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A few words on beam matching

[Stanley Humphries, Jr]

A beam matched to a periodic focusing system has envelope oscillations of minimum
amplitude. Furthermore, we shall find in Section 4.4 that the emittance growth caused by lens
non-linearities 1s smallest for a matched beam. We outlined a numerical method to find matched
beam distributions in Section 3.7. In this section, we shall study analytic methods that use

In a particle simulation involving a periodic lattice, it is usually desired to generate particles in a matched state,
which means that the shape of the distribution should not change after one passage through the lattice. In fact, if a
matched distribution can be found, one often has already accomplished a great deal in the understanding of the simu-
lation. Additionally, there are circumstances in which the knowledge of the effective emittance and optics parameters

[Malte Titze]

The matched beam envelope is the solution to the KV
envelope equations with the periodicity of the focusing
lattice. The matched solution is generally believed to have
the smallest maximum radial excursions relative to other
possible envelope evolutions in the lattice and it requires
particular initial conditions in the envelope of beam | [Steve Lund]
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Beam matching in 2+ D

Continuing the discussion of periodic beam lines, the next step is to
introduce the concept of a matched distribution. A matched distribution

at any point in a periodic beam line is a phase space distribution of par-
ticles that is unchanged after the bunch is transported along one periodic
section of the beam line. For the present purposes, we need consider only
the second-order moments of the distribution: we do not need to specity
whether the distribution is uniform, parabolic, Gaussian or some more ex-
otic function. For convenience, we define the 2n x 2n matrix X (in n degrees

of freedom) with elements 3;; defined by:

Yij = (wixj). (5.105)

RYR' =Y N7'TH(N™HTe =3 (5.122)
'{'.

Therefore, a matrix 2 constructed using (5.116) is unchanged under trans-
port through one periodic section of the beam line. In other words, such
a matrix represents a matched distribution. Note that this is true for any
values of the emittances ¢;: there are infinitely many matched distribu-

tions for a given beam line, although the number of degrees of freedom in
choosing a matched distribution is only equal to the number of degrees of

freedom in the particle motion.
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From the textbook

- The so-called Courant-Snyder invariant:

v(8)x%(s) + 2a(s)z(s)2' (s) + B(s)x'%(s)

(a0 5)(2)
() (2 ) (5 o) (o)

7Tz

Ics

Ernest Courant
Z = const. (1958)

x i )
( y ) = normalized coordinates

(% w) ()
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Normalized Coordmates

N
Lab. frame
% L
xT
S
\/ﬁE(cos P + apsin ) V850 sin ¢
M(s) = Ltas
\WSIH¢+ ﬁﬁ < cos 1 \/_cosdi asin )
_[w 0}[&)&1{) &,m?/)]{wol 0]
N w w! —siny  cost —w)  wp AT

CW Rotation /Qa/
AN =
X - S
x
Norm. frame
CW Rotation

Radius = A = /15

6

2020-09-01 M. Chung




Another Invariant
—> By counter-acting the rotation, we can make the coordinates unchanged:

=1/

( f ) =7z = P(s)z(s) = P(5)Q(s)z(s) = const. = PyQozo = PoZo = 2o = ( gg )

Here,
cost(s) —sin(s) , 1
siniy(s)  cos(s) Y= w?

Phase advance matrix
(CCW rotation)

P(s)
Phase advance rate

1 0
ror-m - (19)
No need to counter-act the rotation at s =0
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[Simple Proof]

- Proof of the statement in the previous page:
Amplitude Initial phase

v 7
x(s) = Aw(s) cos[¢(s) + ¢o]
- By directly insert this in the coordinate transformation,

costp X w™lx —siny x (—w'z + wr)
siney x wtz + costp x (—w'x + wr)

A cos ¢
— A sin ¢

= const.

N

R

~_
I

Hence,

= P(s)Q(s)z(s) = const.

|
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New Form of Invariant

Therefore,

Ics = z1'Z = const.

