Still widely applied in Monte Carlo codes (EGS5, Geant4, PENELOPE)

$$\left(\frac{d\sigma_{pe}}{d\cos\theta_{e}}\right)_{Sauter,R} \propto \frac{\sin^{2}\theta_{e}}{(1-\beta\cos\theta_{e})^{4}} \left[1 + \frac{1}{2}\gamma(\gamma-1)(\gamma-2)(1-\beta\cos\theta_{e})\right]$$

•
$$\beta = \frac{\sqrt{T_e(T_e + 2m_ec^2)}}{T_e + m_ec^2} < 1; m_ec^2 = \text{electron rest mass energy; } \gamma = \text{Lorentz factor}$$

• Low sampling efficiency <50% in Geant4/PENELOPE

Non-relativistic Sauter cross-section

- $\gamma \rightarrow 1$: formally only valid for photoelectrons with $T_e < 1$ MeV
- Used in SERPENT2 and MCS; sampling efficiency = 67%

$$\left(\frac{d\sigma_{pe}}{d\cos\theta_e}\right)_{Sauter,NR} \propto \frac{\sin^2\theta_e}{(1-\beta\cos\theta_e)^4}$$

Sampling θ_e from non-relativistic Sauter XS

• Starting point $\left(\frac{d\sigma_{pe}}{d\cos\theta}\right)$

$$\frac{d\sigma_{pe}}{d\cos\theta_e}\bigg|_{Sauter,NR} \propto f(\theta_e) = \frac{\sin^2\theta_e}{(1-\beta\cos\theta_e)^4}$$

Rewriting :

$$f(\boldsymbol{\mu}) = \frac{1-\boldsymbol{\mu}^2}{(1-\boldsymbol{\beta}\boldsymbol{\mu})^4} = \boldsymbol{C}.\,\boldsymbol{\varphi}(\boldsymbol{\mu}).\,\boldsymbol{g}(\boldsymbol{\mu})$$

$$C = \frac{1}{1 - \beta^2} \qquad \varphi(\mu) = (1 - \beta^2) \frac{1 - \mu^2}{(1 - \beta\mu)^2} \qquad g(\mu) = \frac{1}{(1 - \beta\mu)^2}$$

- C is a constant (for given photoelectron energy T_e)
- φ is a rejection function: $\forall \mu, 0 \leq \varphi(\mu) \leq 1$
- *g* is an (unnormalized) PDF of μ in the interval [-1; 1]

Basic sampling algorithm:

- **1)** Sample μ using the PDF g
- 2) Compute $\varphi(\mu)$ and get uniform 0 < r < 1
- 3) Accept μ if $\varphi(\mu) \ge r$, else go back to step 1)

 $\mu = \cos \theta_e$

Sampling µ using the PDF g:

• Get uniform $0 < \xi < 1$ and solve for μ :

$$\xi = \frac{CDF(\mu)}{CDF(1)} = \frac{\int_{-1}^{\mu} g(x)dx}{\int_{-1}^{1} g(x)dx} = \frac{\int_{-1}^{\mu} (1-\beta x)^{-2}dx}{\int_{-1}^{1} (1-\beta x)^{-2}dx} < => \mu = \frac{2\xi + \beta - 1}{2\beta\xi - \beta + 1}$$

• Get uniform 0 < *r* < 1 and check the rejection criterion $\varphi(\mu) \ge r$:

$$\varphi(\mu) = (1 - \beta^2) \frac{1 - \mu^2}{(1 - \beta\mu)^2} = (1 - \beta^2) \frac{1 - \left(\frac{2\xi + \beta - 1}{2\beta\xi - \beta + 1}\right)^2}{\left(1 - \beta\frac{2\xi + \beta - 1}{2\beta\xi - \beta + 1}\right)^2} = 4\xi(1 - \xi)$$

• Optimized sampling algorithm:

- 1) Get uniform 0 < r < 1 and uniform $0 < \xi < 1$
- 2) If $4\xi(1-\xi) \ge r$ then calculate $\mu = \frac{2\xi+\beta-1}{2\beta\xi-\beta+1}$ else go back to step 1)

4. Pair production

Electron/positron pair creation 7 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

Incident photon

- Energy E_k
- Outgoing electron
 - Energy T_e
 - Polar angle $\theta_e \in [0;\pi]$
- Outgoing positron
 - Energy T_p
 - Polar angle $\theta_p \in [0;\pi]$
- Three tasks:
 - Set the energies T_e and T_p (=> bremsstrahlung)
 - Set the angles θ_e and θ_p (=> bremsstrahlung)
 - Simulate positron annihilation

Davies-Bethe-Maximon differential cross-section (1/2)

UCIST

- Sampling of the kinetic energy T_e of electron
- Kinetic energy T_p of positron deduced by energy conservation
 - Energy conservation: $E_k = T_e + T_p + 2m_ec^2$
- Notation:
 - Electron reduced energy $\epsilon = \frac{T_e + m_e c^2}{E_k}$
 - Minimum energy : $T_e = 0 \Rightarrow \epsilon_{min} = \frac{m_e c^2}{F_e}$
 - Maximum energy: $T_p = 0 \Rightarrow \epsilon_{max} = \frac{(E_k 2m_ec^2) + m_ec^2}{F_L} = 1 \epsilon_{min}$

• Davies-Bethe-Maximon XS for sampling ϵ in the range [ϵ_{min} ; ϵ_{max}] $\frac{d\sigma_{pp}}{d\epsilon} = (2\epsilon^2 - 2\epsilon + 1)\phi_1(\epsilon, E_k, Z) + \frac{2}{3}\epsilon(1 - \epsilon)\phi_2(\epsilon, E_k, Z)$ $\phi_i(\epsilon, E_k, Z) = \frac{S_i(G)}{2} - \frac{4}{2} \ln Z - 4f_c(Z) + F_0(\epsilon_{\min}, Z)$

H. Davies, H. A. Bethe, L. C. Maximon, "Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section for Pair Production," *Phys. Rev.*, 93, 788–795 (1954).

Davies-Bethe-Maximon differential cross-section (2/2)

S₁ and S₂ are screening functions from Butcher & Messel [1]

•
$$S_1(G) = \begin{cases} 20.867 - 3.242G + 0.625G^2 & , G \le 1\\ 21.12 - 4.184 \ln (G + 0.952) & , G > 1 \end{cases}$$

• $S_2(G) = \begin{cases} 20.209 - 1.930G - 0.086G^2 & , G \le 1\\ S_1(G) & , G > 1 \end{cases}$

$$G = rac{136}{Z^{1/3}} rac{\epsilon_{min}}{\epsilon(1-\epsilon)}$$

- f_c is the Coulomb correction factor from Davies-Bethe-Maximon • $f_c(a) = a^2 \left[\left(1 + a^2 \right)^{-1} + 0.202059 - 0.03693a^2 + 0.00835a^4 - 0.00201a^6 + 0.00049a^8 - 0.00012a^{10} + 0.00003a^{12} \right]$
 - $a = \alpha Z; \alpha \approx \frac{1}{137}$ is the fine-structure constant
- F₀ is a correction factor from PENELOPE Monte Carlo code [2]
 - $F_0(\epsilon_{min}, Z) = -(1.774 + 12.1a 11.18a^2)(2\epsilon_{min})^{1/2} + (8.523 + 73.26a 44.41a^2)(2\epsilon_{min}) (13.52 + 121.1a 96.41a^2)(2\epsilon_{min})^{3/2} + (8.946 + 62.05a 63.41a^2)(2\epsilon_{min})^2$

[1]Butcher & Messel, Electron number distribution in electron-photon showers in air and aluminium absorbers, Nuclear Physics, 20, 15–128 (1960)

[2]PENELOPE-2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport, page 76 <mark>(typo corrected)</mark>

URE COmputational Reactor Physics & Experiment lab in UNIST 4. Pair production

Plots of $\frac{d\sigma_{pp}}{d\epsilon}$ in uranium for SERPENT2 / PENELOPE / GEANT4

