4.9 Review of Electromagnetic Waves in a Vacuum

The Maxwell equations in a vacuum are

$$
\begin{align*}
\epsilon_{0} \nabla \cdot \mathbf{E} & =0 \tag{4.139}\\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{4.140}\\
\nabla \cdot \mathbf{B} & =0 \tag{4.141}\\
\nabla \times \mathbf{B} & =\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{4.142}
\end{align*}
$$

Two curl equations can be combined into one

$$
\begin{aligned}
\nabla \times(\nabla \times \mathbf{E}) & =-\frac{\partial}{\partial t} \nabla \times \mathbf{B} \\
& =-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
\end{aligned}
$$

Since $\nabla \times(\nabla \times \mathbf{E})=\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}$ and $\mu_{0} \epsilon_{0}=c^{-2}$,

$$
\begin{equation*}
-\nabla^{2} \mathbf{E}=-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \tag{4.143}
\end{equation*}
$$

Assuming plane waves varying $\exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]$, we have

$$
\begin{equation*}
k^{2} \mathbf{E}=\frac{\omega^{2}}{c^{2}} \mathbf{E} \tag{4.144}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\omega^{2}=k^{2} c^{2} \tag{4.145}
\end{equation*}
$$

NOTES

- phase velocity: $v_{p}=c$
- group velocity: $v_{g}=c$

4.10 Electromagnetic Waves with $\mathbf{B}_{0}=0$

ASSUMPTIONS

- Homogeneous infinite quasineutral plasma
- No external field: $\mathbf{E}_{0}=\mathbf{B}_{0}=0$
- Cold Plasma: $T_{i}=T_{e}=0$
- Immobile ions: $\mathbf{v}_{i 1}=0, n_{i 1}=0$

FLUID EQUATIONS

$$
\begin{gather*}
m_{e} n_{e}\left[\frac{\partial \mathbf{v}_{e}}{\partial t}+\left(\mathbf{v}_{e} \cdot \nabla\right) \mathbf{v}_{e}\right]=-n_{e} e \mathbf{E}-e n_{e} \mathbf{v}_{e} \times \mathbf{B} \tag{4.146}\\
\mathbf{J}=-e n_{e} \mathbf{v}_{e} \tag{4.147}\\
\nabla \times \mathbf{E}
\end{gathered} \begin{gathered}
=-\frac{\partial \mathbf{B}}{\partial t} \tag{4.148}\\
\nabla \times \mathbf{B} \tag{4.149}
\end{gather*}
$$

LINEARIZED EQUATIONS

$$
\begin{align*}
m_{e} \frac{\partial \mathbf{v}_{e 1}}{\partial t} & =-e \mathbf{E}_{1} \longrightarrow \mathbf{v}_{e 1}=\frac{e \mathbf{E}_{1}}{i m_{e} \omega} \tag{4.150}\\
\mathbf{J}_{1}= & -e n_{0} \mathbf{v}_{e 1}=\frac{i n_{0} e^{2} \mathbf{E}_{1}}{m_{e} \omega} \tag{4.151}\\
\nabla \times\left(\nabla \times \mathbf{E}_{1}\right) & =-\frac{\partial}{\partial t} \nabla \times \mathbf{B}_{1} \\
& =-\mu_{0} \frac{\partial \mathbf{J}_{1}}{\partial t}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} \tag{4.152}\\
& =-\mu_{0} \frac{n_{0} e^{2}}{m_{e}} \mathbf{E}_{1}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} .
\end{align*}
$$

Therefore, we obtain

$$
\begin{equation*}
\nabla\left(\nabla \cdot \mathbf{E}_{1}\right)-\nabla^{2} \mathbf{E}_{1}=-\frac{\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{1}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} \tag{4.153}
\end{equation*}
$$

or

$$
\begin{equation*}
-\mathbf{k}\left(\mathbf{k} \cdot \mathbf{E}_{1}\right)+k^{2} \mathbf{E}_{1}=\frac{\omega^{2}-\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{1} \tag{4.154}
\end{equation*}
$$

\mathbf{E}_{1} may be spilt into two parts (longitudinal part and transverse part)

$$
\begin{equation*}
\mathbf{E}_{1}=\mathbf{E}_{\|}+\mathbf{E}_{\perp} \tag{4.155}
\end{equation*}
$$

where $\mathbf{E}_{\perp} \perp \mathbf{k}$ and $\mathbf{E}_{\|} \| \mathbf{k}$.

