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Introduction 

Neutron Transport Analysis Code STREAM 
• Features and methodologies 
‒ 2D & 3D transport calculations 

‒ Hybrid MPI/OPENMP parallelization 

‒ Resonance self-shielding using PSM 

‒ Depletion calculation 

‒ On-the-fly energy release model 

‒ Sub-channel T/H feedback 

‒ Automatic thermal expansion 

‒ Few-group constant generation 

‒ CBC search, Equilibrium-Xe feedback 

‒ 6 symmetric modeling options 

‒ Source term calculation 

• Applications 
‒ PWR fuel pin / assembly / whole core analyses 

‒ STREAM/RAST-K 2-step procedure 

‒ UO2, gadolinia, MOX and R-BA fuel analyses 

‒ Spent fuel analysis 
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Methodology 

2D/3D Method in STREAM 
• Method of Characteristics (MOC) + discontinuous Galerkin (DG) method 

• Flux & source approximations 

‒ Combination of radial and axial components 

 

 

‒ Linear polynomial function for axial flux representation 

• 3D transport equation with approximated variables 

 
 

‒ By using orthogonal properties and integrating over discretized axial domain, 

 

 

› where 
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Methodology 

2D/3D Method in STREAM 
• Pros 

1. Similar formula as a conventional 2D MOC  

› Easy to implement 3D solver 

2. Implicit evaluation of second order flux 

› Reduced # of operations 

› PROTEUS-MOC solves 1st and 2nd order fluxes by using matrix form 

3. Stable convergence behavior 

› 2D/1D method has stability issue for problems with large axial leakage 

4. Angle dependent axial source  

› Detailed representation of axial neutron streaming 

• Cons 

1. Much expensive compared to 2D/1D method 

› Difficult to use sub-plane method 

› Need to implement higher order basis function (future work) 

2. Limited to extruded geometry modeling 
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Algorithm Transport sweep for STREAM3D 

do Outer iterations 
CMFD acceleration 
Update fission source 
do Inner iterations 

do Assemblies    ! MPI parallelization & Domain decomposition 
Collect boundary angular flux   ! MPI communication with adjacent assemblies 
Update scattering source 
do Upward/downward sweepings  ! Upward (𝜃p = 0~𝜋/2) / Downward (𝜃p= -𝜋/2~0) 

do Planes 
Get surface source    ! Surface sources from adjacent plane or boundary 
do Azimuthal angles    ! OPENMP parallelization 

do Parallel rays    ! Parallel MOC rays in an assembly 
do Segments    ! Sequential segments in a MOC ray 

do Energy groups 
do Polar angles 

Compute and collect angular flux change 
Update segment outgoing flux 

end do 
end do 

end do    ! Forward/backward sweeping is omitted 
end do 

end do 
Update axial surface sources  ! Surface source for adjacent plane 
Compute scalar fluxes    ! Scalar flux of current plane 

end do 
end do 

end do 
end do 
Check convergence 

end do 
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Algorithm Transport sweep for STREAM3D 

do Outer iterations 
CMFD acceleration 
Update fission source 
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do Assemblies    ! MPI parallelization & Domain decomposition 
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do Polar angles 

Compute and collect angular flux change 
Update segment outgoing flux 
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end do 
Update axial surface sources  ! Surface source for adjacent plane 
Compute scalar fluxes    ! Scalar flux of current plane 

end do 
end do 

end do 
end do 
Check convergence 

end do 

• Domain decomposition to reduce a huge 
amount of memory required in whole 
core simulation 
 

• CMFD can eliminate slower convergence 
behavior arising from discontinuous ray 
tracking 
 

• Plane-wise decomposition requires a lot 
of memory for STREAM 3D method 
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Estimation of memory requirement for whole core simulation 

 

 

 

 

 

 

 

 

› Assuming 0.05 cm MOC ray spacing / ~20 cm assembly pitch / 2 cm plane height 

‒ Plane-wise domain decomposition requires a lot of memory to link surfaces 

› Angle dependent angular sources for each flat source region need to be stored 

• Plane decomposition • Assembly decomposition 

Category Values 

# of 2D FSRs/assembly 10,000 

# of assemblies 300 

# of energy groups 72 

# of azimuthal angles 48 

# of polar angles 6 

Real type (byte) 4 

Memory / domain (GB) 249 

# of axial planes 200 

Total memory (GB) 49,766 

Category Values 

# of boundary points/assembly 1,000 

# of axial planes 200 

# of energy groups 72 

# of azimuthal angles 48 

# of polar angles 6 

Real type (byte) 4 

Memory / domain (GB) 17 

# of assemblies 300 

Total memory (GB) 4,977 
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Algorithm Transport sweep for STREAM3D 

do Outer iterations 
CMFD acceleration 
Update fission source 
do Inner iterations 

