NNNNNNNNNNNNNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEE

Lecture 2
‘Linear’ Transverse Dynamics

(Ch. 3 of FOBP, Ch. 2 of UP-ALP)

Moses Chung (UNIST)
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Sec. 3.2 of FOBP

Matrix Analysis of
Periodic Focusing System

Moses Chung | Lecture 2 Transverse Dynamics 2
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Periodic focusing

* Most large accelerators are made up of several (or many) identical modules and,
therefore, have periodicity of L,:

— Circular machine: L, = C/M,
— Linear machine: array of simple quadrupole magnets with differing sign field gradient

Number of repeated periods along the circumference C

* Hill's equation:

"+ k2(2)z =0, K2(z+L,) = k2(z) = K,(2) in some other books

X

« Two special cases which can be readily analyzed.
— The focusing is sinusoidally varying: Mathieu equation

— The focusing is piece-wise constant : Combination of a number of simple harmonic oscillator
solutions

Moses Chung | Lecture 2 Transverse Dynamics 3
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Matrix formalism

«  Solution of the simple harmonic oscillator for x5 > 0 :

* |nitial state vector:

/

x(z) = wz;cos[ko(z — z0)] + i—; sin[ko(z — 20)]
¥ (z) = —kowisin[ko(z — 20)] + =} cos[ko(z — 20)]

— If conveniently expressed by a matrix expression:
x(z) = Mp - x(20)

cos[ko(z — 2p)] L sin[ro(z — 20)]
Mp = ; o
—Ko Sln[ﬁo(z — Zo)} COS[HJ()(Z — ZO)]
— Through a focusing section of length [:

cos|[rkol] ﬁio sin|[rol] ]

Mr = [ —rkosin[kol]  cos[rol]

Moses Chung | Lecture 2 Transverse Dynamics 4
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Matrix formalism (cont’d)

Solution of the simple harmonic oscillator for x5 = —|#o|* < 0:
xh
x(z) = wmx;cosh||ko|(z — 20)] + |ra:;\ sinh[|xo](z — z0)]

x'(z) = |ko|z;sinh[|ko|(z — 20)] + 2} cosh[|ko|(z — 20)]

If conveniently expressed by a matrix expression:

x(z) = Mp - x(2p)

Mo — cosh||ko|(z — 20)] ﬁ sinh||ko|(z — 20)] }
D= .

|ko| sinh||ko|(z — z0)] cosh||ko|(z — 20)]
* Limiting cases: Length of drift space

— Force-free drift: w9 — 0 /

_ _ I O A I I G The position x changes
Mp =Mp =Mo = [ 0 1 ] - [ 0 1 ] while the angle x’ does not
— Thin-lens limit: I — 0 while 3l is kept finite
_ 1 01 _ 10 The change in position x is negligible
M) = [ Fril 1 ] - [ :F% 1 ] and only the angle x’ is transformed
Focal length

Moses Chung | Lecture 2 Transverse Dynamics
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[Example 1] Doublet

« Step-by-step matrix multiplication of all individual elements:

F D
- L -

1 1 1 L

= + = Effective focal length of the system
s h fa ik

* For vertical direction: reversing sign of f; and f,

« There is a region of parameters where the sign of f* is the same and positive for both
horizontal and vertical planes (for example, when f; = f,), which corresponds to the
focusing in both planes.

Moses Chung | Lecture 2 Transverse Dynamics 6
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[Example 2] FODO lattice
»  Focus(F)-Drift(O)-Defocus(D)-Drift(O) lattice:

F O D o F

Lg=1L/2 envelope

x(z) =x(L+ z0) =x(2Lg + 2l + z9) = Mo -Mp - Mo - Mp - x(29) = Mrp - x(20)

My =

2 2 8 da
L L L AR
== (Td) 2La + F ] - [ Oy O ] What about y direction ?

dz ox
— 74 SR dz; 0]

1

* Note that the matrix product given above is written in reverse order from that in which the
component matrices are physically encountered in the beam line. Confusion on the
ordering of matrices is the most common mistake made in the matrix analysis of beam

dynamics!

Moses Chung | Lecture 2 Transverse Dynamics
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[Note] General properties of linear transformation ==

All of the transformation matrices (the focusing, defocusing, drift, and thin lens matrices)
have determinant equal to 1.

