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Distribution Function

• Distribution function:

• With a smooth phase space distribution, the charge and current distributions associated 

with such a distribution are also continuous and smooth. 

• The fields derived from the smooth charge/current densities may be termed macroscopic. 

Deviations from these approximate fields (near an individual particle) may be termed 

microscopic.
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The number of particles found 

in a differential volume in the 

neighborhood of a phase space 

location x, p at a time t

Discrete (real world) Continuous (mathematical approximation)

2

How to define phase-space area ?

 See RMS emittance



Liouville’s Theorem

• Total time derivative of the distribution function:

• From continuity in phase-space:

• If the forces are derivable from a Hamiltonian:

• In other words, when no dissipative forces, no particle lost or created, and no small-

impact-parameter binary Coulomb collisions between particles:
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[ljuˈvil]



Some Comments on Liouville’s Theorem
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• Liouville’s theorem states that the phase space density encountered as one 

travels with a particle in a Hamiltonian system is conserved.

– The density of any volume of phase space whose boundary follows the Hamiltonian 

equations is constant.

– The volume occupied by particles in phase space (~emittance) is conserved (shape 

may change).

• Liouville’s theorem is valid not only for the time-independent Hamiltonian case, 

but also for the time-dependent Hamiltonian case.

• Liouville’s theorem is valid for both equilibrium and non-equilibrium systems.

• Liouville’s theorem is valid for both linear and non-linear systems.

• Liouville's theorem does not imply that the density is uniform throughout phase 

space.

• Liouville's theorem only holds in the limit that the particles are infinitely close 

together. Equivalently, Liouville's theorem does not hold for any ensemble that 

consists of a finite number of particles.

• Liouville's theorem holds even in the presence of space-charge and wake-fields, 

but not with microscopic binary collisions.



Emittance
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The phase space area/volume (~emittance) occupied by a particle beam is an 

invariant. (Incompressible flow by definition)



RMS Emittance
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• In the case of a real beam with a finite number of particles (N), an RMS emittance can be 

defined for an effective phase-space (or trace-space) area (or volume).

• However, when nonlinear forces act on the system, e.g. nonlinear magnetic fields, space 

charge force, the RMS emittance is not conserved.

Phase-space area = 0

RMS emittance = 0

Phase-space area = 0

RMS emittance > 0

Depends not only on the true area 

occupied by the beam in phase 

space, but also on the distortions 

produced by nonlinear forces.

Hamiltonian flow: Phase-space 

conservation + Entropy growth: 

Filamentation

Filamentation 

 Dilution of phase space density

For finite N, average distance of the 

particles in one spiral equals the 

distance between two adjacent 

spirals.
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Secs. 5.2/5.3/5.4 of FOBP

Beam Distribution and Emittance



Bi-Gaussian distribution 
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• We assume the particle distribution is a bi-Gaussian distribution in the following form:

• The rms beam emittance is proportional to the average of all the single particle emittances.

• The rms beam emittance is defined through the ellipse of the exp[-1/2] contour relative to 

the peak density contour.

Constant (single particle) emittance ellipses 

define contours of constant phase-space 

distribution density

Constant (single particle) emittance circles in the 

normalized coordinates define contours of constant 

phase-space distribution density



Normalization of the distribution function
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• First, check the normalization:

• Meaning of the rms beam emittance:

Integration by parts



Moments of the distribution function
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• From the general properties of the bi-Gaussian distribution in (𝑥, 𝑦) plane:

Where

• By comparing with the beam distribution in (𝑥, 𝑥′) space:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

covariance

= Area of the exp[-1/2] contour



Beam matrix
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• The beam matrix is the second-order moments of the beam distribution:

• Note that the determinant of the beam matrix is the rms emittance:

• If the transfer matrix is known,

If the beam aligns with 

Courant-Snyder parameters

Contains all the necessary 

information describing the beam

Lattice propertiesBeam property



Fraction of particles enclosed

Moses Chung | Lecture 3 Beam Distributions 12

• From the normalization of the distribution function in slide 9:

– Note that if 𝜖𝐹 → ∞,𝐹 = 100% . 

