5.5 Diffusion across a Magnetic Field

The fluid equation of motion:

$$mn\left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right] = \pm en(\mathbf{E} + \mathbf{v} \times \mathbf{B}) - \nabla p - mn\nu\mathbf{v} = 0$$
 (5.48)

$$mn\nu v_x = \pm enE_x - KT\frac{\partial n}{\partial x} \pm env_y B$$

$$mn\nu v_y = \pm enE_y - KT\frac{\partial n}{\partial y} \mp env_x B$$
 (5.49)

$$mn\nu v_z = \pm enE_z - KT \frac{\partial n}{\partial z}$$

Or

$$v_{x} = \pm \mu E_{x} - \frac{D}{n} \frac{\partial n}{\partial x} \pm \frac{\omega_{c}}{\nu} v_{y}$$

$$v_{y} = \pm \mu E_{y} - \frac{D}{n} \frac{\partial n}{\partial y} \mp \frac{\omega_{c}}{\nu} v_{x}$$

$$v_{z} = \pm \mu E_{z} - \frac{D}{n} \frac{\partial n}{\partial z} : \text{ same as for } \mathbf{B} = 0$$

$$(5.50)$$

Hence,

$$(1 + \omega_c^2 \tau^2) v_x = \pm \mu E_x - \frac{D}{n} \frac{\partial n}{\partial x} + \omega_c^2 \tau^2 \frac{E_y}{B} \mp \omega_c^2 \tau^2 \frac{KT}{eB} \frac{1}{n} \frac{\partial n}{\partial y}$$

$$(1 + \omega_c^2 \tau^2) v_y = \pm \mu E_y - \frac{D}{n} \frac{\partial n}{\partial y} - \omega_c^2 \tau^2 \frac{E_x}{B} \pm \omega_c^2 \tau^2 \frac{KT}{eB} \frac{1}{n} \frac{\partial n}{\partial x}$$

$$(5.51)$$

Note that

$$\mathbf{v}_E = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$
: $\mathbf{E} \times \mathbf{B}$ drift

$$\mathbf{v}_D = \frac{KT}{qB} \frac{\mathbf{B} \times \nabla n}{Bn}$$
 Diamagnetic drift

or

$$v_{Ex} = \frac{E_y}{B} \qquad v_{Ey} = -\frac{E_x}{B}$$

$$v_{Dx} = \mp \frac{KT}{eB} \frac{1}{n} \frac{\partial n}{\partial y} \quad v_{Dy} = \pm \frac{KT}{eB} \frac{1}{n} \frac{\partial n}{\partial x}$$
(5.52)

and define

$$\begin{bmatrix}
\mu_{\perp} = \frac{\mu}{1 + \omega_c^2 \tau^2} \\
D_{\perp} = \frac{D}{1 + \omega_c^2 \tau^2}
\end{bmatrix} (5.53)$$

to obtain

$$\mathbf{v}_{\perp} = \pm \mu_{\perp} \mathbf{E}_{\perp} - D_{\perp} \frac{\nabla n}{n} + \frac{\mathbf{v}_{E} + \mathbf{v}_{D}}{1 + \nu^{2}/\omega_{c}^{2}}$$

$$\mathbf{v}_{\parallel} = \pm \mu \mathbf{E}_{\parallel} - D \frac{\nabla n}{n}$$
(5.54)

NOTE:

- \mathbf{v}_E and \mathbf{v}_D : perpendicular to the gradient in potential and density. The mobility and diffusion drifts: parallel to the gradient in potential and density. But these drifts are slowed down by the factor of $1 + \omega_c^2 \tau^2$.
- When $\omega_c^2 \tau^2 \ll 1$, the magnetic field has little effect on diffusion. When $\omega_c^2 \tau^2 \gg 1$, the magnetic field significantly retard the diffusion rate across **B**.
- When $\omega_c^2 \tau^2 \gg 1$,

$$D_{\perp} = \frac{KT}{m\nu} \frac{1}{\omega_{ce}^2 \tau^2} = \frac{KT\nu}{m\omega_c^2} \,.$$