The total transformation matrix, being the product of matrices of all of unit determinant,

also has the property:
det(MT) =1

The partial derivative form of the transformation matrix shows explicitly that it can be
interpreted as a generalized linear transformation of coordinates in trace space.

ox ox
ox; ox'
MT — aajf 8_.’.13}
ox; ox'

The determinant of this matrix is known as the Jacobian of the transformation.

The fact that the Jacobian is unity indicates that the transformations are area preserving,
as anticipated by application of Liouville’s theorem.

Moses Chung | Lecture 2 Transverse Dynamics 8
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Stability analysis

Linear stability: Assurance of the stability of particle motion under forces that are linear in
displacement from the design orbit is a necessary, but not sufficient, condition for
absolutely stable motion (= Nonlinear forces may also cause unstable orbits).

We consider the transformation corresponding to n repeated passes through the system:

x(nL, + z0) = M7} - x(20)

Eigenvector analysis:

My - d; = A;d; d -d; = 4y x(z0) = Y aid;, where a;=x"()-d;

The transformation can be written in terms of eigenvectors:

X(Lp + ZO) = MT . X(ZQ) = (11/\1(11 + ag)\gdg

x(nL, + z0) = M7} - x(29) = a1 Af'd; + agA\5ds
In this case,
eigenvectors are complex as well

The eigenvalues of the transformation must be complex numbers of unit magnitude,
otherwise the motion will be exponential, meaning either unbounded or decaying.

Al =1

Moses Chung | Lecture 2 Transverse Dynamics 9
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Eigenvalue problem

* Requiring the determinant of the matrix operating on the eigenvector vanish:

(MT*AJI)dJZOH|MT*)\jI|iO

A} = (Mr11 + Mra2) Aj + (Mp11Mray — MriaMra) =0

=Tr(Mr) :det(I\f/[T):l

* For the stable motion, the eigenvalue is of unit magnitude. Hence, we choose to write the
eigenvalue as (with u being real)

Aj = exp(+ip)

« Then the solution becomes

A = exp(+ip) = cos(p) + isin(p) = Tr(Mr) + i\/l _ (TY(MT))

2 cos(p) = Tr(Mr)

Moses Chung | Lecture 2 Transverse Dynamics 10
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Stability condition

« If the term inside the square root is hon-negative, the motion will be stable.

|Tr(Mr)| = M1y + Mpaa| = [ + Ag| <2

[Example] For FODO lattice

§2—>E:Ld(mgl)§2

IN\2
|Tr(Myp)| = |M7r11 + Mros| = ‘2 — (%)

f
TI'(MT) 1 Ld 2
= =1 == =
cos() = 0 5 (5
* Note:
— We remark that since the eigenvalues of stable motion are complex, the eigenvectors are generally
complex.

— However, the transformation matrix itself is real.

« Physical meaning of u: Phase advance per one period.

g— . N
Y (R |

— L. uen
] L

Moses Chung | Lecture 2 Transverse Dynamics
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Sec. 3.3 of FOBP

Visualization of Motion
In Periodic Focusing System

Moses Chung | Lecture 2 Transverse Dynamics 12
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Typical trajectory

« Slow simple harmonic oscillator-like behavior (secular motion) + Fast oscillatory motion

with lattice period:
Maximum envelope a particle

with arbitrary initial conditions
/ can have

For multi-particles or multi-turns:

. Higher (3 -
smaller phase advance
larger beam size

§ Lower [3--
greater phase advance
smaller beam size

Moses Chung | Lecture 2 Transverse Dynamics 13



Trace space plot in periodic focusing system
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Fig. 3.5 Motion of a particle in a FODO chan-
nel with ;¢ = 33°. Lenses are at positions
marked with diamond symbols. Note the devi-

ation from simple harmonic motion occurring
with the FODO period.

360°
33°

~ 11 periods ~ 22 lenses

NS
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY

- The fast motion, despite its small spatial amplitude, will also

be seen to have relatively large angles associated with it.

Fig. 3.6 Motion of a particle in a FODO
channel of ;& = 33°, plotted in trace space.
The fast deviations from simple harmonic
motion occurring with the FODO period have
a large angular spread.