In fact, there can exist other "Quadratic” Invariants, such as

I z1¢Z = const. > 0

£ = a2 x2 constant positive definite (symmetric) matrix
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Beam Distribution Function

1) Any positive-definite (because it should represent particle counts) distribution
function formed from a set of single-particle constants of the motion (C;) will produce
a valid, exact equilibrium solution to the Vlasov equation [Seteve lund]:

d
S G =0

2) However, the Gaussian distribution is commonly used [S. V. Lee]:

1 1 1
z) = X expd ——2z' 271z N = (227) = beam (covariant) matrix
(2m) /2 ] 2

D: dimension of z

From 1) & 2)

. 1 1 1 _ =T¢=_ _TAT pT
> Pl xexp{—éfg}, I =2"¢2=2@Q P £PQxz

Sort of
—» 2 =QTPT¢PQ, or T=Q 1P 1ePTQ7 T, with e =¢! Matching #1
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Beam Distribution in Normalized Coordinates

Ats =0

Ats >0

2020-09-01

Qo (zz"), Q)
QuE(0)Qq

Without loss of generality,

(phase advance is measured from s=0)

Qo [QalPo‘lePo‘TQET] Qy /0 P =1

£

()

Pyt

Without loss of generality, € can be

written in terms of diagonal matrix:

- we choose s=0 when initial ellipse is
upright, and then apply rotation

- two parameters are required to define
upright ellipse
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Evolution of Beam Distribution

Without any filamentation:
det [£(s)] = det [P 'eP™T]
det [¢]

With filamentation:

1) If B =1, beam distribution is not affected by the phase advance

YX(s)=el — det[E(s)] =€

2) Ifp+#1
= 2 L - 2 _w 3 1
o) = o] Jeosut sty A
_w + [ cos i sin Y 3 sin ¢+%Coszw
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After Filamentation

S(s) [ BCOSQTJJ—I—%Sian —w + B cossine
s) = € : . =
—%M + B cos ) sin Bsin2w+%0082w
[ B% i l_% 0 Average over randomly-distributed ¢
i 2 T 32

—\,\ &
Equality for 3 =1

Sort of
Matching #2

Y=Q PP QT — Q7 el
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Normalized
coordinates
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[Example: 8 # 1]

-w'x +wx'
-w'x +wx'

-2

—w'x +wx'
-w'xFwx'

-2

—w'x+wx'
-w'xFwx'

Laboratory
coordinates




Normalized
coordinates
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—w'x+wx'

—w'x+wx'

—w'x s wx'

2 2
1 1
x
£ 3
+
0 ML
7
-1 -1
-2 -2
EETTETTTTD 1 S3 2 a1 o
xlw xlw
3
2 2
o1
%
£ 3
+
_5< g
7
-1
-2 -2
EETTETTTTD 1 S3 2 a1 o
xlw xlw
3
2 2
1 o1
2
£ 3
¥
0 M
7
-1 -1
-2 -2
TR 1 M3 2 a1 o
xlw x/w

2 2
1 1
% 0) 0
-1 -1
-2 -2
I3 2 B
2 2
1 1
% 0) 0
-1 -1
] =2
23 -2 -1 o3 2 A
2 2
1
0
-1
-2 -2
23 -2 1 o3 -2
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Periodic Matching VS Mismatching

- Plots in the previous page were made with periodically mis-matched

launching condition \
3.0—<

25
2.0
i 1.5
«Q E
1.0/
0.5
0.0!
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Periodically matched solution
has minimum radial excursion
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[Example: 8 = 1 and periodic matching]

Normalized 2 2 2 2 Laboratory
coordinates . ¢ L 1 1 coordinates
E 3 £ 3
0 Lo % 0 % 0)
5 i
-1 -1 -1 -1
-2 -2 -2 =2
EETTETTTTD 1 2 3 .3 2 -1 o 1 2 3 R e I 1 2 3 TR 1 2 3
xlw xlw x X
3 3 3
2 2 2 2
o1 o1 1
x x
E 3 £ 3
_: 0| ; 0| w 0
5 i
-1 -1 -1
-2 -2 -2 =2
EETTETTTTD 1 2 3 T3 2 a1 o 1 2 3 R R 1 2 3 TETTETTTT 1 2 3
xlw xlw x X
3 3 3
. ) , . Sort of
7 o 1 Matchlng #3
> 2
E 3 £ 3
X M % 0]
5 i
-1 -1
-2 -2 -2 -2
TR 1 2 3 I3 2 a1 o 1 2 3 R B 1 2 3 3T 2 3
xlw x/w X X
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Periodic Beam Distribution

In the periodic focusing system, the particle distribution is non-stationary,
however, when plotted in trace space once per period (i.e., in the Poincare plot),

we can treat the beam in stationary equilibrium.

f(s)=f(s+L) — X(s)=2%(s+ L)
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Already Discussed Since ~2000

Beam parameterization and invariants in a periodic solenoidal channel®

Chun-xi Wang
Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439

Kwang-Je Kim
Unaversity of Chicago, 5270 S. Ellis Avenue, Chicago., IL 60637 and Argonne National Laboratory, 9700 S. Cass Avenue,
Argonne, IL 60439
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For 2+ Dimension Case
(:Y;,:Y:’) — (%mlayay/) A jj’ ;