Comparing with

$$D_{\parallel} = \frac{KT}{m\nu}$$

we note

- $D_{\parallel} \propto \nu^{-1}$: Collisions retard the motion. $D_{\perp} \propto \nu$: Collisions are needed for cross-field migration.
- $-D_{\parallel} \propto m^{-\frac{1}{2}}$: Electrons move faster. $(\nu \sim m^{-1/2})$ $D_{\perp} \propto m^{\frac{1}{2}}$: Electrons excape more slowly because of their small Larmor radius.

$$D_{\perp} = \frac{KT\nu}{m\omega_c^2} \sim v_{th}^2 \frac{r_L^2}{v_{th}^2} \nu \sim \frac{r_L^2}{\tau}$$

 $-D_{\parallel} = \frac{KT}{m\nu} \sim v_{th}^2 \tau \sim \frac{\lambda_m^2}{\tau}$ Diffusion is a random-walk process with a step length λ_m . $D_{\perp} = \frac{KT\nu}{m\omega_c^2} \sim v_{th}^2 \frac{r_L^2}{v_{th}^2} \nu \sim \frac{r_L^2}{\tau}$ Diffusion is a random-walk process with a step length r_L .

Collisions in Fully Ionized Plasmas 5.6

5.6.1Plasma Resisitivity

Figure 5.4: (left) Shift of guiding centers of two like particles making a 90° collision. (right) Shift of guiding centers of two oppositely charged particles making a 180° collision.

The fluid equations of motion are

$$m_i n \frac{d\mathbf{v}_i}{dt} = en(\mathbf{E} + \mathbf{v}_i \times \mathbf{B}) - \nabla p_i - \nabla \cdot \boldsymbol{\pi}_i + \mathbf{P}_{ie}$$
 (5.55)

$$m_e n \frac{d\mathbf{v}_e}{dt} = -en(\mathbf{E} + \mathbf{v}_e \times \mathbf{B}) - \nabla p_e - \nabla \cdot \boldsymbol{\pi}_e + \mathbf{P}_{ei}$$
 (5.56)

where \mathbf{P}_{ie} is the change in ion momentum due to collisions with electrons. From the conservation of momentum,

$$\mathbf{P}_{ei} = -\mathbf{P}_{ie} \tag{5.57}$$

$$\mathbf{P}_{ei} = m_e n(\mathbf{v}_i - \mathbf{v}_e) \nu_{ei} \tag{5.58}$$

For Coulomb collisions,

$$\mathbf{P}_{ei} \propto e^2, n_e, n_i, \mathbf{v}_i - \mathbf{v}_e$$

or

$$\mathbf{P}_{ei} = \eta e^2 n^2 (\mathbf{v}_i - \mathbf{v}_e) \,. \tag{5.59}$$

Therefore, we obtain

$$\nu_{ei} = \frac{ne^2}{m_e} \eta \tag{5.60}$$

Let B = 0 and $KT_e = 0$ so that $\nabla \cdot \mathsf{P} = 0$. Then in steady state,

$$en\mathbf{E} = \mathbf{P}_{ei} \tag{5.61}$$

Since $\mathbf{J} = ne(\mathbf{v}_i - \mathbf{v}_e)$,

$$\mathbf{P}_{ei} = \eta n e \mathbf{J} \tag{5.62}$$

It follows that

$$\mathbf{E} = \eta \mathbf{J}$$
: Ohm's law. (5.63)

5.6.2 Coulomb Collisions

Figure 5.5: Here, r_0 is called the impact parameter.

The Coulomb force given by

$$F = -\frac{e^2}{4\pi\epsilon_0 r^2} \tag{5.64}$$

is felt during the time the electron is in the vicinity of the ion: this time is roughly

$$T \simeq \frac{r_0}{v} \tag{5.65}$$

The change in the electron's momentum is

$$\triangle(mv) = |FT| \simeq \frac{e^2}{4\pi\epsilon_0 r_0 v} \tag{5.66}$$

For a 90° collision,

$$\triangle(mv) \simeq mv \simeq \frac{e^2}{4\pi\epsilon_0 r_0 v}$$

SO

$$r_0 \simeq \frac{e^2}{4\pi\epsilon_0 m v^2} \tag{5.67}$$

The cross section is then

$$\sigma = \pi r_0^2 \simeq \frac{e^4}{16\pi \epsilon_0^2 m^2 v^4} \tag{5.68}$$

The collision frequency is

$$\nu_{ei} = n\sigma v \simeq \frac{ne^4}{16\pi\epsilon_0^2 m^2 v^3} \tag{5.69}$$

and the resistivity is

$$\eta = \frac{m\nu_{ei}}{ne^2} = \frac{e^2}{16\pi\epsilon_0^2 m v^3} \tag{5.70}$$