- The fast errors in the trajectory have large angular oscillations,

and the trace space plot fills in a distorted annular region,

yielding unclear information about the nature of the trajectory

Moses Chung | Lecture 2 Transverse Dynamics
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Poincare plot (Stroboscopic plot)

« If one only plots the trace space point of a trajectory once per FODO period, then the
motion is regular.

02F
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F (‘D@ w Fig. 3.7 Poincaré plot of the motion of a
0.6 F ..~ A particle in a FODO channel of 1 = 33°,
0.4 i A shown previously in Fig. 3.6, but here plotted
O ] only at the end of every FODO array.
. O y y y

02
o @ ;

.
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. —
’ -

.....

-3 -2 -1 0 1 2 3
X

« Note:

In fact, it is an ellipse in trace space.

However, the ellipse does not necessarily align with (x, x’) axes, but it is aligned to the eigenvector
axes.

Depending on z-position in the lattice, the Poincare plots yield different ellipses.
In general, particles are moving in the clockwise direction.

Moses Chung | Lecture 2 Transverse Dynamics 15



Laminar vs Non-laminar Beams
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Smooth approximation

We will employ here assumes that the motion can be broken down into two components,
one which contains the small amplitude fast oscillatory motion (the perturbed part of the
motion), and the other that contains the slowly varying or secular, large amplitude
variations in the trajectory.

T = Tose T Tsee

Only averaging focusing effect is used in the equation of motion:

o+ k2(2)r =0 with k2(2) =k2(z+L,) — 2" +k%,2x=0

sec

The averaging focusing strength can be simply deduced from

[

k ~ L

sec Lp
[Example] A
— For Thin FODO lattice: B2~ L Ko
Sec 32 L2

— For sinusoidally varying focusing (Mathieu equation or ponderomotive force)

k2 1 H:é

o™ 872 2
p

Moses Chung | Lecture 2 Transverse Dynamics 17
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Secs. 2.4.1/2.4.2/2.4.6 of UP-ALP

Analytic approach
for Hill’s equation

Moses Chung | Lecture 2 Transverse Dynamics 18
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2.4.1 Pseudo-harmonic oscillations ===

« Let’s try for the solution of the Hill's equation in the following form:

A constant determined by initial A constant determined Dy initial
conditions of the particle / conditions of the particle
x(s) = veb(s) cos [p(s) — @)

Beta function, proportional / \

to the square of the. Phase change of the
envelope of the oscillation oscillation: betatron phase

o(5) = T80 [ cosl(s) — 6] - ¢/ () /B sinl(s) —

B(s)
2'(s) = B(s) — B(s)” — $)P" (s e cos|d(s (5)¢'(s) esin[¢p(s) —
0= | S = g — VO ()]\f 666) =l = (o) /AT + S| singo) - o

« New differential equations (depending only on the magnetic lattice)

1" 1:23 3)32%(s) = ’S:L

Envelope equation _ Phase advance equation
Moses Chung | Lecture 2 Transverse Dynamics 19
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2.4.2 Principal trajectory e
Meaning of the alpha function:
slope of the change in the envelope

« By defining alpha function as a(s) = _E (S) / (a > 0: converging, a < 0: diverging)

x(s) = \/ef(s) cos [p(s) — ¢ {Sm + a(s) cos[p(s) — o]}

«  With the following initial conditions:

B(s =s0) = PBo, als=s0) =ay, ¢(s=s0)=

x(s = sg) = xg = \/ €8p cos [— ] 2'(s = so) =2 = — Bio{sm[ ¢] + ag cos[—o]}
— ecosaﬁz%, ﬁsin¢:a0%+ﬁo$’0

* Using trigonometric identities:

z(s) = VeB(s)cos[p(s) — @] = \/€B(s) [cos ¢(s) cos ¢ + sin P(s) sin ¢]
= 1z [ %j) {cos p(s) + agsing(s)}

= 200(s) + 23S(s)

+ a5 [V/B(5)Bosin 6(s),

Moses Chung | Lecture 2 Transverse Dynamics 20
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2.4.2 Principal trajectory (cont'd) e

 Cosine-like and Sine-like solutions:

C(s) = 6,8(:) {cos d(s) +agsing(s)}, C(sg) =1, C'(s9) =0

S(s) = /B(s)Bosing(s), S(so) =0, S'(s0) =1

- - TN
Sel” TN, SR
gosing-like trajeftory, =

S (a.u.
\\\ ,f\\ _ \\ f'\~ (a u )
N =T = General solution is a linear
-a . . .
X | b aB combination of the cosine-
- _ : . : :
NP <..,,~ like and sine-like trajectories.