- Domain of interest: $E_k \leq 20 \text{ MeV}$
- PENELOPE reference Monte Carlo code for photon/electron transport
- GEANT4 far away from PENELOPE
- SERPENT2 (=MCS) very close from PENELOPE
- $\frac{d\sigma_{pp}}{d\epsilon}$ very close from uniform distribution for $E_k \leq 2$ MeV

- If $E_k \leq 2$ MeV:
 - ϵ sampled uniformly in [ϵ_{min} ; ϵ_{max}] with good approximation
- If $E_k > 2$ MeV:
 - Rejection sampling using the maximum of $\frac{d\sigma_{pp}}{d\epsilon}$
 - Step 1: sample $\epsilon_{min} \leq \epsilon_r \leq \epsilon_{max}$ and 0 < r < 1 uniformly
 - Step 2: if $r * \max_{\epsilon} \frac{d\sigma_{pp}}{d\epsilon} \le \epsilon_r$ then accept ϵ_r , else go back to step 1

• $\max_{\epsilon} \frac{d\sigma_{pp}}{d\epsilon}$ is fitted as a function of $E_k > 2$ MeV and Z

•
$$\max_{\epsilon} \frac{d\sigma_{pp}}{d\epsilon} = \frac{p_1(Z)E_k^2 + p_2(Z)E_k + p_3(Z)}{E_k^2 + q_1(Z)E_k + q_2(Z)}$$

- Coefficients p_1 , p_2 , p_3 , q_1 , q_2 hard-coded in SERPENT2/MCS source code
- Finally:
 - $T_e = \epsilon_r \cdot E_k m_e c^2$
 - $T_p = E_k \epsilon_r \cdot E_k m_e c^2$

CORE COmputational Reactor Physics & Experiment lab in UNIST 4. Pair production

Angular distribution of electron/positron pair

• Leading order of the Sauter-Gluckstern-Hull distribution:

•
$$\left(\frac{d\sigma_{pp}}{d\cos\theta}\right)_{SGH} \propto \frac{1}{(1-\beta\cos\theta)^2}$$
 with $\beta = \frac{\sqrt{T(T+2m_ec^2)}}{T+m_ec^2}$

- Valid for both the electron and the positron
- Used in PENELOPE Monte Carlo code
- θ_e and θ_p sampled independently from each other
- Positron and electron supposed coplanar

• Sampling of $\mu = \cos \theta$

• Get uniform $0 < \xi < 1$ and solve for μ :

$$\xi = \frac{CDF(\mu)}{CDF(1)} = \frac{\int_{-1}^{\mu} (1 - \beta x)^{-2} dx}{\int_{-1}^{1} (1 - \beta x)^{-2} dx} < => \mu = \frac{2\xi + \beta - 1}{2\beta\xi - \beta + 1}$$
• After a pair production:

- Positron slowing-down from energy T_p to thermal energy
- Positron collision with electron → annihilation particle/antiparticle
 → creation of photons
- Positron annihilation modelled <u>at rest</u> in MCS/SERPENT2:
 - Positron at thermal energy, supposed equal to 0
 - 2 collinear photons produced, emitted in opposite direction
 - Direction sampled isotropically
 - Photon energy = $m_e c^2$

For the future, positron annihilation modelled <u>in flight</u>:

- Annihilation happens before the positron thermalizes
- Initial momentum of positron non negligible → more complicated distribution of angles/energies for the two resulting photons
- In-flight annihilation probably requires full charged-particle transport

5. Compton (incoherent) scattering

The most complicated photo-atomic interaction 20 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

Compton scattering in Monte Carlo codes

Incident photon

- Energy E_k
- Scattered photon
 - Energy E'_k
 - Polar angle $\theta \in [0;\pi]$
- Outgoing electron
 - Energy T_e
 - Polar angle $\theta_e \in [0;\pi]$

(c) E_k H_e H_e H_e T_e

To-do list:

- Set the directions of the scattered photon and of the electron
- Set the electron subshell
- Set the energies E'_k and T_e

Notation

• $\|\overrightarrow{p_k}\| = \frac{E_k}{c}$ and $\|\overrightarrow{p'_k}\| = \frac{E'_k}{c}$ momentum of incident and scattered photon

• $\overrightarrow{p_e}$ and $\overrightarrow{p_e'}$ momentum of electron before and after scattering

- Total energy / momentum conservation
 - $E_k + m_e c^2 = E'_k + (m_e c^2 + T_e)$
 - $\overrightarrow{p_k} + \overrightarrow{p_e} = \overrightarrow{p'_k} + \overrightarrow{p'_e}$

• Free electron at rest $\Rightarrow \overrightarrow{p_e} = \mathbf{0} \Rightarrow \overrightarrow{p'_e} = \overrightarrow{p_k} - \overrightarrow{p'_k}$

$$\Rightarrow {p'_e}^2 = \left(\frac{E_k}{c}\right)^2 + \left(\frac{E'_k}{c}\right)^2 - 2\frac{E_k E'_k}{c^2}\cos\theta$$

Relativistic electron energy equation:

•
$$(m_e c^2 + T_e)^2 = p'_e^2 c^2 + m_e^2 c^4$$

 $\Rightarrow (E_k - E'_k + m_e c^2)^2 = E_k^2 + E'_k^2 - 2E_k E'_k \cos \theta + m_e^2 c^4$

$$\Rightarrow E'_{k} = \frac{E_{k}}{1 + \frac{E_{k}}{m_{e}c^{2}}(1 - \cos\theta)} \equiv E_{c}$$

 $E_{\mathbf{k}}$

Bound electron problem (1) notation / definitions

Notation

- $\|\overrightarrow{p_k}\| = \frac{E_k}{c}$ and $\|\overrightarrow{p'_k}\| = \frac{E'_k}{c}$ momentum of incident and scattered photon
- $\overrightarrow{p_e}$ and $\overrightarrow{p'_e}$ momentum of electron before and after scattering
- E_e and E'_e electron energy before and after scattering
- $E_{b,i} > 0$ binding energy of electron subshell i
- Momentum transfer vector \vec{q}

•
$$\hbar \vec{q} = \vec{p}_k - \vec{p}'_k \Rightarrow \|\vec{q}\| = \frac{1}{\hbar c} \sqrt{E_k^2 + E'_k^2 - 2E_k E'_k \cos \theta}$$

- Total energy / momentum conservation
 - $E_k + E_e = E'_k + E'_e + E_{b,i}$ • $\overrightarrow{p_k} + \overrightarrow{p_e} = \overrightarrow{p'_k} + \overrightarrow{p'_e} \Rightarrow \hbar \overrightarrow{q} = \overrightarrow{p_k} - \overrightarrow{p'_k} = \overrightarrow{p'_e} - \overrightarrow{p_e}$
- Relativistic electron energy equations

•
$$E_e^2 = p_e^2 c^2 + m_e^2 c^4 \Rightarrow p_e^2 = \frac{E_e^2}{c^2} - m_e^2 c^2$$

• $E'_e^2 = p'_e^2 c^2 + m_e^2 c^4 \Rightarrow p'_e^2 = \frac{E'_e^2}{c^2} - m_e^2 c^2$

• Projection p_z of initial electron momentum on vector $-\vec{q}$ • $p_z = -\frac{\vec{p_e} \cdot \vec{q}}{\|\vec{q}\|} = -\frac{\vec{p_e} \cdot \left(\vec{p'_e} - \vec{p_e}\right)}{\hbar \|\vec{q}\|} = \frac{p_e^2 - \vec{p'_e} \cdot \vec{p_e}}{\hbar \|\vec{q}\|}$

Bound electron problem (2) resolution $p_z = f(E'_k)$

•
$$\left(\overrightarrow{p'_e} - \overrightarrow{p_e}\right)^2 = \left(\overrightarrow{p_k} - \overrightarrow{p'_k}\right)^2 \Rightarrow p_e^2 + p'_e^2 - 2\overrightarrow{p'_e}, \overrightarrow{p_e} = \hbar^2 \|\overrightarrow{q}\|^2$$