DISPERSION RELATION

- Longitudinal part:

$$
\begin{align*}
& -k^{2} \mathbf{E}_{\|}+k^{2} \mathbf{E}_{\|}=\frac{\omega^{2}-\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{\|} \tag{4.156}\\
& \omega^{2}=\omega_{p e}^{2} \quad \text { plasma oscillation } \tag{4.157}
\end{align*}
$$

- Transverse part:

$$
\begin{equation*}
k^{2} \mathbf{E}_{\perp}=\frac{\omega^{2}-\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{\perp} \tag{4.158}
\end{equation*}
$$

So the dispersion relation is given by

$$
\begin{equation*}
\omega^{2}=\omega_{p e}^{2}+k^{2} c^{2} \tag{4.159}
\end{equation*}
$$

NOTES

For transverse waves,

- Phase velocity:

$$
\begin{equation*}
v_{p}^{2}=\frac{\omega^{2}}{k^{2}}=c^{2}+\frac{\omega_{p e}^{2}}{k^{2}}>c^{2} \tag{4.160}
\end{equation*}
$$

- Group velocity:

$$
\begin{equation*}
v_{g}=\frac{d \omega}{d k}=\frac{c^{2}}{v_{p}}<c \tag{4.161}
\end{equation*}
$$

- The index of refraction: $n^{2}=\left(\frac{c}{v_{p}}\right)^{2}=\left(\frac{k c}{\omega}\right)^{2}=1-\frac{\omega_{p e}^{2}}{\omega^{2}}<1$.
- Since $k^{2}=\frac{\omega^{2}-\omega_{p e}^{2}}{c^{2}}$

1. $\omega>\omega_{p e}$: k is real so that the wave is propagating.
2. $\omega=\omega_{p e}: k=0$ (cutoff)
3. $\omega<\omega_{p e}$: k is imaginary so that the wave is evanescent.
$e^{i k x}=e^{-|k| x}=e^{-x / \delta}$
where $\delta=\frac{1}{|k|}=\frac{c}{\sqrt{\omega_{p e}^{2}-\omega^{2}}}$: skin depth.

- Detecting the phase shift, the plasma density may be measured.
- The wave with $\omega<\omega_{p e}$ is reflected from the plasma.
- It is possible to send radio waves around the earth.
- It is necessary to use frequency above $\omega_{p e}$ to communicate with space vehicle.
- The plasma density may be estimated from the cut-off frequency.

Figure 4.7: Microwave measurement of plasma density by the cutoff of the transmitted signal (top), and a microwave interferometer for plasma density measurement (bottom).

4.11 Electromagnetic Waves with $\mathrm{k} \perp \mathrm{B}_{0}$

4.11.1 Ordinary Waves ($\mathrm{E}_{1} \| \mathrm{B}_{0}$)

ASSUMPTIONS

- Homogeneous infinite quasineutral plasma
- $\mathbf{E}_{0}=0, \mathbf{B}_{0} \neq 0$
- Cold Plasma: $T_{i}=T_{e}=0$
- Immobile ions: $\mathbf{v}_{i 1}=0, n_{i 1}=0$

FLUID EQUATIONS

$$
\begin{equation*}
m n_{e}\left[\frac{\partial \mathbf{v}_{e}}{\partial t}+\left(\mathbf{v}_{e} \cdot \nabla\right) \mathbf{v}_{e}\right]=-n e \mathbf{E}-e n_{e} \mathbf{v}_{e} \times \mathbf{B} \tag{4.162}
\end{equation*}
$$

