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Sec. 3.2 of FOBP

Matrix Analysis of 

Periodic Focusing System
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Periodic focusing
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• Most large accelerators are made up of several (or many) identical modules and, 

therefore, have periodicity of 𝐿𝑝:

– Circular machine:

– Linear machine: array of simple quadrupole magnets with differing sign field gradient

• Hill’s equation:

• Two special cases which can be readily analyzed.

– The focusing is sinusoidally varying: Mathieu equation

– The focusing is piece-wise constant : Combination of a number of simple harmonic oscillator 

solutions

Number of repeated periods along the circumference C
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Matrix formalism
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• Initial state vector:

• Solution of the simple harmonic oscillator for           : 

– If conveniently expressed by a matrix expression:

– Through a focusing section of length 𝑙:
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Matrix formalism (cont’d)
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• Solution of the simple harmonic oscillator for                       : 

– If conveniently expressed by a matrix expression:

• Limiting cases:

– Force-free drift:

– Thin-lens limit: 

Focal length

The change in position x is negligible 

and only the angle x’ is transformed

The position x changes 

while the angle x’ does not 

Length of drift space
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[Example 1] Doublet
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• Step-by-step matrix multiplication of all individual elements:

• For vertical direction: reversing sign of 𝑓1 and 𝑓2

• There is a region of parameters where the sign of 𝑓∗ is the same and positive for both 

horizontal and vertical planes (for example, when 𝑓1 = 𝑓2), which corresponds to the 

focusing in both planes.

Effective focal length of the system
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[Example 2] FODO lattice
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• Focus(F)-Drift(O)-Defocus(D)-Drift(O) lattice:

• Note that the matrix product given above is written in reverse order from that in which the 

component matrices are physically encountered in the beam line. Confusion on the 

ordering of matrices is the most common mistake made in the matrix analysis of beam 

dynamics!

What about y direction ?
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[Note] General properties of linear transformation
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• All of the transformation matrices (the focusing, defocusing, drift, and thin lens matrices) 

have determinant equal to 1.

• The total transformation matrix, being the product of matrices of all of unit determinant, 

also has the property:

• The partial derivative form of the transformation matrix shows explicitly that it can be 

interpreted as a generalized linear transformation of coordinates in trace space. 

• The determinant of this matrix is known as the Jacobian of the transformation.

• The fact that the Jacobian is unity indicates that the transformations are area preserving, 

as anticipated by application of Liouville’s theorem.
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Stability analysis
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• Linear stability: Assurance of the stability of particle motion under forces that are linear in 

displacement from the design orbit is a necessary, but not sufficient, condition for 

absolutely stable motion ( Nonlinear forces may also cause unstable orbits).

• We consider the transformation corresponding to 𝑛 repeated passes through the system:

• Eigenvector analysis:

• The transformation can be written in terms of eigenvectors:

• The eigenvalues of the transformation must be complex numbers of unit magnitude, 

otherwise the motion will be exponential, meaning either unbounded or decaying.

In this case,

eigenvectors are complex as well 
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Eigenvalue problem
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• Requiring the determinant of the matrix operating on the eigenvector vanish:

• For the stable motion, the eigenvalue is of unit magnitude. Hence, we choose to write the 

eigenvalue as (with 𝜇 being real)

• Then the solution becomes
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Stability condition
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• If the term inside the square root is non-negative, the motion will be stable.

[Example] For FODO lattice

• Note:

– We remark that since the eigenvalues of stable motion are complex, the eigenvectors are generally 

complex. 

– However, the transformation matrix itself is real.

• Physical meaning of 𝜇: Phase advance per one period.
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Sec. 3.3 of FOBP

Visualization of Motion 

in Periodic Focusing System
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Typical trajectory
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• Slow simple harmonic oscillator-like behavior (secular motion) + Fast oscillatory motion 

with lattice period:
Maximum envelope a particle 

with arbitrary initial conditions 

can have

For multi-particles or multi-turns: 
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Trace space plot in periodic focusing system
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 The fast motion, despite its small spatial amplitude, will also

be seen to have relatively large angles associated with it.

 The fast errors in the trajectory have large angular oscillations, 

and the trace space plot fills in a distorted annular region, 

yielding unclear information about the nature of the trajectory

For simple harmonic 

oscillator case
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Poincare plot (Stroboscopic plot)
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• If one only plots the trace space point of a trajectory once per FODO period, then the 

motion is regular.  

• Note:

– In fact, it is an ellipse in trace space.

– However, the ellipse does not necessarily align with (x, x’) axes, but it is aligned to the eigenvector 

axes.

– Depending on z-position in the lattice, the Poincare plots yield different ellipses. 

– In general, particles are moving in the clockwise direction.
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Laminar vs Non-laminar Beams
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Smooth approximation
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• We will employ here assumes that the motion can be broken down into two components, 

one which contains the small amplitude fast oscillatory motion (the perturbed part of the 

motion), and the other that contains the slowly varying or secular, large amplitude 

variations in the trajectory.