•
$$p_{z} = \frac{p_{e}^{2} - \overline{p'_{e}} \cdot \overline{p_{e}}}{\hbar \|\vec{q}\|} = \frac{1}{\hbar \|\vec{q}\|} \left(\frac{E_{e}^{2}}{c^{2}} - m_{e}^{2}c^{2} + \frac{1}{2}\hbar^{2} \|\vec{q}\|^{2} - \frac{1}{2} \left(\frac{E_{e}^{2}}{c^{2}} - m_{e}^{2}c^{2} \right) - \frac{1}{2} \left(\frac{E'_{e}^{2}}{c^{2}} - m_{e}^{2}c^{2} \right) \right)$$

•
$$p_{z} = \frac{1}{\hbar \|\vec{q}\|} \left(\frac{1}{2} \hbar^{2} \|\vec{q}\|^{2} + \frac{1}{2} \frac{E_{e}^{2}}{c^{2}} - \frac{1}{2} \frac{E_{e}^{\prime}}{c^{2}} \right) = \frac{1}{2\hbar \|\vec{q}\|c^{2}} \left(E_{k}^{2} + E_{k}^{\prime}^{2} - 2E_{k} E_{k}^{\prime} \cos\theta + E_{e}^{2} - E_{e}^{\prime}^{2} \right)$$

•
$$E_k + E_e = E'_k + E'_e + E_{b,i} \Rightarrow {E'_e}^2 = (E_k + E_e - E'_k - E_{b,i})^2$$

Relativistic Impulse approximation

•
$$E_{b,i} \approx 0$$

• $E_e = m_e c^2$
• $E_e = m_e c^2$

• Replacing
$$E'_e^2$$
 in p_z yields

$$p_{z} = \frac{E_{k}E_{k}'(1 - \cos\theta) - m_{e}c^{2}(E_{k} - E_{k}')}{c_{\sqrt{E_{k}}^{2} + E_{k}'^{2} - 2E_{k}E_{k}'\cos\theta}}$$

• If $p_z = 0$ then $E'_k = E_c$ = energy of scattered photon in free-electron case

Overview of MCS Compton scattering subroutine

- **1)** Solve the free electron at rest problem: rejection sampling of the polar angle θ and energy E_c of the scattered photon
 - a. Sample θ (and E_c) from Klein-Nishina distribution
 - b. Accept θ using the incoherent scattering function test or go to 1) a.
- 2) Solve the bound electron problem: rejection sampling of the energy E'_k of the scattered photon
 - a. Sampling the electron subshell x of binding energy W_X with rejection method using electron number CDF and Compton profiles
 - b. Sample the initial electron momentum p_z using the Compton profile of the electron subshell ${\bf x}$
 - c. Solve the energy E'_k for the sampled initial electron momentum p_z
 - d. Sample random 0 < r < 1
 - e. If $\frac{E'_k}{(E_k W_X)} \le r$ then accept E'_k else go to 2) a.
- 3) Set electron energy T_e and polar angle θ_e
 - $T_e = E_k E'_k W_X$
 - Direction of the electron taken equal to the momentum transfer vector
- 4) Finally:
 - Simulate bremsstrahlung
 - Simulate fluorescence in subshell x

Free-electron diff. angular cross-section of Compton scattering

$$\left(\frac{d\sigma_{Co}}{d\Omega}\right)_{KN} = \frac{r_e^2}{2} \left(\frac{E_C}{E_k}\right)^2 \left(\frac{E_C}{E_k} + \frac{E_k}{E_C} - \sin^2\theta\right)$$

- r_e is the classical electron radius
- $E'_k = E_c$ for Compton scattering on free (unbound) electrons

Recommended θ sampling method [1]

- $E_k > 1.4$ MeV : probability mixing (PMIX) method of Koblinger [2]
- $E_k \leq 1.4$ MeV : rejection step (RSTEP) method of Matthews [1]

• θ sampling method implemented in MCS

- $E_k > 1.4$ MeV : PMIX method of Koblinger
- $E_k \leq 1.4$ MeV : rejection inverse square (RIS) method of Matthews

• For $E_k \leq 1.4$ MeV, RIS method is the second-fastest sampling method right after RSTEP method [1]

[1] Matthews K, "Random Sampling from the Klein-Nishina distribution," Nucl. Sci. Eng., 173, 207-221 (2013)

[2] Koblinger L, Lux I, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, p. 9, p. 67, CRC Press (1991)

Matthew K. "Random sampling from K-N distribution"

TABLE II

Ratios of Speeds

Method	Ratio of Method Speed to Speed of Kahn's Method						
Test Scheme:	Random in	Decreasing by Scatters:	Various, Repeated 0.003 to 2.723				
Selection of Values for α	[0.2,2.73]	2.731 to 0.001					
Step with pretest	1.65	1.78	1.80				
Step without pretest	1.61	1.75	1.57				
Inverse square	1.10	1.37	1.16				
Kahn	1	1	1				

VI. RECOMMENDATIONS

Step sampling with rejection, including the pretest, is the overall best choice for $0 \le \alpha \le 1 + \sqrt{3}$. It is, overall, ~75% faster than Kahn's method, with acceptance efficiency of 90% to 98% and only two random numbers used per trial. We did not test it above that range, because the needed resolution in α increases as α increases, and there is no obvious upper bound for α . Therefore, we recommend the combination of step sampling with rejection and pretest for $\alpha \leq 1 + \sqrt{3}$ and Koblinger's method for $\alpha > 1 + \sqrt{3}$.

For applications in which minimal memory usage is more important than speed, the inverse square method provides the best speed without tables and is a simple algorithm. It is faster and more parsimonious than Kahn's method while being of comparable efficiency. For $\alpha \leq$ $1 + \sqrt{3}$, inverse square rejection is recommended as a general replacement for Kahn's method, with Koblinger's method used for $\alpha > 1 + \sqrt{3}$, for such applications.

[1] Matthews K, "Random Sampling from the Klein-Nishina distribution: efficiency, parsimony, and speed," Nucl. Sci. Eng., 173, 207-221 (2013)

UNRE COmputational Reactor Physics & Experiment lab in UNIST 5. Compton scattering

1) a. PMIX method of Koblinger (1/2)

$$\left(\frac{d\sigma_{Co}}{d\Omega}\right)_{KN} = \frac{r_e^2}{2} \left(\frac{E_C}{E_k}\right)^2 \left(\frac{E_C}{E_k} + \frac{E_k}{E_C} - \sin^2\theta\right) = \frac{r_e^2}{2} \frac{1}{x^2} \left(\frac{1}{x} + x + \mu^2 - 1\right)$$

Notations:

$$\alpha_0 = \frac{E_k}{m_e c^2}$$
; $\mu = \cos \theta$; PMIX samples the variable $x = \frac{E_k}{E_C}$

• Using the expression of E_C (free electron solution):

•
$$E_C = \frac{E_k}{1 + \frac{E_k}{m_e c^2} (1 - \cos \theta)} \Rightarrow x = 1 + \alpha_0 (1 - \mu) \Rightarrow \mu = \frac{\alpha_0 - x + 1}{\alpha_0}$$

•
$$\mu \in [-1; 1] \Rightarrow x \in [1; 1 + 2\alpha_0]$$

•
$$\left(\frac{d\sigma_{Co}}{d\Omega}\right)_{KN} \propto \frac{1}{x^2} \left(\frac{1}{x} + x + \left(\frac{\alpha_0 - x + 1}{\alpha_0}\right)^2 - 1\right) = \frac{1}{x^3} + \frac{2\alpha_0 + 1}{\alpha_0^2 x^2} + \frac{1 - \frac{2(\alpha_0 + 1)}{\alpha_0^2}}{x} + \frac{1}{\alpha_0^2}$$

= $P_3(x) + P_2(x) + P_1(x) + P_0(x)$

- PMIX can only be applied if $\forall i \ \forall x \in [1; 1 + 2\alpha_0] P_i(x) \ge 0$
 - $P_1(x) \ge 0 \iff \alpha_0 \ge 1 + \sqrt{3} \iff E_k \ge (1 + \sqrt{3})m_ec^2 \approx 1.396 \text{ MeV}$

1) a. PMIX method of Koblinger (2/2)