1 1 1 1
sing—ljké trajectory ~
S <N
S Sale S -—/\ Sa

Y

Moses Chung | Lecture 2 Transverse Dynamics 21
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2.4.7 Connection with matrix formalism ==

« The elements of the transfer matrix can be expressed via the Twiss functions (a, 5,y) at
the beginning and end of the beam line:

z(s) = @C(s) +z(S5(s)
2'(s) = = C’(S) + 245" (s)

o l=len sl e ]

Cls)  S(s) W/ 2 {cos Ag + ag sin Ag) B(5)Bo sin Ao
Mg,—s = [ C'(s) S'(s) ] ~ (a(s)— ao)cosAq;J(r()l;ra( )avg) sin A % {cos Ad — a(s) sin Ad)

86 = 0(s) = o(s0) = o19) = |

* One can also have the following decomposition:

MSD%S

VB(s) 0 ]X{cosAgb sin/.\qb]x{

SES

ofs) r 3
\/W \/@ — S1n A(;b COS A¢ \/%
_ cos A¢p  sin A¢ 1
= Bl [ —sinA¢ cos Ag ] B~ (%) CW rotation

Moses Chung | Lecture 2 Transverse Dynamics 22
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2.4.7 Connection with matrix formalism

So far, we haven’t yet assumed any periodicity in the transfer line. However, we may
consider a periodic machine, and then the transfer matrix over a single turn (or single
lattice period) would reduce to

When we impose periodic

M _ [ cosAdtaosinAd  GosinAg on the beta foncton
so=rsotly T —(Hﬁ'—ao) sin A¢  cos p — agsin A¢ B(so+ L,) = B
L 0 0 D 0
[ cos ju + g sin o sin
- —Yo Sin p COS [L — Qo Sin p ]

where we define gamma function

1+ ol
Y0 B
and phase advance for one turn (or one period)
p=A¢

Moses Chung | Lecture 2 Transverse Dynamics 23
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2.5.1 Courant-Snyder invariant e

« Hill's equation have a remarkable property: they have an invariant!

2(s) = /eB(s) cos [6(s) — ¢} #(5) = = gy 5inl6(s) = 9] + als) coslos) — o1}
ecos [p(s) — @] = #(s) € sin — | = a(s)(s) s)x'(s
— [9(s) — &) 08 Vesin [¢(s) — ¢] ) +V/B(s)2'(s)

* Using trigonometric identities:

( x(s) ) n (a(S;QES) _‘_mx’(s)) = € = const.

e = B(s)x"(s) + 2a(s)z(s)z'(s) +v(s)2*(s) = B(s0)z"*(s0) + 2a(s0)x(s0)z’ (s0) + v(s0)x>(s0)

This invariant is known as Courant-Snyder invariant: Even though an initial point in the trace space
(x(sp), x'(sg),) changes to a different position (x(s), x'(s),), the Twiss parameters (a, 8,¥) change at
the same time in such as way that e remains constant.

Moses Chung | Lecture 2 Transverse Dynamics 24



2.5.1 Phase space (or trace space) ellipse

The Courant-Snyder invariant defines an (tilted) ellipse in phase space (x,x"):

e—v(snz(s)+2a(s>m<s>x’(s)+5<s)m'2<s)—( 7(5) ) +(“(3)$(S)+ 5(3)9:'(3))

’
X max

T~

—)..

