5.5 Diffusion across a Magnetic Field

The fluid equation of motion:

$$
\begin{align*}
m n\left[\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right] & = \pm e n(\mathbf{E}+\mathbf{v} \times \mathbf{B})-\nabla p-m n \nu \mathbf{v}=0 \tag{5.48}\\
m n \nu v_{x} & = \pm e n E_{x}-K T \frac{\partial n}{\partial x} \pm e n v_{y} B \\
m n \nu v_{y} & = \pm e n E_{y}-K T \frac{\partial n}{\partial y} \mp e n v_{x} B \tag{5.49}\\
m n \nu v_{z} & = \pm e n E_{z}-K T \frac{\partial n}{\partial z}
\end{align*}
$$

Or

$$
\begin{align*}
& v_{x}= \pm \mu E_{x}-\frac{D}{n} \frac{\partial n}{\partial x} \pm \frac{\omega_{c}}{\nu} v_{y} \\
& v_{y}= \pm \mu E_{y}-\frac{D}{n} \frac{\partial n}{\partial y} \mp \frac{\omega_{c}}{\nu} v_{x} \tag{5.50}\\
& v_{z}= \pm \mu E_{z}-\frac{D}{n} \frac{\partial n}{\partial z}: \quad \text { same as for } \mathbf{B}=0
\end{align*}
$$

Hence,

$$
\begin{align*}
& \left(1+\omega_{c}^{2} \tau^{2}\right) v_{x}= \pm \mu E_{x}-\frac{D}{n} \frac{\partial n}{\partial x}+\omega_{c}^{2} \tau^{2} \frac{E_{y}}{B} \mp \omega_{c}^{2} \tau^{2} \frac{K T}{e B} \frac{1}{n} \frac{\partial n}{\partial y} \\
& \left(1+\omega_{c}^{2} \tau^{2}\right) v_{y}= \pm \mu E_{y}-\frac{D}{n} \frac{\partial n}{\partial y}-\omega_{c}^{2} \tau^{2} \frac{E_{x}}{B} \pm \omega_{c}^{2} \tau^{2} \frac{K T}{e B} \frac{1}{n} \frac{\partial n}{\partial x} \tag{5.51}
\end{align*}
$$

Note that

$$
\begin{array}{ll}
\mathbf{v}_{E}=\frac{\mathbf{E} \times \mathbf{B}}{B^{2}}: & \mathbf{E} \times \mathbf{B} \text { drift } \\
\mathbf{v}_{D}=\frac{K T}{q B} \frac{\mathbf{B} \times \nabla n}{B n} & \text { Diamagnetic drift }
\end{array}
$$

or

$$
\begin{array}{ll}
v_{E x}=\frac{E_{y}}{B} & v_{E y}=-\frac{E_{x}}{B} \\
v_{D x}=\mp \frac{K T}{e B} \frac{1}{n} \frac{\partial n}{\partial y} & v_{D y}= \pm \frac{K T}{e B} \frac{1}{n} \frac{\partial n}{\partial x} \tag{5.52}
\end{array}
$$

and define

$$
\begin{align*}
\mu_{\perp} & =\frac{\mu}{1+\omega_{c}^{2} \tau^{2}} \\
D_{\perp} & =\frac{D}{1+\omega_{c}^{2} \tau^{2}} \tag{5.53}
\end{align*}
$$

to obtain

$$
\begin{align*}
& \mathbf{v}_{\perp}= \pm \mu_{\perp} \mathbf{E}_{\perp}-D_{\perp} \frac{\nabla n}{n}+\frac{\mathbf{v}_{E}+\mathbf{v}_{D}}{1+\nu^{2} / \omega_{c}^{2}} \tag{5.54}\\
& \mathbf{v}_{\|}= \pm \mu \mathbf{E}_{\|}-D \frac{\nabla n}{n}
\end{align*}
$$

NOTE:

- \mathbf{v}_{E} and \mathbf{v}_{D} : perpendicular to the gradient in potential and density.

The mobility and diffusion drifts: parallel to the gradient in potential and density. But these drifts are slowed down by the factor of $1+\omega_{c}^{2} \tau^{2}$.

- When $\omega_{c}^{2} \tau^{2} \ll 1$, the magnetic field has little effect on diffusion.

