

On-The-Fly Interpolation for Thermal Scattering in MCS

Hyunsuk Lee and Deokjung Lee

Reactor Physics General II (301)

KNS Spring 05.18 (Fri)

 Ulsan National Institute of Science and Technology

 Address
 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea

 Tel.
 +82 52 217 0114
 Web. www.unist.ac.kr

Contents

- Overview
- On-The-Fly Interpolation
- Verification
- Summary

- Resolved resonance energy range
 - Windows Multipole
 - Target Motion Sampling
 - Interpolation
 - SIGMA1
 - Gauss-Hermite

Doppler Broadened Cross-section

$$\overline{\sigma}(v) = \frac{\alpha^{1/2}}{\pi^{1/2} v^2} \int_0^\infty \sigma(V) V^2 \left\{ e^{-\alpha(V-v)^2} - e^{-\alpha(V+v)^2} \right\} dV$$

- In the unresolved energy range
 - Average and variance of resonance parameters are given
 - Interpolation
 - Sampling Resonance Parameter

Probability distribution for total cross section at 20 keV

Absorption cross section of ²³⁵U, ²³⁸U and ¹³⁵Xe

Thermal Scattering (bond scattering)

Interpolation

- Makxsf (from MCNP)
- LEAPR (NJOY)

Distribution of outgoing energy with incident energy of 0.115 eV for H in H_2O . (black = 51.3 deg, red = 60 deg, green = 68 deg)

MCS OTF cross-section treatment

Unresolved resonance energy range

- Windows multipole
- SIGMA1 (ongoing)
- Interpolation

Probability-table

Interpolation

Thermal scattering

Interpolation

On-The-Fly Interpolation

- MCS follows Makxsf interpolation scheme
- Makxsf is utility program for manipulating cross-section library for MCNP5
 - Doppler broadening for resolved resonance data by SIGMA1 kernel
 - Interpolation of unresolved resonance probability-table data
 - Interpolation of $S(\alpha,\beta)$ thermal scattering data

Interpolation scheme used for Unresolved resonance range

- ACE format outgoing information is not temperature dependent
- Log-lin interpolation for cross-section

$$\sigma(T) = f \cdot \sigma(T_{low}) + (1 - f) \cdot \sigma(T_{high}) \qquad f = \frac{\ln(T_{high}) - \ln(T)}{\ln(T_{high}) - \ln(T_{low})}$$

On-The-Fly Interpolation

- Interpolation scheme used for Thermal Scattering Data
 - Lin-lin interpolation for cross-section
 - Lin-Lin interpolation for outgoing angle
 - Reverse lin-lin interpolation for outgoing energy
 - Outgoing energy distribution is reversely proportional to temperature

$$f = \frac{T_{high} - T}{T_{high} - T_{low}} \qquad E_{out} = \left(\frac{f}{E_{low}} - \frac{1 - f}{E_{high}}\right)^{-1}$$

- The energy and angle are depends on
 - Incoming energy
 - Random number (0, 1]
- Grid will be different for different temperature

OTF interpolation can be implemented by using existing kernel

Algorithm OTF interpolation collision kernel $f = (T_{high} - T)/(T_{high} - T_{low})$ seed0 = get_random_seed $[E_{low}, uvw_{low}] =$ collision_kernel (D_{low}) change_seed(seed0) $[E_{high}, uvw_{high}] =$ collision kernel (D_{high}) $E_{out} = 1/(f/E_{low} + (1-f)/E_{high})$ if (GetRN() < f) $uvw_{out} = uvw_{low}$ else $uvw_{out} = uvw_{high}$ end if

Verification

INDC Benchmark VERA-1C PMR Compact

- INDC Benchmark
 - Pin cell benchmark designed to test thermal scattering capability
 - Pure water with density of 1g/cm³
 - Temperatures of all regions are 293.6K

Case	ZA	Density (#/barn-cm)
4 (0)	92235	4.6614E-04
1/2" pin	92238	4.7099E-02
1/4″ pin	92235	1.6653E-03
	92238	4.5915E-02
	92235	3.3589E-02
1/8" pin	92238	1.4395E-02