Replacing v^2 with KT_e/m for a Maxwellian plasma, we obtain

$$\eta = \frac{\pi e^2 m^{\frac{1}{2}}}{(4\pi\epsilon_0)^2 (KT_e)^{3/2}} \tag{5.71}$$

This resistivity is based on large-angle collisions alone. In practice,

$$\eta = \frac{\pi e^2 m^{\frac{1}{2}}}{(4\pi\epsilon_0)^2 (KT_e)^{3/2}} \ln \Lambda \tag{5.72}$$

where

$$\Lambda = \left\langle \frac{\lambda_D}{r_0} \right\rangle \tag{5.73}$$

which represents the maximum impact parameter averaged over a Maxwellian distribution.

NOTES:

- η is independent of $n(\text{except for the weak dependence in ln }\Lambda)$. But in a weakly ionized plasma, η depends on n. $(\mathbf{J} = -ne\mathbf{v}_e, \mathbf{v}_e = -\mu_e \mathbf{E} \text{ so that } \mathbf{J} = ne\mu_e \mathbf{E}.)$
- $\eta \propto (KT_e)^{-3/2}$: Good conductor at high temperature. Ohmic heating $(J^2\eta)$ becomes ineffective as temperature increases.
- $\nu_{ei} \propto v^{-3}$:
 - The current is mainly carried by the fast electrons.
 - Electron runaway can occur when an electric field is suddely applied.

• Numerical values of η :

copper
$$\eta = 2 \times 10^{-8} \text{ohm-m}$$

stainless steel
$$\eta = 7 \times 10^{-7}$$
ohm-m

mecury
$$\eta = 1 \times 10^{-6} \text{ohm-m}$$

100 eV hydrogen plasma
$$\eta = 5 \times 10^{-7}$$
ohm-m

5.7 Magnetohydrodynamics

Define

$$\rho_m \equiv n_i m_i + n_e m_e \simeq n(m_i + m_e)$$

$$\mathbf{V} \equiv \frac{n_i m_i \mathbf{v}_i + n_e m_e \mathbf{v}_e}{n_i m_i + n_e m_e} \simeq \frac{m_i \mathbf{v}_i + m_e \mathbf{v}_e}{m_i + m_e}$$
(5.74)

$$\mathbf{J} \equiv e(n_i \mathbf{v}_i - n_e \mathbf{v}_e) \simeq ne(\mathbf{v}_i - \mathbf{v}_e)$$

5.7.1 Continuity Equation

From the continuity equations

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{v}_i) = 0 \tag{5.75}$$

$$\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \mathbf{v}_e) = 0 \tag{5.76}$$

we obtain the continuity equation for mass ρ_m

$$\frac{\partial}{\partial t}(n_i m_i + n_e m_e) + \nabla \cdot (n_i m_i \mathbf{v}_i + n_e m_e \mathbf{v}_e) = 0$$
(5.77)

or

$$\left[\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{V}) = 0\right] \tag{5.78}$$

5.7.2 Momentum Equation

Fluid equations of motion are (neglecting quadratic terms in \mathbf{v})

$$n_i m_i \frac{\partial \mathbf{v}_i}{\partial t} = e n_i (\mathbf{E} + \mathbf{v}_i \times \mathbf{B}) - \nabla p_i + \mathbf{P}_{ie}$$
 (5.79)

$$n_e m_e \frac{\partial \mathbf{v}_e}{\partial t} = -e n_e (\mathbf{E} + \mathbf{v}_e \times \mathbf{B}) - \nabla p_e + \mathbf{P}_{ei}$$
 (5.80)

Eq. (5.79) + Eq. (5.80):

$$\frac{\partial}{\partial t}(n_i m_i \mathbf{v}_i + n_e m_e \mathbf{v}_e) = e(n_i \mathbf{v}_i - n_e \mathbf{v}_e) \times \mathbf{B} - \nabla p$$
 (5.81)

$$\rho_m \frac{\partial \mathbf{V}}{\partial t} = \mathbf{J} \times \mathbf{B} - \nabla p$$
(5.82)

where $p = p_e + p_i$.

