Chapter 5

Diffusion and Resistivity

5.1 Diffusion and Mobility in Weakly Ionized Gases

5.1.1 Collisional Parameters

Figure 5.1:

The number of atoms in the slab:
nAdzx

The fraction of the slab blocked by atoms:

gnAalx = nodx

A
The flux out of the slab TV for the incident flux I":

ar
i —nol’
= Foe—naa:

(5.1)



This represents the statistical average for a large number of particles and scatterers. This
can be also interpreted as the probability that any given particle will penetrate a distance

T into a gas.

The mean free path,\,,, is defined as the average distance that a particle travels before

colliding with a gas atom.

ot xeTtdr 1

Ap =(xr) = =———— = —": mean free path
m = () Jolemrrdr no P
Am . .
T = — " mean time between collisons
v
— = — =mnov: mean frequency of collisions
T  An
v=mn{ov): collision frequency

5.1.2 Diffusion Parameters

The fluid equation of motion (B = 0):

ot

mn [av + (v- V)V] = t+enE — Vp — mnvv

Assume

9 50

1. A steady state,

2. Sufficiently small v or sufficiently large v, v.-V — 0

Then for an isothermal plasma

v= (£enE — KT'Vn)
mnv
4 g KTVn
my my n
A4
—+uE — D
where
= M Mobility
my
KT
D = —— | Diffusion Coefficient
my

Note that the dimension of the diffusion coefficient is [L]*/[T].

Einstein Relation: il
_ b
M= KT

The flux of the jth species is defined by

D

Fj = an = i,u]nE — Djan
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(5.6)

(5.9)

(5.10)



Then equation of continuity is given as

on
5 TV T =0 (5.11)

fE=0o0rqg=0,

I') =—-D;Vn;| Fick’s Law (5.12)

5.2 Decay of a Plasma by diffusion

5.2.1 Ambipolar Diffusion

In the presence of a gradient in plasma density, both the electrons and ions will tend to
diffuse into the region of lower density.

1. The electrons tends to diffuse more rapidly than the ions, due to their lighter mass.
2. There will be a space charge separation.

3. The resulting electric field will retard the electron diffusion and increase the ion
diffusion so that space charge neutrality is maintained at all points in space.

4. Under these conditions, the electrons and ions will diffuse at the same rate as
determined by the ambipolar diffusion coefficients.

For ions,
For electrons,
r.=-D.Vn, — p.-n.E (5.14)
From the continuity equation, we have
on;
ai = _V-Ti =DV, — 1,V - (n;E) (5.15)
on. 9
5 -V -T.=D.V®n; + pu.V - (n.E) (5.16)

From the space charge neutrality, n; ~ n, = n.
Multiplying the first equation by . and the second equation by pu; and adding, we obtain

on
(pi + ue)a = (Dipte + Dopii)V2n (5.17)
or
on
— =D,V? 5.18
T Von (5.18)
where
z'De eDi . . . .
D, = Hille 1 Hei Ambipolar diffusion coefficient (5.19)
He + M
For T, =1T;,
D, ~2D; (5.20)
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5.2.2 Diffusion in a Slab

Diffusion Equation:

on
D V2
5 Vn
Let
n(r,t) =T(t)S(r)
T
s _ prves
dt
o 1dT D 1
- = 2 —
T dt Sv S T
In a slab,
1T _ DS _ 1
Tdt Sdx®2 T
For T'(t),
of T
at T
— T =Tye ~
For S(z),
&S 1
de2 Dt
— S—ACOSL —i—BsinL
vV D1 vV DT
From the boundary condition n(£L,t) =0 or S(£L) =0,
1. B=0 and
L _ushe with 12012
\/D_T 2 Y Y PR
SRR I
"“li+hHr| D
2. A=0and
L ith m=1,2
=mmr wi =1,2,...
VDr
B [LT 1
Tm = mml D
Therefore, we obtain
|+ L
A, cos <+L>M
S(z) =
mmx
B,, si
sin —
General solution:
© _t l 1 > t
n(z,t) => ae 7 cos (+L2)7TI + > bpe 7 sin
=0 m=0
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(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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Expansion coefficients can be determined form the initial condition:

l 1
Zal cos +L2) x + Z by, sin mT:U (5.31)
1
L/ n(x,0) cos —i_imd:r
(5.32)

b= L/ n(zx,0) Smmzxd:c

NOTES:
e T increases as L increases or D decreases.

e 7 decreases as the mode number (I or m) increases.
Higher modes decay faster than the lowest (fundamental) mode.
After sufficiently long time, only the fundamental mode remains.
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Figure 5.2:
5.2.3 Diffusion in a Cylinder
Diffusion equation:
1dT  D_, 1
Ta~ s’ 0" 7
For a infinitely long cylinder ( % =0),
s 1 as 1
2¢ _ 70 il
Vi = dr? A rdr Dt
Or d*S 1dS 1
b —5=0 (5.33)

W+Tdr Dt
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whose solution is given by

S(r) = AJy (\/;_J + BN, <¢;_T> (5.34)

Since Ny — oo asr — 0, B = 0.
From the boundary condition n(a,t) =0 or S(a) =0,

S(a) = AJy (\/CZ)_T> -

so that a
= for 1=1,2,3,...
vDr o
where & is the [th zero of Jy (& = 2.405, & = 5.520, &5 = 8.654).
2
a 1
S(r) = Ay <£;7"> (5.36)
General Solution: .
n(r,t) = Zale’ﬁJo <§;T> (5.37)
=1

a; can be found from the initial condition:

n(r,0) = ialJo (élr>
=1 a

Use 1 1
/0 Jo(&r) Jo(&'r)rdr = §[J1(§)]255,£’a
to get
2 a &r
a; = W/O TL(?", O)JO <a> rdr . (538)

5.3 Steady State Solutions

To maintain a steady state, a source must be added so that the diffusion equation becomes

B
57? — DV =Q(r)|. (5.39)

5.3.1 Constant Ionization Function

Ionization is produced by energetic electrons in the tail of the Maxwellian distribution.
The source term is proportional to the electron density: () = Zn.
Z is called the ionization function. Then

A
Vin = 5" (5.40)

92



5.3.2 Plane Source

Except at £ =0,

Applying boundary conditions:
e n(xL)=0
e n(0) =ny

we obtain

5.3.3 Lince Source

Ld (dn\ Q
rdr (d) ="

Applying the boundary condition n(a) = 0, we obtain

a
= 1 —
n(r) =ngln .

5.4 Recombination

The recombination term must be proportional to n;n, =n

Without the diffusion term, we have

on
= —an?

5 =

where « is the recombination coefficient.
1 On

n2 Ot -
|
d() — adt
n

1
—=at+C
n
L L + at
= o
n(r,t)  no(r)

After the density has fallen far below its initial value,

1
n o —
at

NOTES:
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e For high n, recombination dominates: n o %
e For low n (|DV?n| > |an?|), diffusion dominates: n oc /7.

e — Diffusion gives rise to spatial modes which are approximately sinusoidal in

nature.
— Recombination tends to produce a spatially uniform plasma, since recombina-

tion rate depends on the local density and, therefore, recombination acts to

flatten any non-uniformities in the plasma density.
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Figure 5.3:
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