• Only averaging focusing effect is used in the equation of motion:

• The averaging focusing strength can be simply deduced from

[Example]

– For Thin FODO lattice:

– For sinusoidally varying focusing (Mathieu equation or ponderomotive force) 
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Secs. 2.4.1/2.4.2/2.4.6 of UP-ALP

Analytic approach 

for Hill’s equation
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2.4.1 Pseudo-harmonic oscillations
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• Let’s try for the solution of the Hill’s equation in the following form:

• New differential equations (depending only on the magnetic lattice) 

Beta function, proportional 

to the square of the 

envelope of the oscillation

A constant determined by initial 

conditions of the particle

Phase change of the 

oscillation: betatron phase

A constant determined by initial 

conditions of the particle

Envelope equation Phase advance equation
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2.4.2 Principal trajectory
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• By defining alpha function as

• With the following initial conditions:

• Using trigonometric identities: 

Meaning of the alpha function:

slope of the change in the envelope

(𝛼 > 0: converging, 𝛼 < 0: diverging) 
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2.4.2 Principal trajectory (cont’d)
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• Cosine-like and Sine-like solutions:

General solution is a linear 

combination of the cosine-

like and sine-like trajectories.
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2.4.7 Connection with matrix formalism 
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• The elements of the transfer matrix can be expressed via the Twiss functions (𝛼, 𝛽, 𝛾) at 

the beginning and end of the beam line: 

where

• One can also have the following decomposition: 

CW rotation
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2.4.7 Connection with matrix formalism 
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• So far, we haven’t yet assumed any periodicity in the transfer line. However, we may 

consider a periodic machine, and then the transfer matrix over a single turn (or single 

lattice period) would reduce to

where we define gamma function

and phase advance for one turn (or one period)

When we impose periodic 

boundary condition

on the beta function
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2.5.1 Courant-Snyder invariant
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• Hill’s equation have a remarkable property: they have an invariant!

• Using trigonometric identities: 

This invariant is known as Courant-Snyder invariant: Even though an initial point in the trace space 

(𝑥 𝑠0 , 𝑥′ 𝑠0 , ) changes to a different position (𝑥 𝑠 , 𝑥′ 𝑠 , ), the Twiss parameters (𝛼, 𝛽, 𝛾) change at 

the same time in such as way that 𝜖 remains constant.
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2.5.1 Phase space (or trace space) ellipse
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• The Courant-Snyder invariant defines an (tilted) ellipse in phase space (𝑥, 𝑥′):

• Or, in the normalized coordinates, it defines a circle: 

[𝜖] = m-rad, or mm-mrad, or 𝜋 mm-mrad
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[Example]
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• The shape and orientation of the ellipse keep changing as it moves along (because Twiss 

parameters (𝛼, 𝛽, 𝛾)  change).

• Although the particle trajectory seems often ugly when plotted continuously (see below), 

however, at a given position it will stay on some ellipse (see above). 
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[Example]
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Simple drift: 90 degree phase advance:

 Minor and major axes are exchanged

Thin focusing lens:
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[Example] (𝒙, 𝒙′) space VS (𝒙, 𝒚) space (in FODO) 
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[Example] (𝒙, 𝒙′) space VS normalized coordinates
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[Sinusoidally varying focusing case] 

29



Moses Chung | Lecture 2 Transverse Dynamics

Sec. 3.1 of FOBP

Weak Focusing in 

Circular Accelerators 
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[Review] Path length focusing
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• In Chapter 2, we learned that path length focusing is effective in stabilizing the horizontal 

motion (x), but not in the vertical motion (y). 

For q>0, B into the page
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Magnetic fields in betatron (b particle = fast e-)
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• Near the design orbit:

x
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Equation of motion in betatron
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• The magnetic field appears as a superposition of vertically oriented dipole and vertically 

focusing (horizontally defocusing) quadrupole fields.

• In terms of field index:  

Electron is coming out of the paper

From quadrupole components

From dipole components

For simultaneous stability 

Total force from dipole and quad.
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Tunes (denoted by either 𝝂 or Q)
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• If we write the equations of motion in terms of azimuthal angle 𝜃 = 𝑠/𝑅:

• The phase changes (or phase advances) per one period (for circular machine considered 

here, one revolution, 2p) are

• The number of oscillations in the horizontal (x) and vertical (y) dimensions per one period 

(for circular machine considered here, one revolution, 2p) are called tunes:

• Restriction on tunes for betatron (weak focusing):

• Scaling of the maximum offset size of the beam scales with the radius of curvature

We need to make tune very large:

Strong focusing is invented !
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Sec. 2.4.3 of UP-ALP/ 

Sec. 3.5 of FOBP

Edge Focusing
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Dipoles are not infinitely long !
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• Sector bend (sbend):

– Simpler to conceptualize, but harder 

to build

– Beam design entry/exit angles are ⊥
to end faces

• Rectangular bend (rbend):

– Easier to build, but must include 

effects of edge focusing

– Beam design entry/exit angles 

are half of bend angle
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Transfer matrix of sbend magnet
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• From Sec. 3.1 (or slide 34):

• Applying the matrix formalism introduced in Sec. 3.2:

Simple drift in the vertical direction 

if the magnet is not a combined-function magnet 

(i.e. dipole + quadrupole) 
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Edge focusing in the vertical direction
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• There is a finite transverse field which induces vertical kicks:

• Focusing effect of a fringe field in the vertical direction with 𝛼 > 0.  

𝐘

Top view

Side view

 Quadrupole-like field
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Edge (de)focusing in the horizontal direction
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• For 𝛼 ≠ 0, we need to include edge (de)focusing effects.

• Defocusing effect of a thin wedge in horizontal direction with 𝛼 > 0.  

=

Top view
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Another view of the edge focusing
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• For 𝛼 > 0, 

– Particles located at positive 𝑥 take shorter paths in the dipole & to be bent weakly 

– Particles located at negative 𝑥 take longer paths in the dipole & to be bent strongly

→ horizontal defocusing & vertical focusing 

• For 𝛼 < 0, 

– Particles located at positive 𝑥 take longer paths in the dipole & to be bent strongly 

– Particles located at negative 𝑥 take shorter paths in the dipole & to be bent weakly 

→ horizontal focusing & vertical defocusing 

[From Dr. Yujong Kim’s KoPAS 2015 Slide]
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