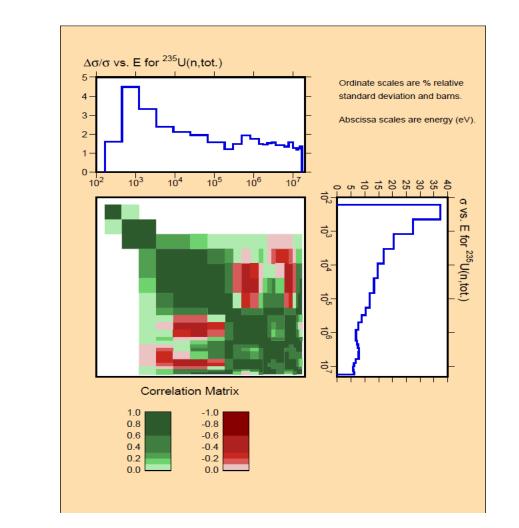
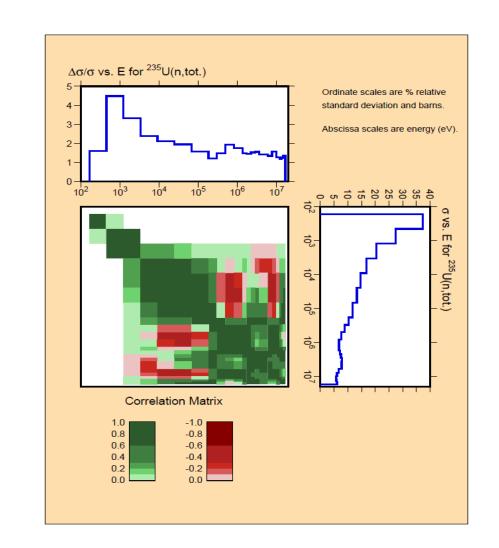

Implicit Resonance Self-Shielding Effect of Multi-Group Covariance in RXSP code

Jiankai Yu, Sooyoung Choi, Yongmin Jo, Peng Zhang, and Deokjung Lee^{*}

Ulsan National Institute of Science and Technology (UNIST)

Department of Nuclear Engineering

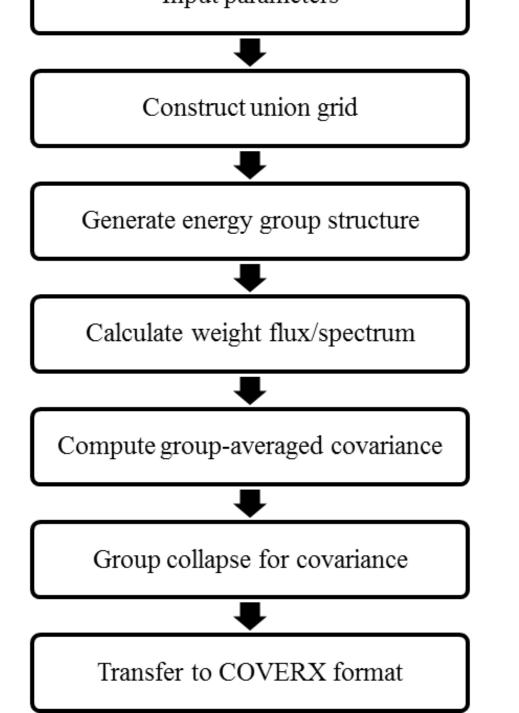

*E-mail: deokjung@unist.ac.kr

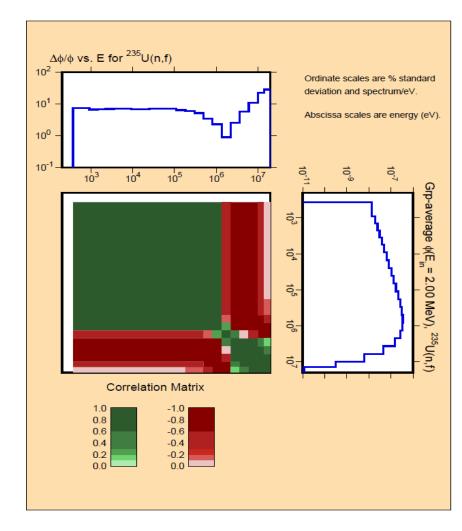

Introduction

- RXSP is a nuclear cross section processing code being originally developed by REAL group from Department of Engineering Physics at Tsinghua University in China, which is mainly intended to reactor analysis. The current version is being developed jointly by UNIST and Tsinghua University.
- ERRORC module has been developed in RXSP to process covariance matrix data stored in MF31, MF32, MF33, MF35.

Input parameters

Verification Results ✓ Covariance of cross sections ✓ Covariance of fission spectrum ✓ Covariance of nu-bar




Fig. 1. General procedure of ERRORC module of RXSP code.

Methodology

Covariance for Cross Sections

$$\operatorname{cov}(x_{I}, y_{J}) = \sum_{n(LB=0)} \operatorname{cov}(x, y)_{n} + \sum_{n(LB=1\sim6)} x_{I} x_{J} r \operatorname{cov}(x, y)_{n}$$

Fig. 2. Comparison of covariance for total to total cross sections (left: ERRORC/RXSP, right: ERRORR/NJOY).