T
Norm. frame 1 /@/
CW Rotation )
Due to/coupling Radius = A,
A g’
Y
-1
(— —f) 3} (2’,' I’ /) /@/ )
u,y s LYY 7 <

Yy
Norm. frame 2 /@/
CW Rotation Radius — As
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Williamson’s Theorem

Diagonalization of an every 2n x 2n real, symmetric, positive definite matrix

egc 0 O O O O
0 e 0 0 0 0 Different from usual
Eigen-decomposition
B T 00 - 0 0 0 |
X=5D5" = 5 O 0 0 € 0 O S
_ / 00 0 0 0 e 0
T _ T 0 I
STJS =J, SJS J_[_J, 0 00 0 0 o0 _
A O
- _ 5 } ST e 00
A symplectic matrix unique up to I 0 A \ A— 0 € 0

a unitary matrix (a symplectic rotation)
->But, not every unitary matrix can be used here
->The unitary matrix should have a special form. See slide 29 0 0

U(n)=Sp2n.R)NnO(2n . u .
(n) = Sp(2n, &) N O@2n) Diagonal elements are “symplectic

S { [} (i } §T — g [ S (11 ] ST g [ (} (i ] TG eigenvalues” (symplectic spectrum) of X
‘ ‘ ‘ det [JX £ iM] =0
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Eigen-emittance

det[Z] = det[SDST| = det[S] det[D] det[ST] = det[D] = (e1€2)?

tr[(20)%] = tr[SDSTJ-SDSTJ]
= tr[SD-STJS- DS

= tr[SD-J-DS"J]
— t[DJ-DSTJS] D tr[ABC| = tr|[BCA| = tr[C AB]
= tr[DJ-DJ]
= t[(DJ)?]

= —2(ef +€3)

1 o
€12 = —\/—tr[(DJ)Q] + \/’51‘2[(1),])2] — 16 det[D] Invariant under

2 symplectic transformation

2020-09-01 M. Chung 23




RMS- vs Eigen-emittances

From Fischer’s inequality:

A C
> = [ T B ] — det[E] = det[A] det[B} Equality if and only if

Cc=0
— (ae)* <eé 2

From direct calculation (e.g., with the help of Mathematica):
—%tr[(EJ)Q] —  det[A] + det[B] + 2 detC]

(xy) {2y
612‘ms,.’£ + 612‘ms,y + 2 ‘ <$/y>> <<$/y/>>

= e% + e%
* |n this slide, we use the notation of =z = (. 2y, 'y’)T
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[Example]

For a round beam in solenoids with finite average canonical angular momentum:

(i.e., distribution function is independent of angle is X-Y plane) \
1

Using canonical B - L = (XY -YX)
coordinates <X2> (XX’> 0 <XY,> _ {QXY’)
5 (XX’) (X’2> —(XY’) 0 _ wx
o 0 —(XY’) <X2> (XX’) a
i (XY’) 0 (XX’) <X’2> |
det[¥] = (X (X?) — (XX — (XY =2 — L2 )
= €1€2
€1,2 = €rms + L
Sl = 2 ({0 (X72) — (XX 4 (XY)?) =2y + £2) -
= 62 + 62
1 2 -/
* |n this slide, we use the notation of Z = (X, X' Y, Y")'r which is canonical in the Larmor frame
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Already Discussed Since ~2000

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS. VOLUME 6. 104002 (2003)

Round-to-flat transformation of angular-momentum-dominated beams

Kwang-Je Kim

Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, [linois 60439, USA
(Received 13 June 2003; published 30 October 2003)

A study of round-to-flat configurations, and vice versa, of angular-momentum-dominated beams is
presented. The beam propagation in an axial magnetic field is described in terms of the familiar
Courant-Snyder formalism by using a rotating coordinate system. The discussion of the beam trans-
formation is based on the general properties of a cylindrically symmetric beam matrix and the existence
of two invariants for a symplectic transformation in 4D phase space.