do Assemblies    ! MPI parallelization & Domain decomposition 
Collect boundary angular flux   ! MPI communication with adjacent assemblies 
Update scattering source 
do Upward/downward sweepings  ! Upward (𝜃p = 0~𝜋/2) / Downward (𝜃p= -𝜋/2~0) 
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Get surface source    ! Surface sources from adjacent plane or boundary 
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Update segment outgoing flux 
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end do    ! Forward/backward sweeping is omitted 
end do 

end do 
Update axial surface sources  ! Surface source for adjacent plane 
Compute scalar fluxes    ! Scalar flux of current plane 

end do 
end do 

end do 
end do 
Check convergence 

end do 

• Each MPI process calls OPENMP threads 
 

• OPENMP threads distribute work with 
shared memory allocated for each MPI 
process 
 

• No need to synchronize angular flux 
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Algorithm Transport sweep for STREAM3D 
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end do 

• Loop for parallel ray is also one of 
possible choices to use OPENMP 
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Algorithm Transport sweep for STREAM3D 
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end do 
end do 
Check convergence 

end do 

• Length of MOC ray segment projected on 
the x-y plane is the same for energy 
groups and polar angles  
 

• No need to access  track length data 
repeatedly 
 

• Possible to reduce the number of 
calculations 
 

• Possible to maximize cache usage 
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Algorithm Transport sweep for STREAM3D 

do Outer iterations 
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Update fission source 
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Numerical Results 

C5G7 benchmark 
• OECD/NEA C5G7 benchmark 

• 7-group cross-sections 
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Numerical Results 

Pin power distribution (C5G7 benchmark + void case) 
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Numerical Results 

C5G7 benchmark results 
• k-eff & pint power distribution 
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k-eff 
Pin power distribution 

RMS.  Max. 

MCS STREAM 
Difference 

(pcm) 
Difference 

(%) 
STD 
(%) 

Difference 
(%) 

STD 
(%) 

Unrodded 
1.14302 
0.00001 

1.14279  -23 0.33 0.02 1.13 0.03 

Rodded A 
1.12809 
0.00001 

1.12786  -23 0.32 0.02 1.09 0.03 

Rodded B 
1.07772 
0.00001  

1.07744  -28 0.32 0.02 1.10 0.03 

Void 
0.40274 
0.00001 

0.40274  -1 0.10 0.01 0.47 0.02 



Numerical Results 

Parallel performance 
• 41,616 flat source regions in 2D plane 

• 21 planes with 3.06 cm height 

• 0.05 cm ray spacing/48 azimuthal angles/10 polar angles 
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# of threads ×  

# of processes 

Simulation time (sec) 

Total  

simulation 

Loop for  

azimuthal  

angle  

1 3,298 2,681 

9 406 316 

72 90 43 



Applications 

CUSMR Design 
• Configuration of assembly 
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• Design Parameters 

Parameter  Value 

Thermal Power 180 MWth 

Target cycle length 1,500 days 

Fuel lattice 17x17 

# of fuel assemblies 37 

Active length 200 cm 

Inlet Temperature 558.15 K 

Assembly Pitch 21.504 cm 

Pin pitch 1.260 cm Stainless steel reflector 



Applications 

STREAM3D CUSMR analysis results at BOC 
• Calculation options: T-H feedback/Eq-Xe feedback/CBC search 
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Pin power distribution Fuel temperature (K) 



Applications 

STREAM3D CUSMR analysis results at BOC 
• Calculation options: T-H feedback/Eq-Xe feedback/CBC search 
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Moderator temperature (K) Moderator density (g/cc) 



Applications 

STREAM3D CUSMR analysis 
• Calculation options: T-H feedback/Eq-Xe feedback/CBC search 

• 0.1 cm ray spacing/24 azimuthal angles/6 polar angles 

• 155 planes with less than 2 cm axial height 

• 28 burnup steps 

• 1.5 days spent with 84 computing cores / ~200 GB memory in total 
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Conclusions & Future work 

Conclusions 
• STREAM has been parallelized to solve a large size 3D problem 

• Algorithm for 2D/3D method has been developed 

• Hybrid MPI/OPENMP parallel algorithm has been developed 

• STREAM adopts assembly-wise domain decomposition to store required 
memory in distributed storage 

• Accuracy and performance have been examined 

 

Future work 
• Parallel algorithm of whole subroutines/functions will be implemented 

and improved 

• Application to 3D whole core problem 
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Linear Approximation in Axial Flux Distribution 

Extremely severe case in term of axial neutron leakage 
• 5 cm height square cell with void boundary condition in top/bottom 

 

 

 

 

 

 

 

 

 
• Linear approximation gives much better accuracy 

• In general case, 2 ~ 3 cm height axial mesh gives reasonable solution  
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