When $\omega_{c}^{2} \tau^{2} \gg 1$, the magnetic field significantly retard the diffusion rate across \mathbf{B}.

- When $\omega_{c}^{2} \tau^{2} \gg 1$,

$$
D_{\perp}=\frac{K T}{m \nu} \frac{1}{\omega_{c e}^{2} \tau^{2}}=\frac{K T \nu}{m \omega_{c}^{2}} .
$$

Comparing with

$$
D_{\|}=\frac{K T}{m \nu}
$$

we note
$-D_{\|} \propto \nu^{-1}$: Collisions retard the motion.
$D_{\perp} \propto \nu$: Collisions are needed for cross-field migration.
$-D_{\|} \propto m^{-\frac{1}{2}}$: Electrons move faster. $\left(\nu \sim m^{-1 / 2}\right)$
$D_{\perp} \propto m^{\frac{1}{2}}$: Electrons excape more slowly because of their small Larmor radius.

- $D_{\|}=\frac{K T}{m \nu} \sim v_{t h}^{2} \tau \sim \frac{\lambda_{m}^{2}}{\tau}$

Diffusion is a random-walk process with a step length λ_{m}.
$D_{\perp}=\frac{K T \nu}{m \omega_{c}^{2}} \sim v_{t h}^{2} \frac{r_{L}^{2}}{v_{t h}^{2}} \nu \sim \frac{r_{L}^{2}}{\tau}$
Diffusion is a random-walk process with a step length r_{L}.

5.6 Collisions in Fully Ionized Plasmas

5.6.1 Plasma Resisitivity

Figure 5.4: (left) Shift of guiding centers of two like particles making a 90° collision. (right) Shift of guiding centers of two oppositely charged particles making a 180° collision.

The fluid equations of motion are

$$
\begin{equation*}
m_{i} n \frac{d \mathbf{v}_{i}}{d t}=e n\left(\mathbf{E}+\mathbf{v}_{i} \times \mathbf{B}\right)-\nabla p_{i}-\nabla \cdot \boldsymbol{\pi}_{i}+\mathbf{P}_{i e} \tag{5.55}
\end{equation*}
$$

$$
\begin{equation*}
m_{e} n \frac{d \mathbf{v}_{e}}{d t}=-e n\left(\mathbf{E}+\mathbf{v}_{e} \times \mathbf{B}\right)-\nabla p_{e}-\nabla \cdot \boldsymbol{\pi}_{e}+\mathbf{P}_{e i} \tag{5.56}
\end{equation*}
$$

where $\mathbf{P}_{i e}$ is the change in ion momentum due to collisions with electrons. From the conservation of momentum,

$$
\begin{gather*}
\mathbf{P}_{e i}=-\mathbf{P}_{i e} \tag{5.57}\\
\mathbf{P}_{e i}=m_{e} n\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right) \nu_{e i} \tag{5.58}
\end{gather*}
$$

For Coulomb collisions,

$$
\mathbf{P}_{e i} \propto e^{2}, n_{e}, n_{i}, \mathbf{v}_{i}-\mathbf{v}_{e}
$$

or

$$
\begin{equation*}
\mathbf{P}_{e i}=\eta e^{2} n^{2}\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right) \tag{5.59}
\end{equation*}
$$

Therefore, we obtain

$$
\begin{equation*}
\nu_{e i}=\frac{n e^{2}}{m_{e}} \eta \tag{5.60}
\end{equation*}
$$

Let $B=0$ and $K T_{e}=0$ so that $\nabla \cdot \mathrm{P}=0$. Then in steady state,

$$
\begin{equation*}
e n \mathbf{E}=\mathbf{P}_{e i} \tag{5.61}
\end{equation*}
$$

Since $\mathbf{J}=n e\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right)$,

$$
\begin{equation*}
\mathbf{P}_{e i}=\eta n e \mathbf{J} \tag{5.62}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\mathbf{E}=\eta \mathbf{J}: \quad \text { Ohm's law. } \tag{5.63}
\end{equation*}
$$