– The 𝜖𝐹 indicates the emittance value with encloses 𝐹 % fraction of the particles. 

𝜖𝐹 𝐹 %

0 0

𝜖𝑟𝑚𝑠 39%

4𝜖𝑟𝑚𝑠 87%

6𝜖𝑟𝑚𝑠 95%

∞ 100%

Be careful! It is different 

from the single Gaussian6𝜖𝑟𝑚𝑠

𝜖𝑟𝑚𝑠

4𝜖𝑟𝑚𝑠



If the beam is not in thermal equilibrium:

Moses Chung | Lecture 3 Beam Distributions 13

• We used bi-Gaussian distribution assuming that the beam is in thermal (stationary) 

equilibrium:

• Even though the beam distribution function is not exactly in thermal equilibrium, it is often 

used as a good approximation.

• For example, in the periodic focusing system, the particle motion is always non-equilibrium 

(𝜕𝑓/𝜕𝑡 ≠ 0, but 𝑑𝑓/𝑑𝑡 = 0) however, when plotted in trace space once per period (i.e., in 

the Poincare plot), we can treat the beam in equilibrium.

• Thermalization is often achieved very slowly, over many revolutions of a circular 

accelerator, by a combination of damping and heating effects (e.g., radiation emission, 

intra-beam scattering).

• In fast, transient systems, such as linear accelerators, equilibrating mechanisms (i.e. 

collisions) are too slow to be relevant, and if equilibria are found, they must be a property 

of the particle source used (Collective effects may enhance relaxation rate though).



If the focusing force is not linear:
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• Due to the non-linear forces, which are not included in the Courant-Snyder model, beam 

trajectories may not be simply ellipses.

• Non-linear forces are induced by nonlinear magnetic fields and space charge forces, and 

increase the rms emittance  Still we can calculate the rms emittance and 2nd moments!

• The rms emittance depends not only on the true area occupied by the beam in phase 

space (which is constant by Liouville theorem), but also on the distortions produced by 

nonlinear forces (see slide 6).

One may use 

core emittance



If the beam is not matching with the ellipse:
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• Strictly speaking, beam’s elliptical shape and orientation determined by the second-

moments may not match with the ellipse specified by the periodic lattice system:

• Often, even beam’s elliptical shape and orientation may not be unique. The second-

moment definition of Twiss parameters can be anomalously dependent on “tail particles”.

• The mismatch may seem harmless at first glance. However, amplitude-dependent tune 

due to small nonlinearity will eventually result in phase-mixing (or de-coherence).

 Minimum area ellipse containing 

90% of the particles



Moses Chung | Lecture 3 Beam Distributions 16

Secs. 5.5 of FOBP

The RMS Envelope Equation and 

Normalized Emittance



The rms envelope equation
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• The first derivative of the rms beam size:

• The second derivative of the rms beam size:



The rms envelope equation (cont’d)
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• For the linear transport conditions,

• Thus

– The envelope evolution is controlled by the above equation.

– The homogeneous portion of the equation is identical to that of a single particle.

– The inhomogeneous term on the right hand side can be interpreted mathematically as the outward 

forcing of the beam envelope by the rms spread in trajectory angle, which is parametrized by the 

non-vanishing rms emittance.

– It can also be interpreted physically in terms of the outward pressure in the beam region due to the 

thermal nature of the collection of beam particles.



The effect of acceleration
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• In the paraxial approximation,

• Since momentum is used, we recall the equation of motion

• In more standard form:



Normalized emittance
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• We introduced the normalized emittance:

• The normalized emittance (not the rms emittance in trace space) is, in fact, invariant under 

combined effects of linear transverse forces and longitudinal acceleration.

• This result is a direct consequence of the adibatic damping of beam particle angle under 

acceleration, which causes the emittance defined in trace space to be diminished.

• The invariant normalized emittance is an effective area occupied by the beam in the phase 

plane, not the trace plane.