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{4.163}\\
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{4.164}
\end{align*}
$$

with

$$
\begin{equation*}
\mathbf{J}=-e n_{0} \mathbf{v}_{e} \tag{4.165}
\end{equation*}
$$

LINEARIZED EQUATIONS

Since $\mathbf{E}_{1} \| \mathbf{B}_{0}=B_{0} \hat{z}, \mathbf{E}_{1}=E_{1} \hat{z}$ and let $\mathbf{k}=k \hat{x}$.

$$
\begin{gather*}
m_{e} \frac{\partial \mathbf{v}_{e 1}}{\partial t}=-e \mathbf{E}_{1}-e \mathbf{v}_{e 1} \times \mathbf{B}_{0} \longrightarrow \mathbf{v}_{e 1}=\frac{e \mathbf{E}_{1}}{i m_{e} \omega}: \quad \text { same as for } \mathbf{B}_{0}=0 \tag{4.166}\\
\mathbf{J}_{1}=-e n_{0} \mathbf{v}_{e 1}=\frac{i n_{0} e^{2} \mathbf{E}_{1}}{m_{e} \omega} \tag{4.167}\\
\nabla\left(\nabla \cdot \mathbf{E}_{1}\right)-\nabla^{2} \mathbf{E}_{1}=-\frac{\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{1}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} \tag{4.168}
\end{gather*}
$$

DISPERSION RELATION

The wave equation becomes

$$
\begin{equation*}
k^{2} \mathbf{E}_{1}=\frac{\omega^{2}-\omega_{p e}^{2}}{c^{2}} \mathbf{E}_{1} \tag{4.169}
\end{equation*}
$$

so the dispersion relation is given by

$$
\begin{equation*}
\omega^{2}=\omega_{p e}^{2}+k^{2} c^{2} \tag{4.170}
\end{equation*}
$$

so that the index of refraction is

$$
\begin{equation*}
n^{2}=1-\frac{\omega_{p e}^{2}}{\omega^{2}} . \tag{4.171}
\end{equation*}
$$

NOTES

- Same dispersion relation for $\mathbf{B}_{0}=0$.

The ordinary wave propagates as if there were no magnetic field.

- Cut-off at $\omega=\omega_{p e}$.
- No propagation when $\omega<\omega_{p e}$.

4.11.2 Extraordinary Waves $\left(\mathrm{E}_{1} \perp \mathrm{~B}_{0}\right)$

ASSUMPTIONS:

Same as for the ordinary wave, but $\mathbf{E}_{1} \perp \mathbf{B}_{0}$.

- Homogeneous infinite quasineutral plasma
- $\mathbf{E}_{0}=0, \mathbf{B}_{0} \neq 0$
- Cold Plasma: $T_{i}=T_{e}=0$
- Immobile ions: $\mathbf{v}_{i 1}=0, n_{i 1}=0$

FLUID EQUATIONS

$$
\begin{gather*}
m_{e} n_{e}\left[\frac{\partial \mathbf{v}_{e}}{\partial t}+\left(\mathbf{v}_{e} \cdot \nabla\right) \mathbf{v}_{e}\right]=-n e \mathbf{E}-e n_{e} \mathbf{v}_{e} \times \mathbf{B} \tag{4.172}\\
\mathbf{J}=-e n_{0} \mathbf{v}_{e} \tag{4.173}\\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{4.174}\\
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{4.175}
\end{gather*}
$$

LINEARIZED EQUATIONS

Since $\mathbf{E}_{1} \perp \mathbf{B}_{0}$, let $\mathbf{k}=k \hat{x}$ and $\mathbf{E}_{1}=E_{x} \hat{x}+E_{y} \hat{y}$.

