
4.9 Review of Electromagnetic Waves in a Vacuum

The Maxwell equations in a vacuum are

ε0∇ · E = 0 (4.139)

∇× E = −∂B
∂t

(4.140)

∇ ·B = 0 (4.141)

∇×B = µ0ε0
∂E

∂t
(4.142)

Two curl equations can be combined into one

∇× (∇× E) = − ∂

∂t
∇×B

= −µ0ε0
∂2E

∂t2

Since ∇× (∇× E) = ∇(∇ · E)−∇2E and µ0ε0 = c−2,

−∇2E = − 1

c2
∂2E

∂t2
(4.143)

Assuming plane waves varying exp[i(k · r− ωt)], we have

k2E =
ω2

c2
E (4.144)

which leads to
ω2 = k2c2 (4.145)

NOTES

• phase velocity: vp = c

• group velocity: vg = c

4.10 Electromagnetic Waves with B0 = 0

ASSUMPTIONS

• Homogeneous infinite quasineutral plasma

• No external field: E0 = B0 = 0

• Cold Plasma: Ti = Te = 0
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• Immobile ions: vi1 = 0, ni1 = 0

FLUID EQUATIONS

mene

[
∂ve
∂t

+ (ve · ∇)ve

]
= −neeE− eneve ×B (4.146)

J = −eneve (4.147)

∇× E = −∂B
∂t

(4.148)

∇×B = µ0J + µ0ε0
∂E

∂t
(4.149)

LINEARIZED EQUATIONS

me
∂ve1
∂t

= −eE1 −→ ve1 =
eE1

imeω
(4.150)

J1 = −en0ve1 =
in0e

2E1

meω
(4.151)

∇× (∇× E1) = − ∂

∂t
∇×B1

= −µ0
∂J1

∂t
− µ0ε0

∂2E1

∂t2

= −µ0
n0e

2

me

E1 − µ0ε0
∂2E1

∂t2
.

(4.152)

Therefore, we obtain

∇(∇ · E1)−∇2E1 = −
ω2
pe

c2
E1 −

1

c2
∂2E1

∂t2
(4.153)

or

−k(k · E1) + k2E1 =
ω2 − ω2

pe

c2
E1 (4.154)

E1 may be spilt into two parts (longitudinal part and transverse part)

E1 = E‖ + E⊥ (4.155)

where E⊥ ⊥ k and E‖ ‖ k.
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DISPERSION RELATION

• Longitudinal part:

−k2E‖ + k2E‖ =
ω2 − ω2

pe

c2
E‖ (4.156)

ω2 = ω2
pe plasma oscillation (4.157)

• Transverse part:

k2E⊥ =
ω2 − ω2

pe

c2
E⊥ (4.158)

So the dispersion relation is given by

ω2 = ω2
pe + k2c2 (4.159)

NOTES

For transverse waves,

• Phase velocity:

v2p =
ω2

k2
= c2 +

ω2
pe

k2
> c2 (4.160)

• Group velocity:

vg =
dω

dk
=
c2

vp
< c (4.161)

• The index of refraction: n2 = ( c
vp

)2 = (kc
ω

)2 = 1− ω2
pe

ω2 < 1.

• Since k2 =
ω2−ω2

pe

c2

1. ω > ωpe: k is real so that the wave is propagating.

2. ω = ωpe: k = 0 (cutoff)

3. ω < ωpe: k is imaginary so that the wave is evanescent.
eikx = e−|k|x = e−x/δ

where δ = 1
|k| = c√

ω2
pe−ω2

: skin depth.

• Detecting the phase shift, the plasma density may be measured.

• The wave with ω < ωpe is reflected from the plasma.

– It is possible to send radio waves around the earth.

– It is necessary to use frequency above ωpe to communicate with space vehicle.

– The plasma density may be estimated from the cut-off frequency.
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Figure 4.7: Microwave measurement of plasma density by the cutoff of the transmitted
signal (top), and a microwave interferometer for plasma density measurement (bottom).

4.11 Electromagnetic Waves with k ⊥ B0

4.11.1 Ordinary Waves (E1 ‖ B0)

ASSUMPTIONS

• Homogeneous infinite quasineutral plasma

• E0 = 0, B0 6= 0

• Cold Plasma: Ti = Te = 0

• Immobile ions: vi1 = 0, ni1 = 0

FLUID EQUATIONS

mne

[
∂ve
∂t

+ (ve · ∇)ve

]
= −neE− eneve ×B (4.162)
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∇× E = −∂B
∂t

(4.163)

∇×B = µ0J + µ0ε0
∂E

∂t
(4.164)

with

J = −en0ve (4.165)

LINEARIZED EQUATIONS

Since E1 ‖ B0 = B0ẑ, E1 = E1ẑ and let k = kx̂.

me
∂ve1
∂t

= −eE1 − eve1 ×B0 −→ ve1 =
eE1

imeω
: same as for B0 = 0 (4.166)

J1 = −en0ve1 =
in0e

2E1

meω
(4.167)

∇(∇ · E1)−∇2E1 = −
ω2
pe

c2
E1 −

1

c2
∂2E1

∂t2
(4.168)

DISPERSION RELATION

The wave equation becomes

k2E1 =
ω2 − ω2

pe

c2
E1 (4.169)

so the dispersion relation is given by

ω2 = ω2
pe + k2c2 (4.170)

so that the index of refraction is

n2 = 1−
ω2
pe

ω2
. (4.171)

NOTES

• Same dispersion relation for B0 = 0.
The ordinary wave propagates as if there were no magnetic field.