5.6.2 Coulomb Collisions

Figure 5.5: Here, r_{0} is called the impact parameter.
The Coulomb force given by

$$
\begin{equation*}
F=-\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} \tag{5.64}
\end{equation*}
$$

is felt during the time the electron is in the vicinity of the ion: this time is roughly

$$
\begin{equation*}
T \simeq \frac{r_{0}}{v} \tag{5.65}
\end{equation*}
$$

The change in the electron's momentum is

$$
\begin{equation*}
\triangle(m v)=|F T| \simeq \frac{e^{2}}{4 \pi \epsilon_{0} r_{0} v} \tag{5.66}
\end{equation*}
$$

For a 90° collision,

$$
\triangle(m v) \simeq m v \simeq \frac{e^{2}}{4 \pi \epsilon_{0} r_{0} v}
$$

so

$$
\begin{equation*}
r_{0} \simeq \frac{e^{2}}{4 \pi \epsilon_{0} m v^{2}} \tag{5.67}
\end{equation*}
$$

The cross section is then

$$
\begin{equation*}
\sigma=\pi r_{0}^{2} \simeq \frac{e^{4}}{16 \pi \epsilon_{0}^{2} m^{2} v^{4}} \tag{5.68}
\end{equation*}
$$

The collision frequency is

$$
\begin{equation*}
\nu_{e i}=n \sigma v \simeq \frac{n e^{4}}{16 \pi \epsilon_{0}^{2} m^{2} v^{3}} \tag{5.69}
\end{equation*}
$$

and the resistivity is

$$
\begin{equation*}
\eta=\frac{m \nu_{e i}}{n e^{2}}=\frac{e^{2}}{16 \pi \epsilon_{0}^{2} m v^{3}} \tag{5.70}
\end{equation*}
$$

Replacing v^{2} with $K T_{e} / m$ for a Maxwellian plasma, we obtain

$$
\begin{equation*}
\eta=\frac{\pi e^{2} m^{\frac{1}{2}}}{\left(4 \pi \epsilon_{0}\right)^{2}\left(K T_{e}\right)^{3 / 2}} \tag{5.71}
\end{equation*}
$$

This resistivity is based on large-angle collisions alone.
In practice,

$$
\begin{equation*}
\eta=\frac{\pi e^{2} m^{\frac{1}{2}}}{\left(4 \pi \epsilon_{0}\right)^{2}\left(K T_{e}\right)^{3 / 2}} \ln \Lambda \tag{5.72}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\left\langle\frac{\lambda_{D}}{r_{0}}\right\rangle \tag{5.73}
\end{equation*}
$$

which represents the maximum impact parameter averaged over a Maxwellian distribution.
NOTES:

- η is independent of n (except for the weak dependence in $\ln \Lambda$).

But in a weakly ionized plasma, η depends on n. $\left(\mathbf{J}=-n e \mathbf{v}_{e}, \mathbf{v}_{e}=-\mu_{e} \mathbf{E}\right.$ so that $\left.\mathbf{J}=n e \mu_{e} \mathbf{E}.\right)$

- $\eta \propto\left(K T_{e}\right)^{-3 / 2}$: Good conductor at high temperature.

Ohmic heating $\left(J^{2} \eta\right)$ becomes ineffective as temperature increases.

- $\nu_{e i} \propto v^{-3}$:
- The current is mainly carried by the fast electrons.
- Electron runaway can occur when an electric field is suddely applied.
- Numerical values of η :

copper	$\eta=2 \times 10^{-8} \mathrm{ohm}-\mathrm{m}$
stainless steel	$\eta=7 \times 10^{-7} \mathrm{ohm}-\mathrm{m}$
mecury	$\eta=1 \times 10^{-6} \mathrm{ohm}-\mathrm{m}$
100 eV hydrogen plasma	$\eta=5 \times 10^{-7} \mathrm{ohm}-\mathrm{m}$

5.7 Magnetohydrodynamics

Define

$$
\begin{align*}
& \rho_{m} \equiv n_{i} m_{i}+n_{e} m_{e} \simeq n\left(m_{i}+m_{e}\right) \\
& \mathbf{V} \equiv \frac{n_{i} m_{i} \mathbf{v}_{i}+n_{e} m_{e} \mathbf{v}_{e}}{n_{i} m_{i}+n_{e} m_{e}} \simeq \frac{m_{i} \mathbf{v}_{i}+m_{e} \mathbf{v}_{e}}{m_{i}+m_{e}} \tag{5.74}\\
& \mathbf{J} \equiv e\left(n_{i} \mathbf{v}_{i}-n_{e} \mathbf{v}_{e}\right) \simeq n e\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right)
\end{align*}
$$