$$
\begin{gather*}
m_{e} \frac{\partial \mathbf{v}_{e 1}}{\partial t}=-e \mathbf{E}_{1}-e \mathbf{v}_{e 1} \times \mathbf{B}_{0} \tag{4.176}\\
\longrightarrow\left\{\begin{array}{l}
i \omega v_{x}=\frac{e}{m_{e}} E_{x}+\omega_{c e} v_{y} \\
i \omega v_{y}=\frac{e}{m_{e}} E_{y}-\omega_{c e} v_{x}
\end{array}\right. \\
\longrightarrow\left\{\begin{array}{l}
v_{x}=\frac{e}{m_{e} \omega}\left(-i E_{x}-\frac{\omega_{c e}}{\omega} E_{y}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)^{-1} \\
v_{y}=\frac{e}{m_{e} \omega}\left(-i E_{y}+\frac{\omega_{c e}}{\omega} E_{x}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)^{-1} \\
\nabla\left(\nabla \cdot \mathbf{E}_{1}\right)-\nabla^{2} \mathbf{E}_{1}=-\mu_{0} \frac{\partial \mathbf{J}_{1}}{\partial t}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} \\
\longrightarrow\left(\omega^{2}-k^{2} c^{2}\right) \mathbf{E}_{1}+c^{2} k E_{x} \mathbf{k}=-\frac{i \omega}{\epsilon_{0}} \mathbf{J}_{1}=\frac{i n_{0} e \omega}{\epsilon_{0}} \mathbf{v}_{e 1}
\end{array}\right.
\end{gather*}
$$

Or

$$
\begin{aligned}
\omega^{2} E_{x} & =-\frac{i \omega n_{0} e^{2}}{\epsilon_{0} m \omega}\left(i E_{x}+\frac{\omega_{c e}}{\omega} E_{y}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)^{-1} \\
\left(\omega^{2}-k^{2} c^{2}\right) E_{y} & =-\frac{i \omega n_{0} e^{2}}{\epsilon_{0} m \omega}\left(i E_{y}-\frac{\omega_{c e}}{\omega} E_{x}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)^{-1}
\end{aligned}
$$

Since $\omega_{p e}^{2}=\frac{n_{0} e^{2}}{m \epsilon_{0}}$,

$$
\begin{array}{r}
{\left[\omega^{2}\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)-\omega_{p e}^{2}\right] E_{x}+i \frac{\omega_{p e}^{2} \omega_{c e}}{\omega} E_{y}=0} \\
-i \frac{\omega_{p e}^{2} \omega_{c e}}{\omega} E_{x}+\left[\left(\omega^{2}-k^{2} c^{2}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)-\omega_{p e}^{2}\right] E_{y}=0 \tag{4.178}
\end{array}
$$

DISPERSION RELATION

$$
\left|\begin{array}{cc}
{\left[\omega^{2}\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)-\omega_{p e}^{2}\right]} & i \frac{\omega_{p e}^{2} \omega_{c e}}{\omega} \tag{4.179}\\
-i \frac{\omega_{p e}^{2} \omega_{c e}}{\omega} & {\left[\left(\omega^{2}-k^{2} c^{2}\right)\left(1-\frac{\omega_{c e}^{2}}{\omega^{2}}\right)-\omega_{p e}^{2}\right]}
\end{array}\right|=0
$$

Or

$$
\begin{equation*}
n^{2}=\frac{k^{2} c^{2}}{\omega^{2}}=1-\frac{\omega_{p e}^{2}}{\omega^{2}} \frac{\omega^{2}-\omega_{p e}^{2}}{\omega^{2}-\omega_{\mathrm{UH}}^{2}} \tag{4.180}
\end{equation*}
$$

NOTES

- Resonance: $n \longrightarrow \infty$, when $\omega^{2}=\omega_{\mathrm{UH}}^{2}=\omega_{p e}^{2}+\omega_{c e}^{2}$.

As a wave of given ω approaches the resonance point,
$v_{p} \longrightarrow 0$ and $v_{g} \longrightarrow 0$, and the wave energy is converted into upper hybrid oscillation.