• Cut-off at ω = ωpe.

• No propagation when ω < ωpe.

4.11.2 Extraordinary Waves (E1 ⊥ B0)

ASSUMPTIONS:

Same as for the ordinary wave, but E1 ⊥ B0.
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• Homogeneous infinite quasineutral plasma

• E0 = 0, B0 6= 0

• Cold Plasma: Ti = Te = 0

• Immobile ions: vi1 = 0, ni1 = 0

FLUID EQUATIONS

mene

[
∂ve
∂t

+ (ve · ∇)ve

]
= −neE− eneve ×B (4.172)

J = −en0ve (4.173)

∇× E = −∂B
∂t

(4.174)

∇×B = µ0J + µ0ε0
∂E

∂t
(4.175)

LINEARIZED EQUATIONS

Since E1 ⊥ B0, let k = kx̂ and E1 = Exx̂+ Eyŷ.

me
∂ve1
∂t

= −eE1 − eve1 ×B0 (4.176)

−→


iωvx=

e

me

Ex + ωcevy

iωvy=
e

me

Ey − ωcevx

−→



vx=
e

meω

(
−iEx −

ωce
ω
Ey

)(
1− ω2

ce

ω2

)−1

vy=
e

meω

(
−iEy +

ωce
ω
Ex

)(
1− ω2

ce

ω2

)−1

∇(∇ · E1)−∇2E1 = −µ0
∂J1

∂t
− 1

c2
∂2E1

∂t2
(4.177)

−→ (ω2 − k2c2)E1 + c2kExk = −iω
ε0
J1 =

in0eω

ε0
ve1

Or

ω2Ex=−
iωn0e

2

ε0mω

(
iEx +

ωce
ω
Ey

)(
1− ω2

ce

ω2

)−1

(ω2 − k2c2)Ey=−
iωn0e

2

ε0mω

(
iEy −

ωce
ω
Ex

)(
1− ω2

ce

ω2

)−1
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Since ω2
pe = n0e2

mε0
,

[
ω2

(
1− ω2

ce

ω2

)
− ω2

pe

]
Ex + i

ω2
peωce

ω
Ey=0

−i
ω2
peωce

ω
Ex +

[
(ω2 − k2c2)

(
1− ω2

ce

ω2

)
− ω2

pe

]
Ey=0

(4.178)

DISPERSION RELATION∣∣∣∣∣∣∣∣∣∣∣

[
ω2

(
1− ω2

ce

ω2

)
− ω2

pe

]
i
ω2
peωce

ω

−i
ω2
peωce

ω

[
(ω2 − k2c2)

(
1− ω2

ce

ω2

)
− ω2

pe

]
∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.179)

Or

n2 =
k2c2

ω2
= 1−

ω2
pe

ω2

ω2 − ω2
pe

ω2 − ω2
UH

(4.180)

NOTES

• Resonance: n −→∞, when ω2 = ω2
UH = ω2

pe + ω2
ce.

As a wave of given ω approaches the resonance point,
vp −→ 0 and vg −→ 0, and the wave energy is converted into upper hybrid oscilla-
tion.

• Cutoff: n = 0

1 =
ω2
pe

ω2

1

1− ω2
ce

ω2−ω2
pe

Or
ω2 ∓ ωceω − ω2

pe = 0 (4.181)

so that ω = ωL, ωR, where

ωR=
1

2

[
+ωce +

√
ω2
ce + 4ω2

pe

]
ωL=

1

2

[
−ωce +

√
ω2
ce + 4ω2

pe

]
.

(4.182)
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Figure 4.8: The E-vector of an extraordinary wave is elliptically polarized. The compo-
nents Ex and Ey oscillate 90◦ out of phase, so that the total electric field vector E1 has
a tip that moves in an ellipse once in each wave period.

Figure 4.9: Mechanical analog to wave cutoffs and resonances (top). Behavior of the rays
near cutoff and resonance surfaces (bottom).
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4.12 Electromagnetic Waves with k ‖ B0

ASSUMPTIONS

• Homogeneous infinite quasineutral plasma

• E0 = 0, B0 6= 0

• Cold Plasma: Ti = Te = 0

• Immobile ions: vi1 = 0, ni1 = 0

FLUID EQUATIONS

mene

[
∂ve
∂t

+ (ve · ∇)ve

]
= −neeE− eneve ×B (4.183)

J = −en0ve (4.184)

∇× (∇× E1) = −µ0
∂J1

∂t
− µ0ε0

∂2E1

∂t2
(4.185)

LINEARIZED EQUATIONS

k = kẑ and E1 = Exx̂+ Eyŷ.
The wave equation is

−k(k · E1) + k2E1 = iωµ0J1 +
ω2

c2
E1 , (4.186)

or

(ω2 − k2c2)E1 =
iωn0e

ε0
ve1 , (4.187)

or

(ω2 − k2c2)Ex=
ω2
pe

1− ω2
ce

ω2

(
Ex − i

ωce
ω
Ey

)
,

(ω2 − k2c2)Ey=
ω2
pe

1− ω2
ce

ω2

(
Ey + i

ωce
ω
Ex

)
.