5.7.1 Continuity Equation

From the continuity equations

$$
\begin{align*}
\frac{\partial n_{i}}{\partial t}+\nabla \cdot\left(n_{i} \mathbf{v}_{i}\right) & =0 \tag{5.75}\\
\frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \mathbf{v}_{e}\right) & =0 \tag{5.76}
\end{align*}
$$

we obtain the continuity equation for mass ρ_{m}

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(n_{i} m_{i}+n_{e} m_{e}\right)+\nabla \cdot\left(n_{i} m_{i} \mathbf{v}_{i}+n_{e} m_{e} \mathbf{v}_{e}\right)=0 \tag{5.77}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial \rho_{m}}{\partial t}+\nabla \cdot\left(\rho_{m} \mathbf{V}\right)=0 \tag{5.78}
\end{equation*}
$$

5.7.2 Momentum Equation

Fluid equations of motion are (neglecting quadratic terms in \mathbf{v})

$$
\begin{align*}
n_{i} m_{i} \frac{\partial \mathbf{v}_{i}}{\partial t} & =e n_{i}\left(\mathbf{E}+\mathbf{v}_{i} \times \mathbf{B}\right)-\nabla p_{i}+\mathbf{P}_{i e} \tag{5.79}\\
n_{e} m_{e} \frac{\partial \mathbf{v}_{e}}{\partial t} & =-e n_{e}\left(\mathbf{E}+\mathbf{v}_{e} \times \mathbf{B}\right)-\nabla p_{e}+\mathbf{P}_{e i} \tag{5.80}
\end{align*}
$$

Eq. (5.79) + Eq. (5.80):

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(n_{i} m_{i} \mathbf{v}_{i}+n_{e} m_{e} \mathbf{v}_{e}\right)=e\left(n_{i} \mathbf{v}_{i}-n_{e} \mathbf{v}_{e}\right) \times \mathbf{B}-\nabla p \tag{5.81}\\
\rho_{m} \frac{\partial \mathbf{V}}{\partial t}=\mathbf{J} \times \mathbf{B}-\nabla p \tag{5.82}
\end{gather*}
$$

where $p=p_{e}+p_{i}$.

5.7.3 Ohm's Law

$m_{e} \times$ Eq. (5.79) $-m_{i} \times$ Eq. (5.80) $:$
$n m_{i} m_{e} \frac{\partial}{\partial t}\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right)=e n\left(m_{i}+m_{e}\right) \mathbf{E}+e n\left(m_{e} \mathbf{v}_{i}+m_{i} \mathbf{v}_{e}\right) \times \mathbf{B}-m_{e} \nabla p_{i}-m_{i} \nabla p_{e}-\left(m_{i}+m_{e}\right) \mathbf{P}_{e i}$

$$
\begin{equation*}
\frac{m_{i} m_{e}}{e} \frac{\partial}{\partial t} \mathbf{J}=e \rho_{m} \mathbf{E}-\left(m_{i}+m_{e}\right) n e \eta \mathbf{J}-m_{e} \nabla p_{i}+m_{i} \nabla p_{e}+e n\left(m_{e} \mathbf{v}_{i}+m_{i} \mathbf{v}_{e}\right) \times \mathbf{B} \tag{5.83}
\end{equation*}
$$

where we have used that $n_{i} \simeq n_{e}=n$.
Since

$$
\begin{aligned}
m_{e} \mathbf{v}_{i}+m_{i} \mathbf{v}_{e} & =m_{i} \mathbf{v}_{i}+m_{e} \mathbf{v}_{e}+m_{i}\left(\mathbf{v}_{e}-\mathbf{v}_{i}\right)+m_{e}\left(\mathbf{v}_{i}-\mathbf{v}_{e}\right) \\
& =\frac{\rho_{m}}{n} \mathbf{V}-\left(m_{i}-m_{e}\right) \frac{\mathbf{J}}{n e},
\end{aligned}
$$

