

Multi-physics Coupled Reactor Core Analysis System of RAST-K2.0 with CTF and FRAPCON

Hanjoo Kim, Jinsu Park, Jiwon Choe, Jiankai Yu, and Deokjung Lee^{*}

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 0114 Web. www.unist.ac.kr Computational Reactor physics & Experiment lab Tel, +82 52 217 2940 Web, reactorcore.unist.ac.kr

Contents

- I. Introduction
- **II. Computational Codes**
- **III. Coupled Calculation Scheme**
- **IV. Numerical Test Results**
- V. Conclusion & Future Work

Introduction

Introduction

- In the past decades, the importance of best estimate analysis of nuclear reactors has increased for nuclear safety analysis licensing in nuclear engineering
- Recently, performance of computer has been increased
- MPACT code has been coupled with CTF as a framework of CASL project and nTRACER has been coupled with CTF in SNU
- UNIST has developed two-step nuclear reactor core system called STREAM/RAST-K

Computational Codes & Coupled Calculation Scheme

5

Neutronics code

- STREAM
 - Method Of Characteristic (MOC) code for lattice calculation
 - Pin based Slowing down Method (PSM) for resonance treatment
- **RAST-K2.0**
 - Reactor core analysis code being developed at UNIST
 - 3-dimensional 2-group UNM solves a nodal diffusion equation
 - Functionalized cross section model for cross section feedback

Subchannel T/H code

- Coolant-Boiling in Rod Arrays: Two Fluid (CTF)
 - Sub-channel T/H code designed for LWR analysis
 - Crossflow can be considered
 - Coupling interface make easy to couple with neutronics code
- Output quantities from CTF
 - Coolant temperature, density for cross section feedback
 - Coolant temperature, pressure for FRAPCON B.C.

Channel centered

Pin centered

[6] M.N. Avramova, R.K. Salko, CTF–A Thermal Hydraulics Subchannel Code for LWRs Transient Analyses, User's manual, CASL-U-2015-0055-000, March 10, 2015.

7

Fuel Performance code

FRAPCON-4.0

- Steady-state fuel performance code
- Pellet deformation, fission gas release models
- Predict fuel behavior over burnup from 0 to 62 GWd/MTU
- Output quantities from FRAPCON
 - Fuel temperature for cross section feedback
 - Fuel parameters such as oxide thickness, hoop stress, hoop strain, ...

[7] K. J. Geelhood, et al., FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, PNNL-19418, Vol. 1, Rev. 2, September 2015

Comparison of CTF and FRAPCON

• T/H model and Heat conduction model in fuel rod

	T/H model	Conduction model		
CTF	 Multi channel model with cross-flow Detailed modeling 	 User-defined gap conductance Simple modeling 		
FRAPCON	 1D model with single, closed coolant channel Simple modeling 	 Deformation, fission gas release model Dynamic gap conductance Detailed modeling 		

Aaron Wysocki, et al., L2:PHI.P17.02 Improvement of CTF for RIA Analysis, CASL-U-2018-1608-000, April 30, 2018.

Flowchart of Coupled Calculation

RAST-K + CTF + FRAPCON Coupled Flowchart

Coupled Calculation Scheme of FRAPCON

- Current coupling of RAST-K and FRAPCON
 - FRAPCON has its own Burnup model
 - Every burnup, FRAPCON performs burnup calculation from 0 burnup

Numerical Test

• OPR1000 type reactor Cycle 1

-Loading Pattern

A0	A0	A0	B1	A0	A0	B1	C0	RF
A0	A0	C1	A0	С1	A0	С1	в0	RF
A0	C1	A0	B1	A0	B2	C1	в0	RF
B1	A0	B1	A0	B 2	A0	C0	RF	RF
A0	C1	A0	B 2	B1	С1	во	RF	
A0	A0	B 2	A0	C1	C0	RF	RF	
B1	C1	C1	C0	во	RF	RF		
<u> </u>	BO	BO	DE	DE	DE		Twice Burned	
	50	50	Π.Γ	Π	ΠF		Once Burned	
RE	RE	RE	RE				Fresh Fuel	
KF	KF	RF.	KF				Reflector	

-Calculating condition

- Quarter core
- Power: 2,815 MW
- Flow rate: 16,315 kg/s
- Burnup: 0~13.8 GWd/MTU
 - With 17 Burnup steps
 - BOC (0.0 GWd/MTU)
 - MOC (6.0 GWd/MTU)
 - EOC (12.0 GWd/MTU)

RAST-K + CTF + FRAPCON modeling condition

Radial mesh mapping

Nodal(XS) mesh

Axial mesh mapping

- Coolant temperature distribution [°C]
- 7th axial level from bottom at BOC

• Fuel temperature distribution [°C]

Unist core

Gap conductance [W/m²K]

RK+CTF

RK+FCN

- Effect of gap conductance [W/m²K]
 - Single rod calculation by FRAPCON
 - coolant inlet temperature 306.77 C
 - pin power: 0.071030 MW,

Linear power distribution [W/cm]

• Fuel temperature distribution [°C]

Coolant temperature distribution [°C]

Linear power distribution [W/cm]

Coolant temperature distribution [°C]

• Fuel temperature distribution [°C]

Linear power distribution [W/cm]

RAST-K + CTF + FRAPCON Coupling Result

• Normalized pin power [-]

RAST-K + CTF + FRAPCON Coupling Result

• Coolant temperature [°C]

RAST-K + CTF + FRAPCON Coupling Result

• Coolant density [g/cc]

RAST-K + CTF + FRAPCON Coupling Result

• Fuel temperature [°C]

Numerical Test Results: Fuel Properties

RAST-K + CTF + FRAPCON Coupling Result

• Gap thickness [micron]

Numerical Test Results: Fuel Properties

RAST-K + CTF + FRAPCON Coupling Result

Oxide thickness [micron]

Conclusion & Future work

Conclusion

- Neutronics code RAST-K2.0 has been coupled with sub-channel T/H code and fuel performance code (CTF, FRAPCON) for normal operation calculation
- Numerical test is performed on quarter core of a typical OPR1000 type reactor
- Pin power distribution, coolant temperature and density distribution, fuel temperature distribution (coupled parameters), gap thickness, and oxide thickness (fuel properties) are calculated by the coupled calculation
- Gap conductance has significant effect on fuel temperature
- Power distribution is more affected by coolant property

- Pin-by-pin SP3 kernel will be implemented in RAST-K to calculate pin power distribution directly
- Feedback between CTF and FRAPCON is under consideration
- RASTK + CTF + FRAPTRAN coupling for accident analysis
- Parallel, JFNK ... for better performance

#