(4.188)

Let

α =
ω2
pe

1− ω2
ce

ω2

, (4.189)

then

(ω2 − k2c2 − α)Ex + iα
ωce
ω
Ey=0

−iαωce
ω
Ex + (ω2 − k2c2 − α)Ey=0 .

(4.190)
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DISPERSION RELATION∣∣∣∣∣∣∣∣∣
(ω2 − k2c2 − α) iα

ωce
ω

−iαωce
ω

(ω2 − k2c2 − α)

∣∣∣∣∣∣∣∣∣ = 0 (4.191)

Or
(ω2 − k2c2 − α)2 = (α

ωce
ω

)2

ω2 − k2c2 − α = ±αωce
ω

(4.192)

Thus

ω2 − k2c2=α
(

1± ωce
ω

)
=

ω2
pe

1− ω2
ce

ω2

(
1± ωce

ω

)

=
ω2
pe

(
1± ωce

ω

)
(
1 + ωce

ω

) (
1− ωce

ω

) =
ω2
pe(

1∓ ωce

ω

)
The index of refraction is given by

n2 = 1−
ω2
pe

ω2(
1 + ωce

ω

) L-wave (4.193)

n2 = 1−
ω2
pe

ω2(
1− ωce

ω

) R-wave (4.194)

Figure 4.10: For v2φ/c
2 < 0, they are regions of nonpropagation. The L wave has a stop

band at low frequencies; the R wave has a stop band between ωR and ωc.
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NOTES

• Polarization for parallel propagation
We define the terms right-handed and left-handed in terms of the rotation of the
electric field vector as a wave propagates.
If the electric vector rotates clockwise as we look along the k direction, then this
is a right-handed wave, and the left-handed wave rotates counterclockwise.
To see what this implies, we consider a wave with complex Ex and Ey which rep-
resent a circularly polarized R−wave by representing

Re [Ex] = E cos(−ωt) = Re [Ee−iωt]

Re [Ey] = −E sin(−ωt) = Re [iEeiωt]
(4.195)

It is clear that the measurable field represented by Eq. (4.195) with real E rotates
clockwise. Thus it follows that the phases of the waves are given by

iEx = Ey R-wave

iEx = −Ey L-wave
(4.196)

• For upper sign in Eq. (4.192), which results in the dispersion relation represented
by Eq. (4.194), we have iEx = Ey from Eq. (4.190).
This verifies our labeling of the waves as being R-wave and L-wave.

• R-wave

– Resonance at ω = ωce.

– Cutoff at ω = ωR.

– The direction of rotation of the plane polarization is the same as the direction
of gyration of electrons; the wave loses its energy in continuously accelerating
the electrons, and it can not propagate.

– The whistler mode
For ωci � ω � ωce ∼ ωpe,

n2 '
ω2
pe

ωωce
(4.197)

so that k = ωn/c = ωpe

c

√
ω/ωce or ω = k2c2ωce/ω

2
pe and the phase and group

velocities are

vp=
ω

k
=c

√
ωωce
ω2
pe

∝
√
ω

vg=
dω

dk
=

2kc2ωce
ω2
pe

= 2vp = 2c

√
ωωce
ω2
pe

∝
√
ω .

(4.198)

Note that both the phase and group velocities vary as
√
ω which causes high

frequencies to propagate faster along the magnetic field lines.
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• L-wave

– Cutoff at ω = ωL.

– No resonance with the electrons.
But if we had included ion motions, the L-wave would have a resonance at
ω = ωci.

• Faraday rotation
A linear polarized wave can be decomposed into a pair of right– and left– hand
circularly polarized waves.

ER=Eei(kRz−ωt)(x̂+ iŷ)

EL=Eei(kLz−ωt)(x̂− iŷ)

(4.199)

Etotal = ER + EL = Ee−iωt
[(
eikRz + eikLz

)
x̂+ i

(
eikRz − eikLz

)
ŷ
]

(4.200)

Ey
Ex

= i

(
eikRz − eikLz

)
(eikRz + eikLz)

= i
1− ei(kL−kR)z

1 + ei(kL−kR)z
= tan

[
1

2
(kL − kR)z

]
(4.201)

A plane-polarized wave sent along a magnetic field in a plasma suffers a rotation of
its plane of rotation. Faraday rotation can be used as a diagnostic for estimating
plasma densities in laboratory plasma and interstellar space.

Figure 4.11: A plane-polarized wave as the sum of left and righthanded circularly polar-
ized waves (top). After traversing the plasma, the L wave is advanced in phase relative
to the R wave, and the plane of polarization is rotated (bottom).
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