Notation

$$\begin{pmatrix} \frac{d\sigma_{Co}}{d\Omega} \end{pmatrix}_{KN} \propto \frac{1}{x^3} + \frac{2\alpha_0 + 1}{\alpha_0^2 x^2} + \frac{1 - \frac{2(\alpha_0 + 1)}{\alpha_0^2}}{x} + \frac{1}{\alpha_0^2} = P_3(x) + P_2(x) + P_1(x) + P_0(x)$$

 $x \in [1; \delta]; \delta = 1 + 2\alpha_0; \gamma = 1 - 1/\delta^2; \alpha_0 \ge 1 + \sqrt{3}$

• Define $I_i = \int_1^{\delta} P_i(x) \, dx$; $I = \sum_0^3 I_i$; $CDF_i(x) = \left(\int_1^x P_i(x) \, dx\right) / I_i$

- PMIX sampling algorithm of x variable:
 - Get uniform 0 < r < 1 and find index j so that $\sum_{i=1}^{j-1} I_i < I_i r \leq \sum_{i=1}^{j} I_i$
 - Get uniform $0 < \xi < 1$ and solve for *x* the equation $\xi = CDF_j(x)$

• Compute
$$\mu = \frac{\alpha_0 - x + 1}{\alpha_0}$$
 and $E_C = \frac{E_k}{x}$

Solutions:

•
$$I_0 = I_2 = 2/\alpha_0$$
; $I_1 = (1 - (1 + \delta)/\alpha_0^2)$. $\ln \delta$; $I_3 = \gamma/2$
• $j = 0$: $x = 1 + 2\alpha_0\xi$
• $j = 1$: $x = \delta^{\xi}$
• $j = 2$: $x = \frac{\delta}{1 + 2\alpha_0\xi}$
• $j = 3$: $x = \frac{1}{\sqrt{1 - \gamma\xi}}$

URE COmputational Reactor Physics & Experiment lab in UNIST 5. Compton scattering

1) a. RIS method of Matthews

$$\left(\frac{d\sigma_{Co}}{d\Omega}\right)_{KN} = \frac{r_e^2}{2} \frac{1}{x^2} \left(\frac{1}{x} + x + \mu^2 - 1\right) = \frac{r_e^2}{2} \frac{1}{[1 + \alpha_0(1 - \mu)]^2} \left(\frac{1}{1 + \alpha_0(1 - \mu)} + \alpha_0(1 - \mu) + \mu^2\right)$$

• Reminder
$$E_C = \frac{E_k}{1 + \frac{E_k}{m_e c^2} (1 - \cos \theta)} \Rightarrow x = 1 + \alpha_0 (1 - \mu)$$

- Rejection sampling method of $\mu = \cos \theta$ for $\alpha_0 \le 1 + \sqrt{3}$
 - Inverse square function $S(\mu) = \frac{r_e^2}{2} \frac{16 + \alpha_0}{2[2 + \alpha_0(1 \mu)]^2} \ge \left(\frac{d\sigma_{CO}}{d\Omega}\right)_{KN} \forall \alpha_0 \in [0; 1 + \sqrt{3}] \forall \mu \in [-1; 1]$
 - Step 1: get uniform $0 < \xi < 1$ and solve for μ_{ξ} :

$$\xi = \frac{CDF(\mu_{\xi})}{CDF(1)} = \frac{\int_{-1}^{\mu_{\xi}} S(x) dx}{\int_{-1}^{1} S(x) dx} < => \mu_{\xi} = 1 - \frac{2\xi}{1 + \alpha_0(1 - \xi)}$$

• **Step 2**: **get uniform 0** < *r* < **1**

• Step 3: If
$$r \leq \frac{\left(\frac{d\sigma_{CO}}{d\Omega}\right)_{KN}(\mu_{\xi})}{S(\mu_{\xi})}$$
 then accept μ_{ξ} , else go back to step 1

CORE COmputational Reactor Physics & Experiment lab in UNIST 5. Compton scattering

1) b. Total diff. angular XS for Compton scattering

$$\left(\frac{d\sigma_{Co}}{d\Omega}\right)_{ISF} = \left(\frac{d\sigma_{Co}}{d\Omega}\right)_{KN} \times S_{WH}(x, Z)$$

- MCS differential angular cross-section (DCS) for Compton scattering
- $S_{WH}(x, Z)$ =Waller-Hartree Incoherent Scattering (WH-ISF)
 - ISF accounts for the fact that the electron is <u>not free, but bound to an atom</u>
 - Function of momentum transfer x and atomic number Z
- Plot of WH-ISF data for
 - Hydrogen
 - Carbon
 - Iron
 - Uranium
 - $\forall Z, S_{WH}(0, Z) = 0$: DCS suppressed at low energies and in the forward direction
 - $\mathbf{x} \to +\infty$ then $S_{WH}(\mathbf{x}, \mathbf{Z}) \to \mathbf{Z}$: large scattering angles are more likely

Incoherent scattering function (ISF)

- Incoherent scattering function treated by NJOY2012 and available in ACE files
 - Block JINC at location JXS(2) in XSS block
 - + For each element, legacy grid of 21 momentum transfers from 0 ${\rm \AA}^{-1}$ to 8 ${\rm \AA}^{-1}$
- But! Problem with the NJOY truncation at 8 Å⁻¹
 - The truncation of high x tail leads to physical errors in photon energy spectrum
 - It is NOT recommended to use the JINC block from NJOY/ACE [1]
 - Similar problem as the coherent form factors shown previously
 - This problem might be solved in new ACE format/NJOY releases to come [1]
- Current solution: get ISF from EPICS2014 / ENDF/B-VII library
 - Each element has its own momentum transfer grid (size 94 to 174 depending on element)
 - In all cases, the EPICS2014 grid covers from $\underline{0\ \text{\AA}^{-1}}$ to $10^9\ \text{\AA}^{-1}$

[1] J.S. Hendricks, B.J. Quiter, "MCNP/X form factor upgrade for improved photon transport," Nuclear Technology, 175, pp. 150-161, 2011

50

יבורובו

1) b. Sampling of polar scattering angle θ

- File available for download on SERPENT2 website: "incohsf.dat"
 - WH-ISF data extracted from EPICS2014 library by SERPENT2 developers
 - For all elements $1 \le Z \le 100$ and $0 \le x \le 10^9 \,\text{\AA}^{-1}$
 - Recommended interpolation: linear interpolation on log-log scale
- WH-ISF is used as rejection function
 - WH-ISF monotonically increasing: $\forall Z, x \uparrow \Rightarrow S_{WH}(x, Z) \uparrow$
- Sampling algorithm of $\mu = \cos \theta$

•
$$x_{max} = \max_{0 \le \theta \le 2\pi} \frac{\sin(\theta/2)E_k}{hc} = \frac{E_k}{hc}$$

• $\mu = 1 - 2 \frac{x^2}{x_{max}^2}$ (slide 18) $\Rightarrow x = x_{max} \sqrt{\frac{1-\mu}{2}}$

- Step 1: sample $\mu_r = \cos \theta$ from Klein-Nishina distribution
- Step 2: compute $x_r = \frac{E_k}{hc} \frac{\sqrt{1-\mu_r}}{\sqrt{2}}$ and sample 0 < r < 1 uniformly
- Step 3: accept θ_r if $r \leq \frac{S_{WH}(x_r,Z)}{S_{WH}(x_{max},Z)}$, otherwise go back to step 1

 $\operatorname{WH}(x,Z)$

2) Sampling of the scattered photon energy E'_k

• Double differential Compton cross-section of electron momentum p_z and of polar angle θ

$$\left(\frac{d^2\sigma_{Co}}{dp_z d\Omega}\right)_{KN} = \frac{r_e^2}{2} \frac{E_C}{E_k} \left(\frac{E_C}{E_k} + \frac{E_k}{E_C} - \sin^2\theta\right) \frac{E'_k}{E_k} \sum_i N_i \cdot H(E_k - E_{b,i}) \cdot J_i(p_z)$$