DOI: 10.1103/PhysRevSTAB.6.104002 PACS numbers: 29.27.—a, 41.75.Lx, 41.85—p

2020-09-01 M. Chung
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Experimental Demonstration

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 7, 123501 (2004)

PRL 113, 264802 (2014) PHYSICAL REVIEW LETTERS

ek ending

Generation of angular-momentum-dominated electron beams from a photoinjector

Y.-E Sun,"* P. Piot,”" K.-J. Kim,' N. Barov,** S. Lidia,” J. Santucci,” R. Tikhoplay,” and J. Wennerberg™*
IUnn'ersit_\' af Chicago, Chicago, Illinois 60637, USA
*Fermi National Accelerator Laboratory, Batavia, Nlinois 60510, USA
*Argonne National Laboratory, Argonne, Hlinois 60439, USA
*Northern Hlinois University, DeKalb, Mlinois 60115, USA
*Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
SUniversity of Rochester, Rochester, New York 14627, USA
(Received 2 November 2004: published 22 December 2004)

Various projects under study require an angular-momentum-dominated electron beam generated by a
photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g., electron
cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g., possible
electron injectors for light sources and linear colliders). In this paper we report our experimental study of
an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of
angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The
results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be
in good agreement with theoretical and numerical models.

DOL: 10.1103/PhysRevSTAB.7.123501 PACS numbers: 29.27.-a, 41.85.-p, 41.75.Fr

L. Groening, M. Maier, C.

Experimental Proof of Adjustable Single-Knob Ion Beam Emittance Partitioning

1a0, L. Dahl, P. Gerhard, O. K. Kester, S. Mickat, H. Vormann, and M. Vossberg
GSI Helmholizzentrum fiir Schwerionenforschung GmbH, Darmstadt D-64291, Germany

M. Chung
Ulsan Navional Institute of Science and Technology, Ulsan 698-798, Republic of Korea
(Received 26 September 2014: published 30 December 2014)
The performance of accelerators profits from phase-space tailoring by coupling of degrees of freedom.
Previously applied techniques swap the emi

ances among the three degrees but the set of available
emittances is fixed. In contrast to these emittance exchange scenarios, the emittance transfer scenario
presented here allows for arbitrarily changing the set of emittances as long as the product of the emittances
is preserved. This Letter is the first experimental demonstration of transverse emittance transfer along
an ion beam line. The amount of transfer is chosen by setting just one single magnetic field value.
The envelope functions (beta) and slopes (alpha) of the finally uncorrelated and repartitioned heam at
the exit of the transfer line do not depend on the amount of transfer.

DO 101 103/PhysRevLen. 1 13 264802 PACS numbers: 41.75 Ak, 41.85.C1, 41.85.Ja, 41.85.Lc

:CEMBER 2014
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Applying steps in 1D matching

From sort of - . . o B ->1In principle,
Matching #1 E=(zz") — Q 'P'eP 'Q", with e=3%(0) & can be an arbitrary

positive definite matrix

A unitary matrix (symplectic rotation) in 2+ D

But to meet the matching
condition 2, € should have

From sort of a special form.

Matching #2
. P~ 'ep~T — ¢z - This should be independent of particle’s phase advance
Two possible cases: 0 defined in
e 00 0 e 0 0 0 the next slide
€= 0 e 00 , Or ¢ = 0 & with 8 =0
0 0 € O 0 0 & O
0 0 0 e 0 0 0 e \

No motion accros

the eigen-planes
From sort of gen-p

Matching #3 Q(s) =Q(s+ L)
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[Some proof]

- An arbitrary unitary matrix can be parametrized as (e.g., based on Sec. 3.3 of Sakurai)

Overall phase U@) = ¢ o ( cosf —sinf )
'\/ Euler rotations - sin®  cosé
Pauli matrices
U2) = e?R(a,f.1
oiA

= e C}xp(—l(fg(}./Q exp (—io23/2) exp (—i037/2)

— oA ez 0 cos3/2  —sin [3/2 e~ /2 0
= € [] (j-‘;'.f_\-/2 sin 3/.2 COS 3/2 [] (fi"l,-f‘z

cos[A| 0 —sin[\] 0 cos[(&+1)/2] 0 —sin[(£ + 1) /2] 0
0  cos[) 0 —sin[)] 0 cos[(€ +n)/2] 0 sin[(§ +n)/2]

sinA] 0 cos[A] 0 sin[(§ +n)/2] 0 cos[(& +n)/2] 0
0 sin[A] 0 cos| A 0 —sin[(& +n)/2] 0 cos[(& +1n)/2]

cos[] —sin[0)] 0 0 cos[(& —n)/2] 0 —sin[(£ —n)/2] 0

sin[f]  cos[f] 0 0 0 cos[(& —1n)/2] 0 sin[(€ —n)/2] | _ P
0 0 cos[f] —sin[6] sin[(& —n)/2] 0 cos[(& —n)/2] 0
0 0 sin[@]  cos|d] 0 —sin[(§ —n)/2] 0 cos[(& —n)/2]