- Cutoff: $n=0$

$$
1=\frac{\omega_{p e}^{2}}{\omega^{2}} \frac{1}{1-\frac{\omega_{c e}^{2}}{\omega^{2}-\omega_{p e}^{2}}}
$$

Or

$$
\begin{equation*}
\omega^{2} \mp \omega_{c e} \omega-\omega_{p e}^{2}=0 \tag{4.181}
\end{equation*}
$$

so that $\omega=\omega_{L}, \omega_{R}$, where

$$
\begin{align*}
\omega_{R} & =\frac{1}{2}\left[+\omega_{c e}+\sqrt{\omega_{c e}^{2}+4 \omega_{p e}^{2}}\right] \\
\omega_{L} & =\frac{1}{2}\left[-\omega_{c e}+\sqrt{\omega_{c e}^{2}+4 \omega_{p e}^{2}}\right] . \tag{4.182}
\end{align*}
$$

Figure 4.8: The E-vector of an extraordinary wave is elliptically polarized. The components E_{x} and E_{y} oscillate 90° out of phase, so that the total electric field vector E_{1} has a tip that moves in an ellipse once in each wave period.

Figure 4.9: Mechanical analog to wave cutoffs and resonances (top). Behavior of the rays near cutoff and resonance surfaces (bottom).

4.12 Electromagnetic Waves with $\mathrm{k} \| \mathrm{B}_{0}$

ASSUMPTIONS

- Homogeneous infinite quasineutral plasma
- $\mathbf{E}_{0}=0, \mathbf{B}_{0} \neq 0$
- Cold Plasma: $T_{i}=T_{e}=0$
- Immobile ions: $\mathbf{v}_{i 1}=0, n_{i 1}=0$

FLUID EQUATIONS

$$
\begin{gather*}
m_{e} n_{e}\left[\frac{\partial \mathbf{v}_{e}}{\partial t}+\left(\mathbf{v}_{e} \cdot \nabla\right) \mathbf{v}_{e}\right]=-n_{e} e \mathbf{E}-e n_{e} \mathbf{v}_{e} \times \mathbf{B} \tag{4.183}\\
\mathbf{J}=-e n_{0} \mathbf{v}_{e} \tag{4.184}\\
\nabla \times\left(\nabla \times \mathbf{E}_{1}\right)=-\mu_{0} \frac{\partial \mathbf{J}_{1}}{\partial t}-\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}_{1}}{\partial t^{2}} \tag{4.185}
\end{gather*}
$$

LINEARIZED EQUATIONS

$\mathbf{k}=k \hat{z}$ and $\mathbf{E}_{1}=E_{x} \hat{x}+E_{y} \hat{y}$.
The wave equation is

$$
\begin{equation*}
-\mathbf{k}\left(\mathbf{k} \cdot \mathbf{E}_{1}\right)+k^{2} \mathbf{E}_{1}=i \omega \mu_{0} \mathbf{J}_{1}+\frac{\omega^{2}}{c^{2}} \mathbf{E}_{1} \tag{4.186}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\omega^{2}-k^{2} c^{2}\right) \mathbf{E}_{1}=\frac{i \omega n_{0} e}{\epsilon_{0}} \mathbf{v}_{e 1} \tag{4.187}
\end{equation*}
$$

or

$$
\begin{align*}
& \left(\omega^{2}-k^{2} c^{2}\right) E_{x}=\frac{\omega_{p e}^{2}}{1-\frac{\omega_{c e}^{2}}{\omega^{2}}}\left(E_{x}-i \frac{\omega_{c e}}{\omega} E_{y}\right), \tag{4.188}\\
& \left(\omega^{2}-k^{2} c^{2}\right) E_{y}=\frac{\omega_{p e}^{2}}{1-\frac{\omega_{c e}^{2}}{\omega^{2}}}\left(E_{y}+i \frac{\omega_{c e}}{\omega} E_{x}\right) .
\end{align*}
$$

Let

$$
\begin{equation*}
\alpha=\frac{\omega_{p e}^{2}}{1-\frac{\omega_{c e}^{2}}{\omega^{2}}}, \tag{4.189}
\end{equation*}
$$

then

$$
\begin{align*}
\left(\omega^{2}-k^{2} c^{2}-\alpha\right) E_{x}+i \alpha \frac{\omega_{c e}}{\omega} E_{y} & =0 \\
-i \alpha \frac{\omega_{c e}}{\omega} E_{x}+\left(\omega^{2}-k^{2} c^{2}-\alpha\right) E_{y} & =0 \tag{4.190}
\end{align*}
$$