- Sum on the subshells i = 1, 2, ... of the atom
- Subshell i of binding energy $E_{b,i}$ contains N_i electrons
- J_i is the Compton profile of subshell i
- *H* Heaviside function : H(x) = 0 for x < 0 and H(x) = 1 for $x \ge 0$
- For fixed E_k and θ , purple part is a constant
- Overview of E'_k sampling algorithm
 - Step 1: sample a subshell *jr* from $\sum_i N_i \cdot H(E_k E_{b,i}) \cdot J_i(p_z)$
 - Step 2: sample $p_{z,r}$ from Compton profile J_{jr}
 - Step 3: compute $E'_{k,r}$ corresponding to sampled $p_{z,r}$ value
 - Step 4: sample 0 < *r* < 1 uniformly
 - Step 5: if $r < \frac{E'_{k,r}}{E_k E_{b,jr}}$ accept $E'_{k,r}$ else go back to step 1

• Probability distributions of electron momentum p_z for each electron subshell

Properties of Compton profiles

- Normalization: $\int_{-\infty}^{+\infty} J_i(p_z) dp_z = 1$
- Symmetry: $J_i(-p_z) = J_i(p_z)$
- Maximum $\forall p_z \ J_i(0) \geq J_i(p_z)$

• Momentum p_z is sampled in the range $[p_{z,min}: p_{z,max,i}]$

(reminder slide 42: $p_z = \frac{E_k E'_k (1 - \cos \theta) - m_e c^2 (E_k - E'_k)}{c_k \sqrt{E_k^2 + E'_k^2 - 2E_k E'_k \cos \theta}}$)

• $E'_k = 0 \rightarrow p_{z,min} = -m_e c \approx -137 \alpha m_e c$ (α = fine structure constant)

•
$$E'_{k} = E_{k} - E_{b,i} \rightarrow p_{z,max,i} = \frac{E_{k}(E_{k} - E_{b,i})(1 - \cos \theta) - m_{e}c^{2}E_{b,i}}{c\sqrt{2E_{k}(E_{k} - E_{b,i})(1 - \cos \theta) + E_{b,i}^{2}}}$$

K, L2, M1 and N1 subshell Compton profiles / DDCS in lead

Figure 3.13: (a) Hartree–Fock Compton profiles for K-, L₂-, M₁-, and N₁-shell electrons of lead [54], and (b) the corresponding DDCSs according to Eq. (3.58) for the scattering of 0.5 MeV photons into 120°. The dashed black line in (b) presents the free electron scattering energy $E_{\rm C}$ given by Eq. (3.43).

Biggs Compton [1] profile data in file "ComptonProfiles.dat"

- Provides EPICS2014 electron number N_i and binding energy $E_{b,i}$ values
- Provides $J_i(p_z)$ at values

 $\frac{p_z}{\alpha m_e c} = \{ \textbf{0} ; \textbf{0}. \textbf{05} ; \textbf{0}. \textbf{1} ; \textbf{0}. \textbf{15} ; \textbf{0}. \textbf{2} ; \textbf{0}. \textbf{3} ; \textbf{0}. \textbf{4} ; \textbf{0}. \textbf{5} ; \textbf{0}. \textbf{6} ; \textbf{0}. \textbf{7} ; \textbf{0}. \textbf{8} ; \textbf{1} ; \textbf{1}. \textbf{2} ; \textbf{1}. \textbf{4} ;$

 $1.6; 1.8; 2; 2.4; 3; 4; 5; 6; 7; 8; 10; 15; 20; 30; 40; 60; 100 \}$

• Range [0:100] not enough to cover range $[p_{z,min}: p_{z,max,i}] \rightarrow$ extrapolation

MCS pre-processing scheme (=SERPENT2)

• $J_i(p_z)$ points added by log-lin interpolation at values

$$\frac{p_z}{\alpha m_e c} = \{12; 17; 25; 35; 45; 50; 55; 65; 70; 80; 90\}$$

• $J_i(p_z)$ points added by log-lin extrapolation with last 2 Biggs values (60 & 100)

$$\frac{p_z}{\alpha m_e c} = \{110; 120; 130; 1/\alpha\}$$

- Resulting profiles are normalized so that $\forall i \int_{-\infty}^{+\infty} J_i(p_z) dp_z = 1$
- MCS calculation of $J_i(p_z)$ (=SERPENT2)
 - For $|p_z|/\alpha m_e c \le 1/\alpha$: direct linear interpolation
 - For $|p_z|/\alpha m_e c > 1/\alpha$: log-lin extrapolation with last 2 Biggs values (60 & 100)

[1] Biggs F et al. Hartree-Fock Compton profiles for the elements. At Data Nucl Data Tables. 1975 16(3): 201-309.

2) a. b. Subshell sampling method and p_z sampling

• Reminder : Compton DDCS of electron momentum p_z & polar angle θ

$$\left(\frac{d^2\sigma_{Co}}{dp_z d\Omega}\right)_{KN} = \frac{r_e^2}{2} \frac{E_C}{E_k} \left(\frac{E_C}{E_k} + \frac{E_k}{E_C} - \sin^2\theta\right) \frac{E'_k}{E_k} \sum_i N_i \cdot H(E_k - E_{b,i}) \cdot J_i(p_z)$$

• DDCS integration \rightarrow probability of subshell j $P(j) = \frac{N_j \cdot H(E_k - E_{b,j}) \cdot \int_{p_{z,min}}^{p_{z,max,j}} J_j(p_z) dp_z}{\sum_i N_i \cdot H(E_k - E_{b,i}) \cdot \int_{p_{z,min}}^{p_{z,max,i}} J_i(p_z) dp_z}$

Approximation: rejection method to avoid computing all the integrals

- Step 1: sample subshell *jr* according to probability $P(j) = \frac{N_j \cdot H(E_k E_{b,j})}{\sum_i N_i \cdot H(E_k E_{b,i})}$
- Step 2: sample 0 < r < 1 uniformly and compute $\int_{p_{z,min}}^{p_{z,max,jr}} J_{jr}(p_z) dp_z$
- Step 3: accept *jr* if $r \leq \int_{p_{z,min}}^{p_{z,max,jr}} J_{jr}(p_z) dp_z$, else go back to step 1
- Momentum p_z is then sampled using $J_{jr}(p_z)$ as PDF in the range $[p_{z,min}: p_{z,max,jr}]$

2) c. Solve $E'_k = f(p_z)$

•
$$\widetilde{p_{z}} = c. p_{z} = \frac{E_{k}E_{k}'(1-\cos\theta)-m_{e}c^{2}(E_{k}-E_{k}')}{\sqrt{E_{k}^{2}+E_{k}'^{2}-2E_{k}E_{k}'\cos\theta}} \Rightarrow 0 = AE_{k}'^{2}+2E_{k}BE_{k}'+E_{k}^{2}C$$
 with
• $A = \widetilde{p_{z}}^{2}-\left[m_{e}c^{2}+E_{k}(1-\cos\theta)\right]^{2};$

•
$$B = -\{\widetilde{p_z}^2 \cos \theta - m_e c^2 [m_e c^2 + E_k (1 - \cos \theta)]\}$$

•
$$C = \widetilde{p_z}^2 - m_e^2 c^4$$

• Solutions of second-order polynomial: $E'_k = E_k \frac{-B \pm \sqrt{B^2 - AC}}{A}$

• How to determine sign + or -?