Eq. $(5.84) \times \frac{1}{e \rho_{m}}$ becomes

$$
\begin{equation*}
\mathbf{E}+\mathbf{V} \times \mathbf{B}-\eta \mathbf{J}=\frac{1}{e \rho_{m}}\left[\frac{m_{i} m_{e}}{e} \frac{\partial \mathbf{J}}{\partial t}+\left(m_{i}-m_{e}\right) \mathbf{J} \times \mathbf{B}+m_{e} \nabla p_{i}-m_{i} \nabla p_{e}\right] \tag{5.85}
\end{equation*}
$$

In the limit $m_{e} / m_{i} \longrightarrow 0$,

$$
\begin{equation*}
\mathbf{E}+\mathbf{V} \times \mathbf{B}=\frac{m_{e}}{n e^{2}} \frac{\partial \mathbf{J}}{\partial t}+\eta \mathbf{J}+\frac{1}{e n}\left(\mathbf{J} \times \mathbf{B}-\nabla p_{e}\right) \tag{5.86}
\end{equation*}
$$

If

$$
\begin{equation*}
\left|\frac{\frac{m_{e}}{n e^{2}} \frac{\partial \mathbf{J}}{\partial t}}{\frac{\mathbf{J} \times \mathbf{B}}{e n}}\right|=\frac{\frac{m_{e} \omega}{e}}{B}=\frac{\omega}{\omega_{c e}} \ll 1 \tag{5.87}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\mathbf{E}+\mathbf{V} \times \mathbf{B}=\eta \mathbf{J}+\frac{1}{e n}\left(\mathbf{J} \times \mathbf{B}-\nabla p_{e}\right) \tag{5.88}
\end{equation*}
$$

This is called the generalized Ohm's law.
If

$$
\begin{equation*}
\left|\frac{\frac{1}{n e} \mathbf{J} \times \mathbf{B}}{\eta \mathbf{J}}\right|=\frac{\frac{B}{n e}}{\eta}=\frac{\frac{B}{n e}}{\frac{m_{e}}{n e^{2}} \nu_{e i}}=\frac{\omega_{c e}}{\nu_{e i}} \ll 1 \tag{5.89}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\nabla p_{e}}{n}\right| \simeq\left|\nabla K T_{e}\right| \ll|e \mathbf{E}| \tag{5.90}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbf{E}+\mathbf{V} \times \mathbf{B}=\eta \mathbf{J} \tag{5.91}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{V} \times \mathbf{B}) \tag{5.92}
\end{equation*}
$$

NOTE:

- Ohm's law, which relates the current density \mathbf{J} and the electric field \mathbf{E}, is

$$
\begin{equation*}
\mathbf{J}=\sigma \mathbf{E} \tag{5.93}
\end{equation*}
$$

Here \mathbf{E} is the total electric field and must include the electric field induced by the motion of the fluid across the magnetic field. Ohm's law then becomes

$$
\begin{equation*}
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{V} \times \mathbf{B}) \tag{5.94}
\end{equation*}
$$

where \mathbf{V} is the fluid velocity. It is an approximation of a generalized Ohm's law.

- When collisions vanish, the conductivity becomes infinite. In order to have finite current, we must have for an ideal MHD fluid

$$
\begin{equation*}
\mathbf{E}+\mathbf{V} \times \mathbf{B}=0 \tag{5.95}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{E}=-\mathbf{V} \times \mathbf{B} \tag{5.96}
\end{equation*}
$$

- The displacement current can be neglected in MHD theory.

$$
\begin{equation*}
\left|\frac{\partial \mathbf{D}}{\partial t}\right|=\epsilon_{0}\left|\frac{\partial \mathbf{E}}{\partial t}\right| \sim \epsilon_{0} \frac{E}{T} \tag{5.97}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
J=\left|\frac{1}{\mu_{0}} \nabla \times \mathbf{B}\right| \sim \frac{B}{\mu_{0} L} \tag{5.98}
\end{equation*}
$$

Using $\mathbf{E} \simeq \mathbf{V} \times \mathbf{B}$, the ratio of two terms is

$$
\begin{equation*}
\frac{\left|\frac{\partial \mathbf{D}}{\partial t}\right|}{|\mathbf{J}|} \sim \frac{\frac{\epsilon_{0} E}{T}}{\frac{B}{\mu_{0} L}} \sim \epsilon_{0} \mu_{0} V \frac{L}{T} \sim \frac{V^{2}}{c^{2}} \ll 1 \tag{5.99}
\end{equation*}
$$

