5.5 Diffusion across a Magnetic Field

The fluid equation of motion:
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NOTE:

e v and vp: perpendicular to the gradient in potential and density.
The mobility and diffusion drifts: parallel to the gradient in potential and density.
But these drifts are slowed down by the factor of 1 + w?7?,

e When w?7? < 1, the magnetic field has little effect on diffusion.
When w?72 > 1, the magnetic field significantly retard the diffusion rate across B.

e When w?7% > 1,
KT 1 KTv

Comparing with

KT
Dy=-—

we note

— D) v~1: Collisions retard the motion.
D, o v: Collisions are needed for cross-field migration.

— Dy o m™=: Electrons move faster. (v ~ m~"/?)

D, & mz: Electrons excape more slowly because of their small Larmor radius.
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Diffusion is a random-walk process with a step length ry.

5.6 Collisions in Fully Ionized Plasmas

5.6.1 Plasma Resisitivity
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Figure 5.4: (left) Shift of guiding centers of two like particles making a 90° collision.
(right) Shift of guiding centers of two oppositely charged particles making a 180° collision.

The fluid equations of motion are
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d
men% =—en(E+v.xB)—-Vp.—V-7.+ Py

where P;. is the change in ion momentum due to collisions with electrons.

conservation of momentum,
Pei - _Pie
Pei — men<vi - Ve)Vei
For Coulomb collisions,
P, x €% ne, ni, v, — ve
or
P, = ne’n*(v; — v.).

Therefore, we obtain

ne’
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Let B=0and KT, =0 so that V- P = 0. Then in steady state,
enE =Py

Since J = ne(v; — v,),
P.; = nned

It follows that
E=n7nJ: Ohm’s law.

5.6.2 Coulomb Collisions

Figure 5.5: Here, ry is called the impact parameter.

The Coulomb force given by
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is felt during the time the electron is in the vicinity of the ion: this time is roughly
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The change in the electron’s momentum is

e
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For a 90° collision,
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Replacing v? with KT,/m for a Maxwellian plasma, we obtain
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This resistivity is based on large-angle collisions alone.

In practice,
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where

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

which represents the maximum impact parameter averaged over a Maxwellian distribu-

tion.

NOTES:

e 7 is independent of n(except for the weak dependence in In A).

But in a weakly ionized plasma, n depends on n.
(J = —neve, ve = —pE so that J = nep E.)

e 1 o (KT,)~%?: Good conductor at high temperature.
Ohmic heating (J?n) becomes ineffective as temperature increases.

® Uy, X v

— The current is mainly carried by the fast electrons.

— Electron runaway can occur when an electric field is suddely applied.
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e Numerical values of 7:

copper n =2 x 10~ %ohm-m
stainless steel n =7 x 10~ "ohm-m
mecury n=1x 10~%hm-m

100 eV hydrogen plasma 1 =5 x 10~ "ohm-m

5.7 Magnetohydrodynamics

Define

Pm=n;m; + neme ~ n(m; +m,)

V= n;M;V; + NeMe Ve ~ m;Vi + MeVe (574)

;M + MM m; + Me

J=e(n;v; — neve) ~ ne(v; — v,)

5.7.1 Continuity Equation

From the continuity equations

%Zi LV (nivy) =0 (5.75)
Me . (nev.) = 0 (5.76)
at eve - .
we obtain the continuity equation for mass p,,
0
&mimi + neme) + V- (nymyvi + nemeve) =0 (5.77)
or
Opm

5.7.2 Momentum Equation

Fluid equations of motion are (neglecting quadratic terms in v)

aVi

nimiﬁ =en;(E+v; xB)—Vp; + P, (5.79)
ov,
nemeﬁ = —en.(E+v. xB)—Vp.+ Py (5.80)
Eq. (5.79) + Eq. (5.80):
aat(nimivi + nemeve) = e(n;v; —neve) x B—Vp (5.81)
pmaa\t/ =JxB-Vp (5.82)

where p = p. + p;.
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5.7.3 Ohm’s Law
me X Eq. (5.79) —m; x Eq. (5.80):
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we obtain

1
E+VxB=nJ+ n(JxB—Vpe)

(&

This is called the generalized Ohm’s law.

If
LixB|l £ B Wee
ne _ ne _ mne — < 1
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‘7%:ﬂVKﬂh<km
we have
E+VxB=nJ|
or
J=0(E+V xB)
NOTE:
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= epmE — (m; + me)nend — m Vp; + m;Vp. + en(m.v; + m;v.) x B (5.84)
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Ohm’s law, which relates the current density J and the electric field E, is
J=0E (5.93)

Here E is the total electric field and must include the electric field induced by the
motion of the fluid across the magnetic field. Ohm’s law then becomes

J=0(E+V xB)

(5.94)

where V is the fluid velocity. It is an approximation of a generalized Ohm’s law.

e When collisions vanish, the conductivity becomes infinite. In order to have finite

current, we must have for an ideal MHD fluid

E+VxB=0 (5.95)
or
E=-VxB (5.96)
e The displacement current can be neglected in MHD theory.
oD OE E
‘&‘ — 60 at’ ~ GOT (597)
On the other hand,
1 B
J=|—V x B‘ ~— (5.98)
Lo oL
Using E ~ V x B, the ratio of two terms is
~ L Va~n — <« 1 5.99
Ho
5.7.4 Equation of State
Assuming the fluid is adiabatic
d _
o (po7) =0 (5.100)
where
C
= Fp
v

If the fluid is isothermal, let v = 1.
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Figure 5.6: Region of validity of the ideal MHD model.

5.7.5 The MHD equations

Continuity equation:

Opm _
W +V. (pmV) =0

Equation of motion:

me— =JxB -V
m ot 8 P

Ohm’s law:

J=0(E+V xB)

An equation of state:

d
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7 (Pon)
Maxwell’s equations:
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5.7.6 Energy Equation (option)

From the momentum equation and Mawell’s equation

dV 1
—=—(VxB B-V
pmt Mo( x B) x D

Taking the dot product of the this equation with V,

av. 1
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dt Ho

The term on the left hand side can be written as

dt ot

6 V2 V2

9 (1 2 28pm 1 2
at(pmv> 2V gt ¥ VY

av 0
pmV-:pmV-< +V. V)

Use the continuity equation
0pm
ot

av o /1, 1,
oV = g () <7 (Grv) V]

For the second term on the right hand side, use the equation of state
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The first term on the right hand side can be rewritten as

LV (VxB)xB=—1(VxB)-(V xB)

o 1“0 (5.116)
=—E-(V xB)
Ho
where we have assumed E = —V x B i.e., the plasma is perfectly conducting (¢ — o).
Now use the relation
V- (ExB)=B-(VxXE)-E-:(V xB) (5.117)
to get
1 1 0B? 1
—V- (VxB)xB=———-—V- - (ExB). 5.118
o ( ) 0 0 m ( ) (5.118)

Combining all terms, we obtain the energy conservation relation for an adiabatic MHD
fluids as
0 (1 P B? 1 v ExB
— | Zp VP4 4 — V| =p V3V \% =0 5.119
8t<2p +7—1+2M0>+ <2p TP T (5.119)

Integrating over the entire fluid-plus-vacuum volume, the divergence term yields a surface
integral which vanishes. Hence we obatin the energy conservation law

1 P B2
—p Vi —— + ) dv = const 5.120
/ (2” =1 2 (5.120)
Or
K + W = const (5.121)
where ]
K = /ipmVde kinetic energy (5.122)
P B? :
W :/ ——— 4+ — | dv potential energy (5.123)
y—1 " 2p0
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