A

Slope = —a/p

Or, in the normalized coordinates, it defines a circle:

g

x(s)
B(s)

e
7/
' 4
int ’
7 _—
7/
e
e
/
7
7
7
s
A
4
e
4

)+

a(s)x(s)

2 [
50 + 1/ B(s)x (s)) =z, + 2, \J

B(s) B(s)

20
v -0

Area in phase-space = we = const.

tan2p =

[€] = m-rad, or mm-mrad, or T mm-mrad

LTmaxr = V€O, Lint = Vé/ﬁy
minaw - €7, m;nt -V E/JB

A \/Bx’—kj—%

Moses Chung | Lecture 2 Transverse Dynamics
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[ Exam P | 6]
« The shape and orientation of the ellipse keep changing as it moves along (because Twiss
parameters (a, 5,y) change). %y’
xz' 3
xi' -69— X2 - §
Xy 83
82
&

« Although the particle trajectory seems often ugly when plotted continuously (see below),
however, at a given position it will stay on some ellipse (see above).

Y

Moses Chung | Lecture 2 Transverse Dynamics 26



[Example]

Simple drift:
"
(]
|
Ini'[ialw_ e B e s Saaaad
ellipse b i .:_-:‘:_.- /
! Pl | F
III - 1 y i
ra i
I ‘.-"'..- : .-'-‘.-. *_
—— ,‘-J‘_ — — --l.__ -
o i | [ '|"
! ! -
I I | Ellipse
o after drift
’ | F
| <7 N
B |
L)
t_l
Initial
ellipse
Ellipse after |
focusing lens
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90 degree phase advance:

9

Minor and major axes are exchanged

Initial
ellipse

N

Ellipse afrer
90° focusing
channel

i

Ellipse afier
----- subsequent drift

X - }r
Ellipse after

focusing lens

N
\
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[Example] (x,x") space VS (x,y) space (in FODO) ===

Matched Beam Envelope and Focusing Function

N

E 12}

= |0k

3 s

6t :
e f [ | R

= 0.4 I 0.6 0.8

Projection Axial Coordinatel(Lattice Periods)

-———
=
el

-t
i — = = = == =]
et

X-y
area: 71,1, # const

X-X'
area: 772, — const
(CS Invariant)

y-y'
area: e, — const
(CS Invariant)
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[Example] (x,x') space VS normalized coordinate§™=*
[Sinusoidally varying focusing case]

= 5
- ‘Jfﬂ
< =
* o i
(c) s =0.55 (¢c) s =0.58 (d) s =0.755
s =
X8 X8
(e) s=18 (f) s =1.2589 (e) s=18 (f) s = 1.258

Moses Chung | Lecture 2 Transverse Dynamics 29
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Sec. 3.1 of FOBP

Weak Focusing In
Circular Accelerators

Moses Chung | Lecture 2 Transverse Dynamics 30
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[Review] Path length focusing

In Chapter 2, we learned that path length focusing is effective in stabilizing the horizontal
motion (x), but not in the vertical motion (y).

ds = Rdf
Design orbit
path length s

ds, = (R+x)d0 = R(1+x/R)df = (1 + z/R)ds

For g>0, B into the page

Moses Chung | Lecture 2 Transverse Dynamics 31
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A

Magnetic fields in betatron (B particle

* Near the design orbit:
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Equation of motion in betatron

« The magnetic field appears as a superposition of vertically oriented dipole and vertically
focusing (horizontally defocusing) quadrupole fields.

Total force from dipole and quad.

From dipole components BoR = Po

/ dl

o [(B) 2] o=
v - Blz;zy =0
From quadrupole components
Electron is coming out of the paper
* Interms of field index: n = Béf
" 1)? L.
$+(E) [1—n]z=0 y—i-ﬁy—() e 0<n<l1

For simultaneous stability

Moses Chung | Lecture 2 Transverse Dynamics 33
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Tunes (denoted by either v or Q)

« If we write the equations of motion in terms of azimuthal angle 8 = s/R:

2
1 d*x d*x
1" _ — 2.
x +(—R) [1—n]3:-0—>d92+[1—n]az—0—>d92+y$x—0
n\ 2 d?y d?y
y"'+(§) y:0—>W+ny:0—>W+u§y:0

« The phase changes (or phase advances) per one period (for circular machine considered
here, one revolution, 2x) are

A¢, =2mv,, A¢, =21y,

« The number of oscillations in the horizontal (x) and vertical (y) dimensions per one period
(for circular machine considered here, one revolution, 2r) are called tunes:

VQS:A%:\/I—W,, Vy—%—\/ﬁ
27 21

« Restriction on tunes for betatron (weak focusing): v.,v, <1
« Scaling of the maximum offset-> size of the beam scales with the radius of curvature