5.7.3 Ohm's Law

 $m_e \times \text{Eq.} (5.79) - m_i \times \text{Eq.} (5.80)$:

$$nm_i m_e \frac{\partial}{\partial t} (\mathbf{v}_i - \mathbf{v}_e) = en(m_i + m_e) \mathbf{E} + en(m_e \mathbf{v}_i + m_i \mathbf{v}_e) \times \mathbf{B} - m_e \nabla p_i - m_i \nabla p_e - (m_i + m_e) \mathbf{P}_{ei}$$
(5.83)

$$\frac{m_i m_e}{e} \frac{\partial}{\partial t} \mathbf{J} = e \rho_m \mathbf{E} - (m_i + m_e) ne \eta \mathbf{J} - m_e \nabla p_i + m_i \nabla p_e + e n(m_e \mathbf{v}_i + m_i \mathbf{v}_e) \times \mathbf{B}$$
 (5.84)

where we have used that $n_i \simeq n_e = n$.

Since

$$m_e \mathbf{v}_i + m_i \mathbf{v}_e = m_i \mathbf{v}_i + m_e \mathbf{v}_e + m_i (\mathbf{v}_e - \mathbf{v}_i) + m_e (\mathbf{v}_i - \mathbf{v}_e)$$
$$= \frac{\rho_m}{n} \mathbf{V} - (m_i - m_e) \frac{\mathbf{J}}{n_e},$$

Eq. $(5.84) \times \frac{1}{e\rho_m}$ becomes

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} - \eta \mathbf{J} = \frac{1}{e\rho_m} \left[\frac{m_i m_e}{e} \frac{\partial \mathbf{J}}{\partial t} + (m_i - m_e) \mathbf{J} \times \mathbf{B} + m_e \nabla p_i - m_i \nabla p_e \right]$$
(5.85)

In the limit $m_e/m_i \longrightarrow 0$,

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{m_e}{ne^2} \frac{\partial \mathbf{J}}{\partial t} + \eta \mathbf{J} + \frac{1}{en} (\mathbf{J} \times \mathbf{B} - \nabla p_e)$$
 (5.86)

If

$$\left| \frac{\frac{m_e}{ne^2} \frac{\partial \mathbf{J}}{\partial t}}{\frac{\mathbf{J} \times \mathbf{B}}{en}} \right| = \frac{\frac{m_e \omega}{e}}{B} = \frac{\omega}{\omega_{ce}} \ll 1$$
 (5.87)

we obtain

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J} + \frac{1}{en} (\mathbf{J} \times \mathbf{B} - \nabla p_e)$$
(5.88)

This is called the *generalized Ohm's law*.

If

$$\left| \frac{\frac{1}{ne} \mathbf{J} \times \mathbf{B}}{\eta \mathbf{J}} \right| = \frac{\frac{B}{ne}}{\eta} = \frac{\frac{B}{ne}}{\frac{m_e}{ne^2} \nu_{ei}} = \frac{\omega_{ce}}{\nu_{ei}} \ll 1$$
 (5.89)

and

$$\left| \frac{\nabla p_e}{n} \right| \simeq |\nabla K T_e| \ll |e\mathbf{E}| \tag{5.90}$$

we have

$$\boxed{\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{J}} \tag{5.91}$$

or

$$\boxed{\mathbf{J} = \sigma \left(\mathbf{E} + \mathbf{V} \times \mathbf{B} \right)} \tag{5.92}$$

NOTE:

• Ohm's law, which relates the current density **J** and the electric field **E**, is

$$\mathbf{J} = \sigma \mathbf{E} \tag{5.93}$$

Here \mathbf{E} is the total electric field and must include the electric field induced by the motion of the fluid across the magnetic field. Ohm's law then becomes

$$\mathbf{J} = \sigma \left(\mathbf{E} + \mathbf{V} \times \mathbf{B} \right) \tag{5.94}$$

where \mathbf{V} is the fluid velocity. It is an approximation of a generalized Ohm's law.

