

Analysis of Effective Gadolinium Depletion Model

Jiwon Choe, Sooyoung Choi, Deokjung Lee

UNIST

May 17, 2018

CONTACT

 Ulsan National Institute of Science and Technology

 Address
 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea

 Tel.
 +82 52 217 0114
 Web. www.unist.ac.kr

Computational Reactor physics & Experiment lab Tel. +82 52 217 2940 Web, reactorcore.unist.ac.kr

I.Introduction

II.Gadolinium Depletion Solvers

III.Gadolinium Depletion Results and Analysis

IV.Conclusions

Introduction

STREAM/RAST-K Code System

Flowchart of 2-step Approach

UNIST CORE

Case Matrix

- Full Case Matrix for Fuel
 - Burnup Steps (~80 MWd/kg)
 - 42 burnup steps for FA without BA
 - More burnup steps for FA with Gd
 - 14 restart points
 - $\Sigma = \Sigma_{base}(BU) + \Delta \Sigma_{TMO}(BU, TMO)$ + $\Delta \Sigma_{BOR}(BU, BOR)$ + $\Delta \Sigma_{TFU}(BU, TFU) + \Delta \Sigma_{CRD}(BU, TMO, BOR)$

Full Case Matrix for Reflector

UNIST CORE

May 17, 2018

Depletion Modules in RAST-K 2.0

Microscopic Depletion

- Capability to track the number density and XS of major isotopes
- Available to consider history effect for major isotopes
- CRAM (Chebyshev Rational Approximation Method)
 - Converged well even with shorter half life of isotope
 - Adopted for heavy nuclides chain and fission products chain

UNIST CORE

Microscopic Depletion Verification I

Heavy Nuclides Chain Result for SKN1 FA sets

- A0~C1C: FA w/o BA difference ~ ±20 pcm
- B1~C1: FA w/ gadolinia difference~± 30pcm

Microscopic Depletion Verification II

Heavy Nuclides + FPs Chain Result for SKN1 FA sets

- A0~C1C: FA w/o BA difference ~ ±40 pcm
- B1~C1: FA w/ gadolinia difference~± 80pcm

Gd Depletion Solver

Gd Isotopes Burnup Chain

I.Direct Numerical Solution of Linear Chain

II.Effective Gd Isotope Depletion

These definitions depend only on the structure of burnup chain, not on cross sections

$$\begin{array}{c} \textbf{Gd^{152}} \\ \textbf{Gd^{160}} \\ \textbf{Gd^{16$$

Simulation Code

- Tested Code
 - STREAM/RAST-K 2.0
 - Reference code: STREAM

STREAM Calculation Conditions

- 3-ring for Fuel pins, 10-ring for Gadolinia pins
- Quadratic depletion for Gd isotopes
- Critical spectrum OFF
- Reflective B.C. for all directions

RAST-K 2.0 Calculation Conditions

- Microscopic Depletion
- Eigenvalue search mode
- Reflective B.C. for all directions
- Transient Xe, Transient Sm

Test Model I

- Test Model
 - 16 × 16 Combustion Engineering (CE) type fuel assembly
 - 850 K for fuel, 584 K for other materials
 - Boron concentration of 700 ppm

Case	Fuel Pin (²³⁵ U wt.%)	Fuel Pins	Gadolinia Pin (²³⁵ U/Gd ₂ O ₃ wt.%)	Gd Pins
1	3.4/2.9	124/100	0.7/6.0	12
2	4.7/4.1	164/52	2.2/8.0	20

Case 1

Case 2

• 35 Depletion Steps for Gadolinia Assembly

0	0.1	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
8	8.5	9	9.5	10	11	12.5	15	17.5	20	22.5	25	27.5	30	32.5	35	37.5
40																

Test Cases I Depletion Results – *k*_{inf}

<u>Case 1</u>

- Effective Gd ±20 pcm diff
- Direct Numerical Sol. ±60 pcm diff

<u>Case 2</u>

- Effective Gd ±30 pcm diff
- Direct Numerical Sol. >1000 pcm diff

UNIST CORE

Test Cases I Depletion Results – 1G Absorption XS

UNIST CORE

• 35 Depletion Steps for Gadolinia Assembly (Coarse)

0 0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 11 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

70 Depletion Steps for Gadolinia Assembly (Fine)

0	0.1	0.5	1	1.5	2	2.5	3	3.5	4	5	5	5.5	6	6.5	7
7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	13	13	13.5	14	14.5	15
15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	21	21	21.5	22	22.5	23
23.5	24	24.5	25	25.5	26	26.5	27	27.5	28	29	29	29.5	30	30.5	31
31.5	32	32.5	35	37.5	40										

Test Cases II Depletion Results – k_{inf}

Case 2-Coarse

- Effective Gd ±30 pcm diff
- Direct Numerical Sol. >1000 pcm diff

Case 2-Fine

- Effective Gd ±30 pcm diff
- Direct Numerical Sol. ±40 pcm diff

Test Cases II Depletion Results – 1G Absorption XS

Case 2-Coarse

Case 2-Fine

UNIST CORE

Test Cases III

• 70 Depletion Steps for Gadolinia Assembly (Fine, Same)

0	0.1	0.5	1	1.5	2	2.5	3	3.5	4	5	5	5.5	6	6.5	7
7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	13	13	13.5	14	14.5	15
15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	21	21	21.5	22	22.5	23
23.5	24	24.5	25	25.5	26	26.5	27	27.5	28	29	29	29.5	30	30.5	31
31.5	32	32.5	35	37.5	40										

Random step depletion calculation (Random)

0	2	4	6	8	10	12	14	16	18	20
22	24	26	28	30	32	34	36	38	40	

Test Cases III Depletion Results – k_{inf}

Case 2-Fine, same

- Effective Gd ±30 pcm diff
- Direct Numerical ±40 pcm diff

Case 2-Random

- Effective Gd ±30 pcm diff
- Direct Numerical Sol. ±180 pcm diff

	•					
	R2-]	DNS	R2-effGd			
	Total	XSFB	Total	XSFB		
Time [sec]	1.942	0.275	1.946	0.270		
Change [%]	-	_	0.211	-2.035		

UNIST CORE

Conclusions

Conclusions

- Analysis about two kinds of Gd depletion models
- Direct Gd linear chain depletion
 - The direct Gd linear chain depletion model needs finer burnup steps to get acceptable accuracy
 - Individual isotope amount can be tracked
- Effective Gd depletion
 - The effective Gd depletion model provides accurate solution within 20 pcm due to the linear change of absorption cross section as a function of burnup
 - Simulation time is faster
- The effective Gd depletion model is suitable for RAST-K 2.0.

Future Works

Quadratic Depletion as burnup