5.08 cm

D.E. Cullen, R.N. Blomquist, C. Dean, et al., "How Accurate Can We Calculate Thermal Systems?," INDC(USA)-107, International Nuclear Data Committee, 2004

• Verification of MCS S(α , β)

Case	MCNP	SD	MCS	SD	Diff. (pcm)
1/2″ no S(α,β)	1.01649	0.00004	1.01658	0.00004	-9
1/2″ S(α,β)	0.96812	0.00004	0.96806	0.00004	6
1/4″ pin no S(α,β)	1.01320	0.00016	1.01359	0.00017	-39
1/4″ pin S(α,β)	0.92197	0.00017	0.92214	0.00019	-17
1/8″ pin no S(α,β)	1.01320	0.00021	1.01327	0.00024	-7
1/8" pin S(α,β)	0.90950	0.00021	0.90895	0.00023	55

Flux Spectrum of ½" pin

- For the Test the temperature has changed to 600K
 - Since thermal scattering data of light water exist from 293.6K
- Three cases (half inch problem)
 - NJOY: 600K thermal scattering data processed by NJOY
 - Mkaxsf: 600K data interpolated using 550K and 650K by makxsf
 - OTF: OTF interpolation using 550K and 650K data
- # of nuclides = 4

Case	k _{eff}	SD	Diff. (pcm)	Time
NJOY	1.00757	0.00001	-	1.00
Makxsf	1.00743	0.00001	-14	1.01
OTF	1.00741	0.00001	-16	1.14

Relative error of flux spectrum and 2sigma standard deviation

VERA-1C Benchmark

- VERA-1C benchmark
 - Fuel temperature is 900K
 - Others are 600K
 - # of nuclides = 40
 - All nuclides are treated with same ACE files but lwtr thermal scattering data
 - NJOY: with 600K data processed by NJOY
 - Makxsf: with 600K data interpolated using 550K and 650K data by Makxsf
 - OTF: OTF interpolation using 550K and 650K data

VERA-1C Benchmark

Case	$\mathbf{k}_{\mathbf{eff}}$	SD	Diff. (pcm)	Time
NJOY	1.17402	0.00012	-	1.00
Makxsf	1.17414	0.00011	12	0.99
OTF	1.17402	0.00013	0	1.01

Relative error of flux spectrum in coolant region

PMR-200 Compact

• PMR-200 compact with 23.5% packing fraction

- 1000K is used for all regions
- All nuclides are treated with same ACE files but graphite thermal scattering data
 - NJOY: with 1000K data processed by NJOY
 - Makxsf: with 1000K data interpolated using 800K and 1200K data by Makxsf
 - OTF: OTF interpolation using 800K and 1200K data

PMR-200 Compact

Case	\mathbf{k}_{eff}	SD	Diff. (pcm)	Time
NJOY	1.28546	0.00004	-	1.00
Makxsf	1.28551	0.00004	5	1.00
OTF	1.28555	0.00004	9	1.02

Relative error of flux spectrum in coolant region

On-The-Fly Interpolation For Probability-Table

OTF Interpolation

Log-lin interpolation scheme

$$\sigma(T) = f \cdot \sigma(T_{low}) + (1 - f) \cdot \sigma(T_{high}) \qquad f = \frac{\ln(T_{high}) - \ln(T)}{\ln(T_{high}) - \ln(T_{low})}$$

Algorithm OTF interpolation of ptable

$$f = (\ln(T_{high}) - \ln(T))/(\ln(T_{high}) - \ln(T_{low}))$$

seed0 = get_random_seed
$$XS_{low} = get_xs (D_{low})$$

change_seed(seed0)
$$XS_{high} = get_xs (D_{high})$$

$$XS = f XS_{low} + (1-f)XS_{high})$$

Summary

On-The-Fly Interpolation Function is implemented

Thermal scattering

- Lin-lin for cross-section
- Lin-lin for outgoing angle
- Reverse lin-lin for outgoing energy

• Probability-table

- Log-lin for cross-section
- Cross-sections
 - Sqrt-lin for cross-section

OTF function is tested on

• INDC pin, VERA-1C, PMR-200 compact

OTF XS matches well with Makxsf while the computing cost is negligible