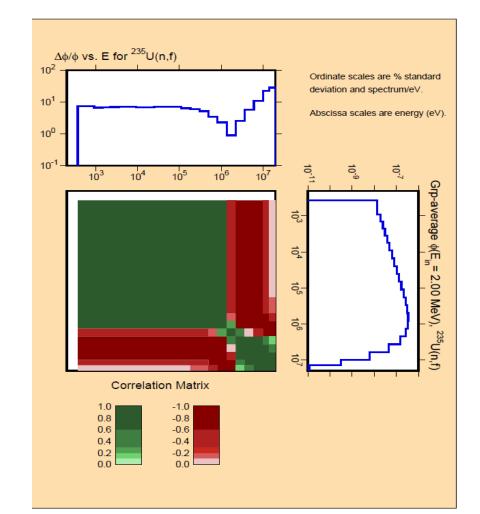
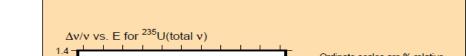
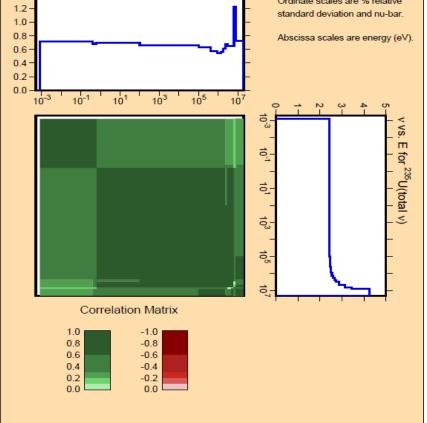



Fig. 3. Comparison of covariance for fission spectrum (left: ERRORC/RXSP, right: ERRORR/NJOY).

	ν/ν vs. E for ²³⁵ U(total ν)	
14.		
1.4		Ordinate scales are % relative

Covariance from Resonance Parameters

$$\operatorname{cov}(\sigma_{I},\sigma_{J}) = \sum_{i,j} \left(\frac{\partial \sigma_{I}}{\partial p_{i}}\right) \left(\frac{\partial \sigma_{J}}{\partial p_{j}}\right) \operatorname{cov}(p_{i},p_{j})$$


$$\operatorname{cov}(\sigma_{m},\sigma_{n}) = \sum_{i,j} S_{i}^{m} S_{j}^{n} \operatorname{cov}(p_{i},p_{j})$$

$$S_{i}^{m} = d\sigma_{m}/dp_{i} \qquad \Longrightarrow \qquad S_{i}^{m} = \frac{\sigma_{m}(1.01 \times p_{i}) - \sigma_{m}(0.99 \times p_{i})}{1.01 \times p_{i} - 0.99 \times p_{i}}$$

$$\sigma_{m} = \sum_{i \in m} \sigma_{i} \phi_{i} / \sum_{i \in m} \phi_{i} \qquad \Longrightarrow \qquad \phi_{i} = \frac{W_{i}}{\sigma_{t,i} + \sigma_{0}} \qquad \text{Bondarenko Narrow Resonance Method}$$

- Implicit Self-shielding Effect
 - Flux Calculator Method borrowed from GROUPR/NJOY

 $\beta = V_f \sigma_e / V_m \sigma_m$

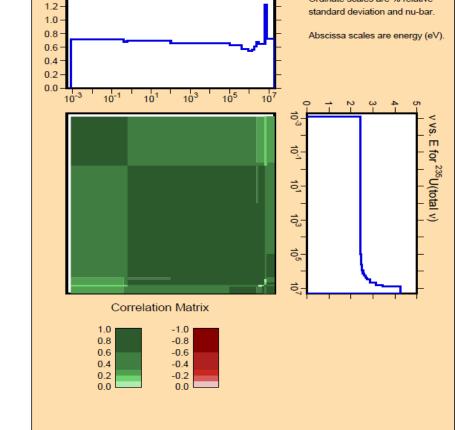


Fig. 4. comparison of covariance nu-bar (left: ERRORC/RXSP, right: ERRORR/NJOY).

Numerical Verification

- Data Sources
 - \checkmark ²³⁵U from ENDF/B-VII.1
 - ✓ Resonance parameters from JENDL4.0
- Tools
 - ✓ ERRORC/RXSP
 - ✓ ERRORR/NJOY(as reference)
- Options
- ✓IWT=6

weighting flux:thermal-1/E-fission and fusion spectrum

Fig. 5. Covariance contribution from resonance parameters in resolve resonance range for ²³⁵U processed by RXSP and NJOY (left: RXSP, right: the relative difference w/ and w/o self-shielding).

Conclusions

- > The ERRORC module has been developed into RXSP code to extend its capability of multi-group covariance matrices processing from point-wise covariance matrix data stored in ENDF
- > The comparison of microscopic multi-group cross sections covariance matrices of nu-bar, fission spectrum, reaction cross sections for ²³⁵U nuclide has been conducted between RXSP and NJOY code to verify its accuracy.
- > The covariance contribution from resonance parameters in resolve resonance range for 235U has been presented and perform the treatment capability for implicit effect from the uncertainty of resonance parameters

Acknowledgements

> This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No.NRF-2017M2B2A9A02049916)