5.7.4 Equation of State

Assuming the fluid is adiabatic

$$
\begin{equation*}
\frac{d}{d t}\left(p \rho_{m}^{-\gamma}\right)=0 \tag{5.100}
\end{equation*}
$$

where

$$
\gamma=\frac{C_{p}}{C_{V}}
$$

If the fluid is isothermal, let $\gamma=1$.

$$
\begin{aligned}
y=\frac{r_{L i}}{a} & \text { (1) High collisionality } x \ll 1 \\
x=\left(\frac{m_{i}}{m_{e}}\right)^{1 / 2} \frac{V_{\tau} \tau_{i i}}{a} & \text { (2) Small gyro radius } y \ll 1 \\
\frac{|\eta \mathbf{J}|}{|v \times \mathbf{B}|} \sim \frac{\left(m_{e} / m_{j}\right)^{1 / 2}}{\omega \tau_{i}}\left(\frac{r_{2}}{a}\right)^{2} \ll 1 & \text { (3) Small resistivity } y^{2} / x \ll 1
\end{aligned}
$$

Figure 5.6: Region of validity of the ideal MHD model.

5.7.5 The MHD equations

Continuity equation:

$$
\begin{equation*}
\frac{\partial \rho_{m}}{\partial t}+\nabla \cdot\left(\rho_{m} \mathbf{V}\right)=0 \tag{5.101}
\end{equation*}
$$

Equation of motion:

$$
\begin{equation*}
\rho_{m} \frac{\partial \mathbf{V}}{\partial t}=\mathbf{J} \times \mathbf{B}-\nabla p \tag{5.102}
\end{equation*}
$$

Ohm's law:

$$
\begin{equation*}
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{V} \times \mathbf{B}) \tag{5.103}
\end{equation*}
$$

An equation of state:

$$
\begin{equation*}
\frac{d}{d t}\left(p \rho_{m}^{-\gamma}\right)=0 \tag{5.104}
\end{equation*}
$$

Maxwell's equations:

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{5.105}\\
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \tag{5.106}
\end{align*}
$$

5.7.6 Energy Equation (option)

From the momentum equation and Mawell's equation

$$
\begin{equation*}
\rho_{m} \frac{d \mathbf{V}}{d t}=\frac{1}{\mu_{0}}(\nabla \times \mathbf{B}) \times \mathbf{B}-\nabla p \tag{5.107}
\end{equation*}
$$

Taking the dot product of the this equation with \mathbf{V},

$$
\begin{equation*}
\rho_{m} \mathbf{V} \cdot \frac{d \mathbf{V}}{d t}=\frac{1}{\mu_{0}} \mathbf{V} \cdot(\nabla \times \mathbf{B}) \times \mathbf{B}-\mathbf{V} \cdot \nabla p \tag{5.108}
\end{equation*}
$$

The term on the left hand side can be written as

$$
\begin{align*}
\rho_{m} \mathbf{V} \cdot \frac{d \mathbf{V}}{d t} & =\rho_{m} \mathbf{V} \cdot\left(\frac{\partial}{\partial t}+\mathbf{V} \cdot \nabla\right) \mathbf{V} \\
& =\rho_{m} \frac{\partial}{\partial t}\left(\frac{V^{2}}{2}\right)+\rho_{m} \mathbf{V} \cdot \nabla\left(\frac{V^{2}}{2}\right) \tag{5.109}\\
& =\frac{\partial}{\partial t}\left(\frac{1}{2} \rho_{m} V^{2}\right)-\frac{1}{2} V^{2} \frac{\partial \rho_{m}}{\partial t}+\frac{1}{2} \rho_{m} \mathbf{V} \cdot \nabla V^{2}
\end{align*}
$$

Use the continuity equation

$$
\frac{\partial \rho_{m}}{\partial t}=-\nabla \cdot\left(\rho_{m} \mathbf{V}\right)
$$

to obtain

$$
\begin{equation*}
\rho_{m} \mathbf{V} \cdot \frac{d \mathbf{V}}{d t}=\frac{\partial}{\partial t}\left(\frac{1}{2} \rho_{m} V^{2}\right)+\nabla \cdot\left[\left(\frac{1}{2} \rho_{m} V^{2}\right) \mathbf{V}\right] \tag{5.110}
\end{equation*}
$$

