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A few words on beam matching 
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Beam matching in 2+ D 
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From the textbook 
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Ernest Courant 
(1958) 

 The so-called Courant-Snyder invariant: 
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Lab. frame 

Norm. frame 
CW Rotation  

Normalized Coordinates 

CW Rotation  
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Another Invariant 
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Phase advance matrix 
(CCW rotation) 

Phase advance rate 

 By counter-acting the rotation, we can make the coordinates unchanged:   

No need to counter-act the rotation at s = 0 

Here, 
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[Simple Proof] 
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 Proof of the statement in the previous page: 

 By directly insert this in the coordinate transformation, 

Hence, 
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Amplitude  Initial phase  



New Form of Invariant  
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Therefore, 

In fact, there can exist other “Quadratic” Invariants, such as  
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Beam Distribution Function 
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1) Any positive-definite (because it should represent particle counts) distribution 
function formed from a set of single-particle constants of the motion (𝐶𝑖) will produce 
a valid, exact equilibrium solution to the Vlasov equation [Seteve lund]: 

2) However, the Gaussian distribution is commonly used [S. Y. Lee]:  

From 1) & 2) 
D: dimension of z 

Sort of 
Matching #1 
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Beam Distribution in Normalized Coordinates 
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At s = 0 

At s > 0 

Without loss of generality, 
(phase advance is measured from s=0) 

Without loss of generality, ε can be 
written in terms of diagonal matrix: 
we choose s=0 when initial ellipse is 

upright, and then apply rotation 
 two parameters are required to define 

upright ellipse 
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Evolution of Beam Distribution  
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Without any filamentation: 

With filamentation: 

1) If 𝛽̅ = 1, beam distribution is not affected by the phase advance 
 
 

2) If 𝛽̅ ≠ 1 
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After Filamentation 

M. Chung 13   

Sort of 
Matching #2 
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Average over randomly-distributed ψ 



[Example: 𝛽̅ ≠ 1] 

M. Chung 14   

Normalized 
coordinates 

Laboratory 
coordinates 
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[Example: 𝛽̅ = 1] 
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Normalized 
coordinates 

Laboratory 
coordinates 
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Periodic Matching VS Mismatching 
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 Plots in the previous page were made with periodically mis-matched 
launching condition  

Periodically matched solution 
has minimum radial excursion 
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[Example: 𝛽̅ = 1 and periodic matching] 
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Normalized 
coordinates 

Laboratory 
coordinates 

Sort of 
Matching #3 
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Periodic Beam Distribution 
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In the periodic focusing system, the particle distribution is non-stationary, 
however, when plotted in trace space once per period (i.e., in the Poincare plot), 
we can treat the beam in stationary equilibrium. 
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Already Discussed Since ~2000 
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For 2+ Dimension Case 
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Norm. frame 2 
CW Rotation  

Norm. frame 1 
CW Rotation  

Due to coupling 
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Williamson’s Theorem 
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 Diagonalization of an every 2n x 2n real, symmetric, positive definite matrix 

A symplectic matrix unique up to  
a unitary matrix (a symplectic rotation) 
But, not every unitary matrix can be used here 
The unitary matrix should have a special form. See slide 29                               

Diagonal elements are “symplectic 
eigenvalues” (symplectic spectrum) of Σ  

Different from usual 
Eigen-decomposition 
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Eigen-emittance 
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Invariant under  
symplectic transformation 
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RMS- vs Eigen-emittances 
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From Fischer’s inequality: 

Equality if and only if  
C = 0 

From direct calculation (e.g., with the help of Mathematica): 
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* In this slide, we use the notation of   



[Example] 
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For a round beam in solenoids with finite average canonical angular momentum: 

Using canonical 
coordinates 
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* In this slide, we use the notation of                                  which is canonical in the Larmor frame   

(i.e., distribution function is independent of angle is X-Y plane)  



Already Discussed Since ~2000 
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Experimental Demonstration 
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Applying steps in 1D matching 
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From sort of 
Matching #1 

From sort of 
Matching #2 

In principle,  
ε can be an arbitrary 
positive definite matrix 

From sort of 
Matching #3 

 This should be independent of particle’s phase advance 

A unitary matrix (symplectic rotation) in 2+ D 

No motion accros  
the eigen-planes 
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Two possible cases: θ : defined in 
the next slide 

But to meet the matching 
condition 2, ε should have 
a special form. 



[Some proof] 
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 An arbitrary unitary matrix can be parametrized as (e.g., based on Sec. 3.3 of Sakurai)    
Overall phase 

Euler rotations 
Pauli matrices 
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[Some proof - Continued] 
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Two possible cases that make the above expression independent of the phase advance: 



For special case:  
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 This is a typical form of the double rotation.  



How to calculate Q? 
• No universal standard: 

 
 
 
 

 
• Solving matrix envelope equation:  

M. Chung 33   

Equivalence 
between  
various 

methods 
  

On-going 
research 
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Methods for Linear Coupled Optics  
1) By decoupling transformation: directly decouple the one-turn transfer map into an uncoupled one-turn map (i.e., 

into a block-diagonal form) through a matrix similarity transformation 

2) Using eigenvectors of the transfer matrix: a transformation is found from the eigenvectors of the transfer matrix 

that puts the transfer matrix into “normal form”, i.e., the transfer matrix is transformed into a pure rotation  

[1] D. Edwards and L. Teng, IEEE Trans. Nucl. Sci. 20, 3 (1973). 
[2] D. Sagan and D. Rubin, Phys. Rev. Accel. Beams 2, 074001 (1999). 
[3] Y. Luo, Phys. Rev. Accel. Beams 7, 124001 (2004). 

[1] G. Ripken, DESY Internal Report No. R1-70/04, 1970. 
[2] A. V. Lebedev and S. A. Bogacz, J. Instrum. 5, P10010 (2010).   
[3] A. Wolski, Phys. Rev. Accel. Beams 9, 024001 (2006). 

M. Chung 34   2020-09-01 



Conclusions 
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• Beam matching in 1 D  well-established, well-known 
 

• Eigen-emittance  well-established, not well-known 
 

• Beam matching in 2+ D  not completely established, 
not well-known 
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Thank you  
for your attention !  
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