• When collisions vanish, the conductivity becomes infinite. In order to have finite current, we must have for an ideal MHD fluid

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = 0 \tag{5.95}$$

or

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} \tag{5.96}$$

• The displacement current can be neglected in MHD theory.

$$\left| \frac{\partial \mathbf{D}}{\partial t} \right| = \epsilon_0 \left| \frac{\partial \mathbf{E}}{\partial t} \right| \sim \epsilon_0 \frac{E}{T} \tag{5.97}$$

On the other hand,

$$J = \left| \frac{1}{\mu_0} \nabla \times \mathbf{B} \right| \sim \frac{B}{\mu_0 L} \tag{5.98}$$

Using $\mathbf{E} \simeq \mathbf{V} \times \mathbf{B}$, the ratio of two terms is

$$\frac{\left|\frac{\partial \mathbf{D}}{\partial t}\right|}{|\mathbf{J}|} \sim \frac{\frac{\epsilon_0 E}{T}}{\frac{B}{\mu_0 L}} \sim \epsilon_0 \mu_0 V \frac{L}{T} \sim \frac{V^2}{c^2} \ll 1 \tag{5.99}$$

5.7.4 Equation of State

Assuming the fluid is adiabatic

$$\frac{d}{dt} \left(p \rho_m^{-\gamma} \right) = 0$$
(5.100)

where

$$\gamma = \frac{C_p}{C_V}$$

If the fluid is isothermal, let $\gamma = 1$.

$$y = \frac{r_{Li}}{a}$$
$$x = \left(\frac{m_i}{m_e}\right)^{1/2} \frac{V_{T_i} \tau_{Ii}}{a}$$

$$\frac{|\eta \mathbf{J}|}{|\mathbf{v} \times \mathbf{B}|} \sim \frac{(m_e/m_i)^{1/2}}{\omega \tau_{ii}} \left(\frac{r_{Li}}{a}\right)^2 \ll 1$$

- (1) High collisionality $x \ll 1$
- (2) Small gyro radius y ≪ 1
- (3) Small resistivity $y^2/x \ll 1$

Figure 5.6: Region of validity of the ideal MHD model.

5.7.5 The MHD equations

Continuity equation:

$$\frac{\partial \rho_m}{\partial t} + \nabla \cdot (\rho_m \mathbf{V}) = 0 \tag{5.101}$$

Equation of motion:

$$\rho_m \frac{\partial \mathbf{V}}{\partial t} = \mathbf{J} \times \mathbf{B} - \nabla p \tag{5.102}$$

Ohm's law:

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{V} \times \mathbf{B}) \tag{5.103}$$

An equation of state:

$$\frac{d}{dt}(p\rho_m^{-\gamma}) = 0 (5.104)$$

Maxwell's equations:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{5.105}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \tag{5.106}$$

5.7.6 Energy Equation (option)

From the momentum equation and Mawell's equation

$$\rho_m \frac{d\mathbf{V}}{dt} = \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} - \nabla p \tag{5.107}$$

Taking the dot product of the this equation with V,

$$\rho_m \mathbf{V} \cdot \frac{d\mathbf{V}}{dt} = \frac{1}{\mu_0} \mathbf{V} \cdot (\nabla \times \mathbf{B}) \times \mathbf{B} - \mathbf{V} \cdot \nabla p \tag{5.108}$$

The term on the left hand side can be written as

$$\rho_{m} \mathbf{V} \cdot \frac{d\mathbf{V}}{dt} = \rho_{m} \mathbf{V} \cdot \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right) \mathbf{V}$$

$$= \rho_{m} \frac{\partial}{\partial t} \left(\frac{V^{2}}{2}\right) + \rho_{m} \mathbf{V} \cdot \nabla \left(\frac{V^{2}}{2}\right)$$

$$= \frac{\partial}{\partial t} \left(\frac{1}{2}\rho_{m}V^{2}\right) - \frac{1}{2}V^{2} \frac{\partial \rho_{m}}{\partial t} + \frac{1}{2}\rho_{m} \mathbf{V} \cdot \nabla V^{2}$$
(5.109)