- Both solutions are physical: the correct sign depends on the sign of $\widetilde{p_z}$
- If $E'_k = 0$ then $\widetilde{p_z} = -m_e c^2$ so $\widetilde{p_z} = -m_e c^2 \Rightarrow E'_k = 0$ and $\widetilde{p_z} = m_e c^2 \Rightarrow E'_k > 0$
- Assuming $|p_z| = m_e c^2$ then C = 0 and $E'_k = E_k \frac{-B \pm \sqrt{B^2}}{A}$
 - The sign + must be chosen if $\widetilde{p_z} < 0$
 - The sign must be chosen if $\widetilde{p_z} > 0$
- If $\widetilde{p_z} = 0$ (free-electron case) then
 - $\sqrt{B^2 AC} = 0$

•
$$E'_{k} = E_{k} \frac{-B}{A} = \frac{E_{k}}{1 + \frac{E_{k}}{m_{e}c^{2}}(1 - \cos \theta)} = E_{0}$$

3) How to set the electron energy T_e and direction $\overrightarrow{v_e}$

- unist
- Kinetic energy T_e of electron obtained by energy conservation $T_e = E_k - E'_k - E_{hi}$
- Approximation: electron direction = direction of free-electron case
 - = direction of momentum transfer vector \vec{q}
 - $\overrightarrow{p_k} = \frac{E_k}{c} \overrightarrow{u_k}$ momentum of incident photon with $\|\overrightarrow{u_k}\| = 1$
 - $\overrightarrow{p'_k} = \frac{E'_k}{c} \overrightarrow{u'_k}$ momentum of scattered photon $\left\| \overrightarrow{u'_k} \right\| = 1$ $\left\| = 1 \qquad E'_{k} \qquad f'_{k} \qquad$ • $\|\overrightarrow{u_k}\|$. $\|\overrightarrow{u'_k}\| = \cos \theta$
- Momentum transfer vector \vec{q}
 - $\hbar \vec{q} = \vec{p_k} \vec{p'_k} \Rightarrow \|\vec{q}\| = \frac{1}{\hbar c} \sqrt{E_k^2 + E'_k^2 2E_k E'_k \cos \theta}$
- Electron direction vector $\overrightarrow{v_e}$

$$\overrightarrow{v_e} = \frac{\overrightarrow{q}}{\|\overrightarrow{q}\|} = \frac{E_k \overrightarrow{u_k} - E'_k \overrightarrow{u'_k}}{\sqrt{E_k^2 + E'_k^2 - 2E_k E'_k \cos \theta}}$$

6. Atomic relaxation

Production of fluorescence / X-ray photons 4 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

- Electron vacancies physically created in electron clouds by
 - Photoelectric effect
 - Compton scattering
 - Electron/positron interaction (not simulated in MCS)

- 2 kinds of transition
 - Radiative: X-ray photon emission and one new vacancy is created
 - Non-radiative : electron emission and two new vacancies are created

URE COmputational Reactor Physics & Experiment lab in UNIST 6. Atomic relaxation

UCIST

NJOY 2012 manual page 515

The fluorescence part is not coded yet. This section will be completed when the new fluorescence methods have been developed and installed in MCNP. In the meantime, ambitious users may be able to meld the new cross sections computed by the methods discussed in this section with the fluorescence data from the current MCNP library.

NJOY 2012 manual page 537

The calculation of fluorescence data for photoelectric absorption is not complete in this version. A message to the user is provided.

Atomic relaxation data NOT treated by NJOY2012

- But available in ENDF/B.VII (ENDF) and EPICS2014 (ENDLX) library
- Also available in some "manually-melded" ACE files of MCNP6 library
- ENDF data post-processed by SERPENT2 team → "relax.dat" file added to MCS photon library

2.455280E-02

5 1.458540E+03 6.492940E-03

6 1.463820E+03 3.013180E-04

7 1.463830E+03 3.658830E-03 4 1.388440E+03 2.092260E-01

5 1.459010E+03 1.270630E-02

6 1.464290E+03 3.651890E-03

7 1.464300E+03 4.204210E-03

5 1.529580E+03 5.811390E-04

6 1.534860E+03 7.174400E-05

7 1.534870E+03 1.363110E-04

Simple example: aluminium (Z = 13) electronic structure

subshell	1 K	2 L1	3 L2	4 L3	5 M1	6 M2	7 M3
label	1s(1) ²	$2s(1)^2$	2p(1) ²	2p(3) ⁴	3s(1) ²	3p(1) ^{0.33}	3p(1) ^{0.67}
(EBI) Binding Energy (eV)	1549.9	119.05	81.2	80.73	10.16	4.88	4.87

Element 13 NSS 1 SUBI 1 NTR 22 EBI 1.549900E+03 ELN 2 3 0 1.468700E+03 1.236990E-02 4 1.469170E+03 0 1.545020E+03 7.558540E-05 6 7 0 1.545030E+03 1.500390E-04 2 2 1.311800E+03 7.839440E-02 3 1.349650E+03 8.321800E-02 2 2 4 1.350120E+03 1.627250E-01 2 5 1.420690E+03 1.358840E-02 2 6 1.425970E+03 8.967940E-04 2 7 1.425980E+03 1.764850E-03 3 3 1.387500E+03 1.429200E-02 3 4 1.387970E+03 3.669420E-01

3

3

3

4 4

4

5

5

5

NSS : only 1 subshell with EBI > 1000 eV cutoff

- SUBI: index of primary subshell where a vacancy is located. For aluminium, only one subshell SUBI = $1 \rightarrow$ K-subshell vacancy
- NTR: 22 possible transitions for a vacancy in subshell SUBI
- EBI binding energy / ELN number of electrons of subshell SUBI

22 lines : "SUBJ SUBK E_{tr} PDF_{tr}"

- **SUBJ** = index of secondary subshell providing an electron which fills the primary vacancy
- SUBK = 0 : radiative transition \rightarrow X-ray photon emission
- SUBK > 0 : non-radiative emission \rightarrow electron emission from subshell with index SUBK
- Transition energy E_{tr} = EBI(SUBI) EBI(SUBJ) EBI(SUBK)
- *E_{tr}* = energy of emitted particle; EBI(SUBK=0) = 0
- *PDF*_{tr} : transition probability: $\sum_{tr=1}^{tr=NTR} PDF_{tr} = 1$

MCS algorithm overview

- Generate a normalized CDF : $CDF_{tr} = \sum_{t=1}^{t=tr} PDF_t$
- Create vacancy queue with initial Compton/photoelectric-induced vacancy
- Atomic relaxation algorithm
 - 1. Take one vacancy in primary subshell SUBI from the vacancy queue.
 - 2. If EBI(SUBI) > 1 keV, simulate relaxation, otherwise discard vacancy and go back to 1.
 - 3. Sample transition according to CDF. If secondary subshell SUBJ or tertiary subshell SUBK > 0 of sampled transition is already empty (ELN is finite!), repeat this step
 - 4. If $E_{tr} > 1$ keV, add particle to queue: a photon if SUBK = 0, an electron if SUBK > 0
 - 5. Sample particle direction isotropically
 - 6. Add 1 vacancy in secondary subshell SUBJ to vacancy queue
 - 7. If SUBK > 0, also add 1 vacancy in tertiary subshell SUBK to vacancy queue
 - 8. Go back to 1. until no vacancies are left in the queue
- Implementation detail: binding energies / electron numbers (EBI/ELN) of relax.dat file
 - <u>Must be consistent</u> with (EBI/ELN) of ComptonProfiles.dat
 - Must be consistent with photo-atomic cross-section peaks
 - Otherwise energy conservation violation and complications for future KERMA calculations
 - MCS choice: EPICS2014 (EBI/EN) values adopted for both relax.dat and ComptonProfiles.dat

7. Thick-Target Bremsstrahlung (TTB)

Production of photons by charged particles 12 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

- Energetic electrons/positrons (short e-/e+) are created by
 - Photoelectric effect
 - Compton scattering
 - Pair production
 - Atomic relaxation
- During slowing-down, e-/e+ lose energy by emitting "bremsstrahlung" photons
 - Neglecting bremsstrahlung photons lead to underestimation of photon flux
- Full e-/e+ transport more complicated than neutron/photon transport, so TTB (Thick-Target Bremsstrahlung) approximation
 - e-/e+ slowing-down <u>on site</u> ; actual displacement neglected
 - bremsstrahlung photons emitted <u>on site</u>, where e-/e+ are created
 - bremsstrahlung (daughter) photon inherit the direction of mother e-/e+
 - bremsstrahlung photons produced according to Continous Slowing-Down Approximation (CSDA)
- Our goal: sample the yield and energy of bremsstrahlung photons emitted by e-/e+ of energy T_e

Bremsstrahlung yield $Y_n(T_e, E_{cut})$

• Average number $Y_n(T_e, E_{cut})$ of bremsstrahlung photons with energy higher than E_{cut} emitted by a charged particle slowing down from energy T_e to E_{cut}