T~ Ty sin(ves/R+ ¢g) — 2’ ~xprve/R — zp ~ R2' v,

™~

We need to make tune very large:
Strong focusing is invented !
Moses Chung | Lecture 2 Transverse Dynamics 34
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Sec. 2.4.3 of UP-ALP/
Sec. 3.5 of FOBP

Edge Focusing

Moses Chung | Lecture 2 Transverse Dynamics 35
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Dipoles are not infinitely long ! R
* Sector bend (sbend): « Rectangular bend (rbend):
— Simpler to conceptualize, but harder — Easier to build, but must include
to build effects of edge focusing
— Beam design entry/exit angles are L B desi Jexi |
to end faces — Beam design entry/exit angles

are half of bend angle

a>0 W AN >0
A _ ~

\ ’
. ’
\ jf ' N :it [
\ ) N ’ '
\ ,f ' “ K '
LY ] LY ’ ]
\ 0 / . 0 J 0.
\ﬁf m'z “ &2& '; h—z
A 'l
. \
. \ )
[ \
./
0
a=10 o = 5 >0
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Transfer matrix of sbhend magnet

« From Sec. 3.1 (or slide 34):

2
] n
' + (_) [1—n]z=2a"+rj a =0, '+ r2Y = Y+ =0

R

* Applying the matrix formalism introduced in Sec. 3.2:

NNNNNNNNNNNNNNNNNNNNNNNN
SCIENCE AND TECHNOLOGY

| = R6

\(\—7!
M B cos|Kp, »!] ﬁ sin[kp (] Y
bend,z = | — Kb Sin[kp 2] Cos[ﬁcbjml}
[ cos[v/1 — nd] \/E—n sinfv/1 — nd]
B ——"1};” sin[y/1 — nd| cos[v/1 — nd]
n=0_ | cos[d]  Rsin[f]
| —+sinlf]  cos[d)]
cos|[kp,y!] —Lsin[kp /]
M — ) Ko, :
bend,y | — K,y Sin[kp ] cyos[ﬁ:b,yl]
cos[y/nf| % sinfy/nf|
B I —% sin[y/nf]  cos[y/nd]
n=0 [ 1 RO Simple drift in the vertical direction
0 1 if the magnet is not a combined-function magnet

(i.e. dipole + quadrupole)

Moses Chung | Lecture 2 Transverse Dynamics

37



WNisT

Edge focusing in the vertical direction e
There is a finite transverse field which induces vertical kicks: S\ r
. POSoe OCE X i
ByzBo(l—%) for 0 <o <l _Topwew :
R
o 'g.-.'v' ?::"' ]
Be ~ 0 (i.e., assuming very wide poles) S Y & '
3 X
V xB= LRSI '
o\ V /0B B N Ja T 2O
B, ~ = Ty = )y=-—22 s
a M+(ay)y (ao_>y ly ’..'; .”% % :
B G L,
Bm:BgCOSO{—FBgSiIlO{:—gy SRR I"—T': I
fringe |, B=0
Y

Focusing effect of a fringe field in the vertical direction with o > 0.

By sin «v 0
BSE = —7[ y o -

- Quadrupole-like field

o
B, ~ Bo(1- 7) |
g
_ B._p x cos(90° — «)
= Do 0 ;i B,
_ B, By E;ino:x

- Dipole + Quadrupole-like field
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Edge (de)focusing in the horizontal direction =~ ==

 For a # 0, we need to include edge (de)focusing effects.

a>0

« Defocusing effect of a thin wedge in horizontal direction with a > 0.

Top view

> Undeflected Trajectory
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ULSAN NATIONAL INSTITUTE OF

Another view of the edge focusing

« Fora>0,
— Particles located at positive x take shorter paths in the dipole & to be bent weakly
— Particles located at negative x take longer paths in the dipole & to be bent strongly
— horizontal defocusing & vertical focusing

« Forac<0,
— Particles located at positive x take longer paths in the dipole & to be bent strongly
— Particles located at negative x take shorter paths in the dipole & to be bent weakly
— horizontal focusing & vertical defocusing

[From Dr. Yujong Kim’s KoPAS 2015 Slide]
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