Use the continuity equation

$$\frac{\partial \rho_m}{\partial t} = -\nabla \cdot (\rho_m \mathbf{V})$$

to obtain

$$\rho_m \mathbf{V} \cdot \frac{d\mathbf{V}}{dt} = \frac{\partial}{\partial t} \left(\frac{1}{2} \rho_m V^2 \right) + \nabla \cdot \left[\left(\frac{1}{2} \rho_m V^2 \right) \mathbf{V} \right]. \tag{5.110}$$

For the second term on the right hand side, use the equation of state

$$\frac{d}{dt}(p\rho_m^{-\gamma}) = 0 (5.111)$$

or

$$\rho_m^{-\gamma} \frac{dp}{dt} - \gamma p \rho_m^{-(\gamma+1)} \frac{d\rho_m}{dt} = 0$$
 (5.112)

which reduces to

$$\frac{dp}{dt} - \frac{\gamma p}{\rho_m} \frac{d\rho_m}{dt} = 0. ag{5.113}$$

Since

$$\frac{dp}{dt} = \frac{\partial p}{\partial t} + (\mathbf{V} \cdot \nabla)p$$

$$\frac{d\rho_m}{dt} = -\rho_m(\nabla \cdot \mathbf{V}),$$

$$\frac{\partial p}{\partial t} + \mathbf{V} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{V} = 0 \tag{5.114}$$

or

$$\frac{\partial p}{\partial t} + (1 - \gamma)\mathbf{V} \cdot \nabla p + \gamma \nabla \cdot (p\mathbf{V}) = 0$$
 (5.115)

The first term on the right hand side can be rewritten as

$$\frac{1}{\mu_0} \mathbf{V} \cdot (\nabla \times \mathbf{B}) \times \mathbf{B} = -\frac{1}{\mu_0} (\mathbf{V} \times \mathbf{B}) \cdot (\nabla \times \mathbf{B})$$

$$= \frac{1}{\mu_0} \mathbf{E} \cdot (\nabla \times \mathbf{B})$$
(5.116)

where we have assumed $\mathbf{E} = -\mathbf{V} \times \mathbf{B}$, i.e., the plasma is perfectly conducting $(\sigma \longrightarrow \infty)$. Now use the relation

$$\nabla \cdot (\mathbf{E} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{B}) \tag{5.117}$$

to get

$$\frac{1}{\mu_0} \mathbf{V} \cdot (\nabla \times \mathbf{B}) \times \mathbf{B} = -\frac{1}{2\mu_0} \frac{\partial B^2}{\partial t} - \frac{1}{\mu_0} \nabla \cdot (\mathbf{E} \times \mathbf{B}). \tag{5.118}$$

Combining all terms, we obtain the energy conservation relation for an adiabatic MHD fluids as

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho_m V^2 + \frac{p}{\gamma - 1} + \frac{B^2}{2\mu_0} \right) + \nabla \cdot \left(\frac{1}{2} \rho_m V^2 \mathbf{V} + \frac{\gamma}{\gamma - 1} p \mathbf{V} + \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right) = 0 \quad (5.119)$$

Integrating over the entire fluid-plus-vacuum volume, the divergence term yields a surface integral which vanishes. Hence we obtain the energy conservation law

$$\int \left(\frac{1}{2} \rho_m V^2 + \frac{p}{\gamma - 1} + \frac{B^2}{2\mu_0} \right) dv = \text{const}$$
 (5.120)

Or

$$K + W = \text{const} \tag{5.121}$$

where

$$K = \int \frac{1}{2} \rho_m V^2 dv \quad \text{kinetic energy}$$
 (5.122)

$$W = \int \left(\frac{p}{\gamma - 1} + \frac{B^2}{2\mu_0}\right) dv \quad \text{potential energy}$$
 (5.123)