יבוחנו

$$Y_n(T_e, E_{cut}) = \int_{T'=E_{cut}}^{T'=T_e} \frac{\lambda_{br}^{-1}(T', E_{cut})}{S_{tot}(T')} dT'$$

- For MCS, $E_{cut} = 1 \text{ keV}$
- Knowledge of $Y_n(T_e, E_{cut}) \rightarrow$ knowledge of bremsstrahlung photon yields and spectra
 - YIELD: assuming $T_1 > T_2 > E_{cut}$ then the number of bremsstrahlung photons with energy higher than E_{cut} emitted by a charged particle slowing down from energy T_1 to T_2 is

$$Y_n(T_1, E_{cut}) - Y_n(T_2, E_{cut})$$

• SPECTRUM: assuming $T_e > E_1 > E_2 > E_{cut}$ then the number of bremsstrahlung photons with energy between E_1 and E_2 is

$$Y_n(T_e, E_2) - Y_n(T_e, E_1)$$

Inverse bremsstrahlung mean free path $\lambda_{br}^{-1}(T', E_{cut})$

$$\lambda_{br}^{-1}(T_e, E_{cut}) = \frac{1}{\beta^2} \sum_{j=1}^{P} Z_j^2 \cdot C_j \int_{\kappa = \kappa_{cut}}^{\kappa = 1} \frac{1}{\kappa} \chi(Z_j, T_e, \kappa) d\kappa$$

• $\beta = \frac{v}{c} = \frac{\sqrt{T_e(T_e + 2m_ec^2)}}{T_e + m_ec^2}$; reduced electron energy $\kappa = \frac{E_k}{T_e}$

• For a material M with n elements j = 1, ..., P

- Z_i atomic number of element j
- C_j number density of element j (#/cm³)

• $\chi(Z_j, T_e, \kappa)$ is the scaled bremsstrahlung cross-section of element j

- NOT available in ACE files and in ENDF/B-VII files, NOT treated by NJOY
- PENELOPE 2014 database: 99 files "pdebr01.p08" → "pdebr99.p08" for Z = 1-99
- PENELOPE 2014 file processed by SERPENT2 team → "pdebr.dat" file added to MCS photon library

Scaled bremsstrahlung cross-section $\chi(Z_i, T_e, \kappa)$

Content of "pdebr.dat" file

- Tabulated values of $\chi(Z_j, T_e, \kappa)$ for Z = 1-99 for 57 electron energies $T_e = 1$ keV to 10 GeV and 32 κ values from $\kappa = 10^{-12}$ to 1
- Recommended interpolation: cubic spline log-log interpolation [1] (= solving a tridiagonal matrix system using Thomas algorithm [2])

Figure 5.1: Scaled bremsstrahlung DCS as a function of the variable $\kappa = E_k/T$ in carbon and lead for different electron kinetic energies

[1] Wikiversity, article "Cubic Spline Interpolation"[2] Wikipedia, article "Tridiagonal Matrix Algorithm"

- T_e kinetic energy of electron/positron
- <u>Total stopping power</u> S_{tot}
 - Average energy loss per unit length (all energy losses totaled)

 $S_{tot}(T_e) = S_{col}(T_e) + S_{rad}(T_e) [MeV/cm]$

Collision stopping power S_{col}

- Energy loss by collision
- Coulomb interactions with atoms and electron clouds (ionization, excitation)

Radiative stopping power S_{rad}

• Energy loss by radiative emission (bremsstrahlung photon emission)

• Online calculation tool: ESTAR database [1]

[1] National Institute of Standards and Technology, "ESTAR: Stopping Powers and Ranges for Electrons," <u>http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html</u>

$$S_{rad}(T_e) = \frac{T_e}{\beta^2} \sum_{j=1}^{P} R(Z_j, T_e) \cdot Z_j^2 \cdot C_j \int_{\kappa=0}^{\kappa=1} \chi(Z_j, T_e, \kappa) d\kappa$$

- For electrons $R(Z_j, T_e) = 1$
- For positrons $R(Z_j, T_e) = 1 exp[-1.2359 * 10^{-1}t + 6.1274 * 10^{-2}t^2 3.1516 * 10^{-2}t^3 + 7.7446 * 10^{-3}t^4 1.0595 * 10^{-3}t^5 + 7.0568 * 10^{-5}t^6 1.8080 * 10^{-6}t^7]$
- $R(Z_j, T_e)$ is the positron correction factor used by PENELOPE 2014

•
$$\mathbf{t} = \ln\left(\mathbf{1} + \frac{\mathbf{10}^6}{Z_j^2} \frac{T_e}{m_e c^2}\right)$$

• Reduced electron energy $\kappa = \frac{E_k}{T_e}$

$$\boldsymbol{\beta} = \frac{v}{c} = \frac{\sqrt{T_e(T_e + 2m_ec^2)}}{T_e + m_ec^2};$$

Calculation of collision stopping power S_{col}

$$\frac{1}{\rho}S_{col}(T_e) = \frac{2\pi r_e^2 m_e c^2}{\beta^2} N_{el} \left[2ln \frac{T_e}{I_{MEE}} + ln\left(1 + \frac{\tau}{2}\right) + F(\tau) - \delta(\beta, I_{MEE}) \right]$$

JCIIS

- For electrons $F(\tau) = (1 \beta^2) \left[1 + \frac{\tau^2}{8} (2\tau + 1) \cdot \ln(2) \right]$
- For positrons $F(\tau) = 2. \ln(2) \left(\frac{\beta^2}{12}\right) \left[23 + \frac{14}{\tau+2} + \frac{10}{(\tau+2)^2} + \frac{4}{(\tau+2)^3}\right]$
- Description of all the variables
 - $\boldsymbol{\beta} = \frac{v}{c} = \frac{\sqrt{T_e(T_e + 2m_ec^2)}}{T_e + m_ec^2}$
 - r_e classical electron radius (\approx 2.8179 x 10⁻¹³ cm)
 - $m_e c^2$ electron rest mass (≈ 0.511 MeV) and $\tau = \frac{T_e}{m_e c^2}$
 - N_{el} electron gram density [# of electrons/gram)
 - *ρ* material density [g/cm³]
 - *I_{MEE}* is the Mean Excitation Energy of the material [MeV]
 - $\delta(\beta, I_{MEE})$ is the density-effect correction [unitless]

Calculation of Mean Excitation Energy I_{MEE}

 $I_{MEE} = exp \left| \frac{\sum_{j=1}^{r} C_j \cdot Z_j \cdot ln(I_j)}{\sum_{i=1}^{P} C_i \cdot Z_i} \right|$

For a material M with n elements j = 1, ..., P

- Z_j atomic number of element j
- C_j number density of element j [#/cm³]
- *I_j* "potential" of element j [MeV]

Potential I_j depends

- on material phase (gaseous or condensed)
- on material composition (single element or chemical compound)
- Example: oxygen Z = 8
 - Mono-element, gaseous phase: potential = 95 eV (pure O_2 gas)
 - Compound, gaseous phase : potential = 105 eV (steam water)
 - Mono-element, condensed state : potential = 97 eV
 - Compound, condensed state: potential = 106 eV (uranium dioxide)

Tabulated I_j values from MCNP6 adopted for MCS

- From subroutine "get_excitation_MeV" in file excitation_energies.f90
- Good agreement with I_{MEE} from ESTAR database

• MCS density cut-off ρ_{cut} = 0.03 g/cm³

- If $ho <
 ho_{cut}$, material phase is set to gaseous
- If $ho \geq
 ho_{cut}$, material phase is set to condensed
- User can override this choice using "is_gas" tag in MCS input
Examples of Mean Excitation Energy I_{MEE} (eV)