Here, o = —(E+n),3/2=0,yv=n—¢
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[Some proof - Continued]

e 0 0 O
AT _ p-1| 0 e 0 0 -T
P eP = P 0 0 & 0 P
0 0 0 e
Cos[0]%€; + Sin[0]%ez 1Cos[¢ — n]Sin[26] (—€1 + €2) 0 1Sin[¢ — ]Sin[26] (—€; + €2)
_ 2Cos[¢ — 7]Sin[26] (—€; + €2) Sin[0])%€; + Cos[0]%e2 £Sin[¢ — 7]Sin[26] (¢1 — €2) 0
0 $Sin[¢ — 7)Sin[26] (e1 — €2) Cos|[0]%€1 + Sin[6]%e2 1Cos[¢ — 7]Sin[26] (—€1 + €2)
%SIH[C — 77]8111[29} (—61 -+ 62) 0 %COS[C — ?7}8111[29] (—61 + 62) SiH[BPEl —+ 608[9]262

Two possible cases that make the above expression independent of the phase advance:

ec 0 0 0
0 e 0 0 . -
— 0 0 ¢ 0 with 8 =0
[ 0 0 0 e
[ (61 +€2)/2 0 0 0
0 (61 + 62)/2 0 0 . .
— 0 0 (1 + €2)/2 0 with 8 = random
| 0 0 0 (€1 +€2)/2
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For special case:

If 6 = 0(or, 3/2 = 0)

UEe) = ( e~ Hat7)/2 -0 )
_ : 0 eilaty)/2 Here, = —(€ £ 1)y =1 — £.a 47 = 26
B e!(A+E) 0
N 0 ctA=8)
cos[A + &] 0 —sinfA + ¢ 0
0 cos|\ — ¢ 0 —sin[A — ¢]
sin[A + ¢] 0 cos[A + ¢ 0
0 sin[A — ¢] 0 cos[A — ¢

- This is a typical form of the double rotation.
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How to calculate Q7

e No universal standard:

Coupling between horizontal and vertical motion can oceur in a beam

line either by design (for example, because of the inclusion of skew

quadrupole or solenoid magnets), or as a result of alignment errors on the
magnets (such as the tilt of a quadrupole around its magnetic axis). It
is lmportant to be able to describe coupling and its effects on the beam,

and there are several methods that have been developed to do this in a
convenient way. Unfortunately, no single method has been adopted as a

universal standard, and it would not be practical to try to cover here all E ival
(or even several) of the methods that are in use. Therefore, we restrict our qU|Va ence
between
« Solving matrix envelope equation: various
methods

| w1 w2 " _ T Ty—1 o w1t 0
W = ws wy |’ W'+ kW =W " WW") ", Q= —(WT)’ W

PRL 117, 224801 (2016) PHYSICAL REVIEW LETTERS 25 NOTATe 016

9
On-going
research

Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space
Manipulations of High-Intensity Beams

Moses Chung.J ! Hong Qin,™* Ronald C. Davidson,” Lars Groenin;_z.J and Chen Xiao®
I[)(J[J(."J'UH(‘HF of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
“Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
iI)upm tment of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
*GSI Helmholtzzentrum fiir Schwerionenforschung GmbH, Plancksirasse 1, D-64291 Darmstacl, Germany
(Received 11 February 2016; published 23 November 2016)
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Methods for Linear Coupled Optics

1) By decoupling transformation: directly decouple the one-turn transfer map into an uncoupled one-turn map (i.e,,

into a block-diagonal form) through a matrix similarity transformation

[1] D. Edwards and L. Teng, IEEE Trans. Nucl. Sci. 20, 3 (1973).
[2] D. Sagan and D. Rubin, Phys. Rev. Accel. Beams 2, 074001 (1999).
[3] Y. Luo, Phys. Rev. Accel. Beams 7, 124001 (2004).

2) Using eigenvectors of the transfer matrix: a transformation is found from the eigenvectors of the transfer matrix

that puts the transfer matrix into “normal form”, i.e., the transfer matrix is transformed into a pure rotation

[1] G. Ripken, DESY Internal Report No. R1-70/04, 1970.
[2] A. V. Lebedev and S. A. Bogacz, J. Instrum. 5, P10010 (2010).
[3] A. Wolski, Phys. Rev. Accel. Beams 9, 024001 (2006).
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Conclusions

e Beam matching in 1 D - well-established, well-known
 Eigen-emittance - well-established, not well-known

« Beam matching in 2+ D = not completely established,
not well-known
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Thank you
for your attention !
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