For the second term on the right hand side, use the equation of state

$$
\begin{equation*}
\frac{d}{d t}\left(p \rho_{m}^{-\gamma}\right)=0 \tag{5.111}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho_{m}^{-\gamma} \frac{d p}{d t}-\gamma p \rho_{m}^{-(\gamma+1)} \frac{d \rho_{m}}{d t}=0 \tag{5.112}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\frac{d p}{d t}-\frac{\gamma p}{\rho_{m}} \frac{d \rho_{m}}{d t}=0 \tag{5.113}
\end{equation*}
$$

Since

$$
\begin{gather*}
\frac{d p}{d t}=\frac{\partial p}{\partial t}+(\mathbf{V} \cdot \nabla) p \\
\frac{d \rho_{m}}{d t}=-\rho_{m}(\nabla \cdot \mathbf{V}) \\
\frac{\partial p}{\partial t}+\mathbf{V} \cdot \nabla p+\gamma p \nabla \cdot \mathbf{V}=0 \tag{5.114}
\end{gather*}
$$

or

$$
\begin{equation*}
\frac{\partial p}{\partial t}+(1-\gamma) \mathbf{V} \cdot \nabla p+\gamma \nabla \cdot(p \mathbf{V})=0 \tag{5.115}
\end{equation*}
$$

The first term on the right hand side can be rewritten as

$$
\begin{align*}
\frac{1}{\mu_{0}} \mathbf{V} \cdot(\nabla \times \mathbf{B}) \times \mathbf{B} & =-\frac{1}{\mu_{0}}(\mathbf{V} \times \mathbf{B}) \cdot(\nabla \times \mathbf{B}) \tag{5.116}\\
& =\frac{1}{\mu_{0}} \mathbf{E} \cdot(\nabla \times \mathbf{B})
\end{align*}
$$

where we have assumed $\mathbf{E}=-\mathbf{V} \times \mathbf{B}$, i.e., the plasma is perfectly conducting $(\sigma \longrightarrow \infty)$. Now use the relation

$$
\begin{equation*}
\nabla \cdot(\mathbf{E} \times \mathbf{B})=\mathbf{B} \cdot(\nabla \times \mathbf{E})-\mathbf{E} \cdot(\nabla \times \mathbf{B}) \tag{5.117}
\end{equation*}
$$

to get

$$
\begin{equation*}
\frac{1}{\mu_{0}} \mathbf{V} \cdot(\nabla \times \mathbf{B}) \times \mathbf{B}=-\frac{1}{2 \mu_{0}} \frac{\partial B^{2}}{\partial t}-\frac{1}{\mu_{0}} \nabla \cdot(\mathbf{E} \times \mathbf{B}) \tag{5.118}
\end{equation*}
$$

Combining all terms, we obtain the energy conservation relation for an adiabatic MHD fluids as

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho_{m} V^{2}+\frac{p}{\gamma-1}+\frac{B^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left(\frac{1}{2} \rho_{m} V^{2} \mathbf{V}+\frac{\gamma}{\gamma-1} p \mathbf{V}+\frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}}\right)=0 \tag{5.119}
\end{equation*}
$$

Integrating over the entire fluid-plus-vacuum volume, the divergence term yields a surface integral which vanishes. Hence we obatin the energy conservation law

$$
\begin{equation*}
\int\left(\frac{1}{2} \rho_{m} V^{2}+\frac{p}{\gamma-1}+\frac{B^{2}}{2 \mu_{0}}\right) d v=\text { const } \tag{5.120}
\end{equation*}
$$

Or

$$
\begin{equation*}
K+W=\mathrm{const} \tag{5.121}
\end{equation*}
$$

where

$$
\begin{gather*}
K=\int \frac{1}{2} \rho_{m} V^{2} d v \quad \text { kinetic energy } \tag{5.122}\\
W=\int\left(\frac{p}{\gamma-1}+\frac{B^{2}}{2 \mu_{0}}\right) d v \quad \text { potential energy } \tag{5.123}
\end{gather*}
$$