	MATERIAL	ESTAR (reference value)	STARCODES (Matlab, reverse engineering)	PENELOPE 2014 (directly from code)	MCNP6	MCS (inspired from MCNP6)
1	lithium $0.534 \mathrm{g/cm^3}$	40.00	40.00	40.00	40.00	40.00
2	carbon 2 g/cm ³	81.00	78.00	81.00	78.00	78.00
3	oxygen	95.00	95.00	95.00	95.00	95.00
4	chlorine	174.00	159.29	174.00	159.29	159.29
5	iron	286.00	286.00	286.00	286.00	286.00
6	bromine	343.00	357.00	343.00	357.00	357.00
7	uranium	890.00	890.00	890.00	890.00	890.00
8	plutonium	921.00	921.00	921.00	921.00	921.00
9	uranium oxide	720.60	720.62	638.91	720.62	720.62
10	plutonium oxide	746.50	746.52	661.86	746.52	746.52
11	uranium dicarbide	752.00	752.04	674.97	752.04	752.04
12	water, liquid	75.00	75.32	69.00	75.32	75.32
13	water, vapor	71.60	70.16	69.00	70.16	70.16
14	dry air	85.70	86.20	85.67	86.20	86.20
15	muscle	74.30	74.68	69.56	74.68	74.68
16	barium fluoride	375.90	375.94	344.94	375.94	375.94
17	dichlorobenzene	106.50	108.15	106.48	108.15	108.15
18	lithium carbonate	87.90	87.93	80.09	87.93	87.93

CORE COmputational Reactor Physics & Experiment lab in UNIST 7. Thick-Target Bremsstrahlung 2018-01-31 73

Density-effect correction $\delta(T_e, I_{MEE})$ [1]

- We consider a medium M (notation from previous slides)
 - Electron number density $n = \sum_{j=1}^{P} C_j \cdot Z_j$ [# of electron/m³]
 - Plasma oscillation energy $I_{POE} = \frac{h}{2\pi} \sqrt{\frac{n.e^2}{m_e \cdot \varepsilon_0}}$

(*h* Planck constant; ε_0 vacuum permittivity; *e* elementary charge; m_e electron rest mass)

- Element j has P_j electron subshells, numbered k = 1, ..., $S = \sum_{j=1}^{P} P_j$
- Electron from subshells **k** = 1, ..., **R** are NOT conduction band electrons
- Electron from subshells **k** = **R**+1, ..., **S** are conduction band electrons
- Binding energy of subshell k is EB_k
- Number of electrons in subshell k is N_k . By definition $\forall j \sum_{k=1}^{P_j} N_k = Z_j$

Resistivity/conductivity

- M is **electrical insulator** if gaseous state OR at least one element without a conduction band electron (MCS data file "gsconfig.dat")
- Otherwise M is electrical conductor
- MCS user can override this choice using "is_conductor" tag in MCS input

[1] M. Sternheimer, S. M. Seltzer, and M. J. Berger, "Density effect for the ionization loss of charged particles in various substances," Phys. Rev. B, 26, 6067-6076 (1982)

Calculation of density-effect correction $\delta(T_e, I_{MEE})$ (1)

$$\delta(\beta) = -L^{2}(1-\beta^{2}) + \sum_{k=1}^{S} f_{k} \ln\left[\frac{l_{k}^{2}+L^{2}}{l_{k}^{2}}\right]$$

• Special case: in insulators, for $\beta < \beta_0$ then $\delta(\beta) = 0$. The threshold β_0 is given by

$$\frac{1}{\beta_0^2} - 1 = \sum_{k=1}^{5} \frac{f_k}{\mu_k^2}$$

- For conduction band electrons in conductor materials, $l_k^2 = f_k$
- Otherwise $l_k^2 = \mu_k^2 + \frac{2}{3}f_k$
- For subshell k in element j, $f_k = \frac{N_k \cdot C_j}{n}$ (by definition $\sum_{k=1}^{S} f_k = 1$)
- *L* is solution of equation $\frac{1}{\beta^2} 1 = \sum_{k=1}^{S} \frac{f_j}{\mu_k^2 + L^2}$
- For conduction band electrons in conductor materials, $\mu_k = 0$
- Otherwise $\mu_k = \omega \frac{EB_k}{I_{POE}}$

Calculation of density-effect correction $\delta(T_e, I_{MEE})$ (2)

• For a conductor, ω is solution of equation

$$\ln I_{MEE} = \sum_{k=1}^{R} f_k \cdot \ln \left[\sqrt{(EB_k \cdot \omega)^2 + \frac{2}{3} f_k I_{POE}^2} \right] + \sum_{k=R+1}^{S} f_k \cdot \ln \left[I_{POE} \sqrt{f_k} \right]$$

• For an insulator, ω is solution of equation

$$\ln I_{MEE} = \sum_{k=1}^{S} f_k \cdot \ln \left[\sqrt{(EB_k \cdot \omega)^2 + \frac{2}{3} f_k I_{POE}^2} \right]$$

8. Photon KERMA

<u>Kinetic Energy Released per MAss</u> 3 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

<u>Kinetic Energy Released per MAss</u>

$$KERMA = \frac{transferred\ energy}{mass}$$

- Unit(KERMA) = gray = joule/kg
- Neutron KERMA / photon KERMA
- Transferred energy
 - Kinetic energy of charged particles created / released in matter after uncharged particle interaction
- Collision photon KERMA
 - Fraction of the transferred energy <u>not re-emitted as photons</u> (by bremsstrahlung / annihilation) divided by mass

What MCS tallies in KERMA calculation

- Kinetic energy of electron / positron not re-emitted as photons by bremsstrahlung / annihilation
 - Electrons from Compton / photoelectric / pair production
 - Positrons from pair production
 - Electrons from atomic relaxation
- Energy of electrons and photons below 1 keV cutoff
 - Bremsstrahlung photons
 - Fluorescence photons
 - Auger electrons
- Final MCS tally unit = MeV
 - Must be divided by mass by the user to yield collision photon KERMA

- KERMA from 20 MeV photon source in infinite lead medium
 - Energy deposited per source photon = 20 MeV because infinite medium
 - Mode P calculation with & without bremsstrahlung (TTB)
 - 1 million photon histories; tally ± absolute standard deviation (in MeV)

	MCS	MCNP6.1			
	KERMA detector	+F6 tally	F6:P tally	*F8:P tally	
TTB off	20.0000 ± 3.10^{-9}	19.9891 ± 2.10^{-2}	19.9891 ± 2.10^{-2}	20.0000 ± 0	
TTB on	20.0000 ± 0	20.4299 ± 2.10^{-2}	20.4299 ± 2.10^{-2}	20.0000 ± 0	

- +F6 and F6 give tallies > 20 MeV per particle source !!
- Double counting of +F6 and F6 with bremsstrahlung on
 - Kinetic energy of created electrons is tallied
 - AND energy deposited by bremsstrahlung photons from those electrons
- Problem is solved when bremsstrahlung is turned off
- MCS KERMA detector similar to MCNP6 *F8:P tally in mode P

CORE COmputational Reactor Physics & Experiment lab in UNIST 8. Photon KERMA

יבורובו

9. Verification & Validation

Code/code and code/experiment comparison 2 slides

CORE COmputational Reactor Physics & Experiment lab in UNIST

- Comparison to MCNP6.1 and SERPENT2.1.29
- A: multigroup photon flux spectrum benchmark
 - Comparison of ~500-group photon flux in infinite medium
 - Isotropic mono-kinetic point photon source
 - Medium compositions: H / O / H_2O / Fe / Ag / Nd / UO_2 / U
 - Source energies: 100 keV / 1 MeV / 10 MeV / 20 MeV

B: energy-space photon flux distribution benchmark

- Comparison of spatial distribution of photon flux in a cylinder
- Upward-oriented mono-kinetic point photon source
- Medium compositions: H₂0 / Pb
- Source energies: 100 keV / 1 MeV / 10 MeV / 20 MeV
- C: shielding problems
 - KN-12 spent nuclear fuel transport cask
- Cf test of MCS v0.0.76(4) / 2017.12.12 in

82

יבורובו

- Implementation of deep-penetration shielding problems features
 - Coupled neutron/photon calculations
 - Variance reduction techniques

Extension of verification/validation database

- New cases to cover photon flux / KERMA / dose calculations
- SINBAD experimental shielding benchmark problems

##