DISPERSION RELATION

$$
\left|\begin{array}{cc}
\left(\omega^{2}-k^{2} c^{2}-\alpha\right) & i \alpha \frac{\omega_{c e}}{\omega} \tag{4.191}\\
-i \alpha \frac{\omega_{c e}}{\omega} & \left(\omega^{2}-k^{2} c^{2}-\alpha\right)
\end{array}\right|=0
$$

Or

$$
\begin{align*}
\left(\omega^{2}-k^{2} c^{2}-\alpha\right)^{2} & =\left(\alpha \frac{\omega_{c e}}{\omega}\right)^{2} \\
\omega^{2}-k^{2} c^{2}-\alpha & = \pm \alpha \frac{\omega_{c e}}{\omega} \tag{4.192}
\end{align*}
$$

Thus

$$
\begin{aligned}
\omega^{2}-k^{2} c^{2} & =\alpha\left(1 \pm \frac{\omega_{c e}}{\omega}\right)=\frac{\omega_{p e}^{2}}{1-\frac{\omega_{c e}^{2}}{\omega^{2}}}\left(1 \pm \frac{\omega_{c e}}{\omega}\right) \\
& =\frac{\omega_{p e}^{2}\left(1 \pm \frac{\omega_{c e}}{\omega}\right)}{\left(1+\frac{\omega_{c e}}{\omega}\right)\left(1-\frac{\omega_{c e}}{\omega}\right)}=\frac{\omega_{p e}^{2}}{\left(1 \mp \frac{\omega_{c e}}{\omega}\right)}
\end{aligned}
$$

The index of refraction is given by

$$
\begin{equation*}
n^{2}=1-\frac{\frac{\omega_{c_{e c}^{2}}^{2}}{\omega^{2}}}{\left(1+\frac{\omega_{c e}}{\omega}\right)} \quad \text { L-wave } \tag{4.193}
\end{equation*}
$$

Figure 4.10: For $v_{\phi}^{2} / c^{2}<0$, they are regions of nonpropagation. The L wave has a stop band at low frequencies; the R wave has a stop band between ω_{R} and ω_{c}.

NOTES

- Polarization for parallel propagation

We define the terms right-handed and left-handed in terms of the rotation of the electric field vector as a wave propagates.
If the electric vector rotates clockwise as we look along the \mathbf{k} direction, then this is a right-handed wave, and the left-handed wave rotates counterclockwise.
To see what this implies, we consider a wave with complex E_{x} and E_{y} which represent a circularly polarized R-wave by representing

$$
\begin{align*}
& \operatorname{Re}\left[E_{x}\right]=E \cos (-\omega t)=\operatorname{Re}\left[E e^{-i \omega t}\right] \\
& \operatorname{Re}\left[E_{y}\right]=-E \sin (-\omega t)=\operatorname{Re}\left[i E e^{i \omega t}\right] \tag{4.195}
\end{align*}
$$

It is clear that the measurable field represented by Eq. (4.195) with real E rotates clockwise. Thus it follows that the phases of the waves are given by

$$
\begin{array}{ll}
i E_{x}=E_{y} & \text { R-wave } \\
i E_{x}=-E_{y} & \text { L-wave } \tag{4.196}
\end{array}
$$

- For upper sign in Eq. (4.192), which results in the dispersion relation represented by Eq. (4.194), we have $i E_{x}=E_{y}$ from Eq. (4.190).
This verifies our labeling of the waves as being R-wave and L-wave.

- R-wave

- Resonance at $\omega=\omega_{c e}$.
- Cutoff at $\omega=\omega_{R}$.
- The direction of rotation of the plane polarization is the same as the direction of gyration of electrons; the wave loses its energy in continuously accelerating the electrons, and it can not propagate.

- The whistler mode

For $\omega_{c i} \ll \omega \ll \omega_{c e} \sim \omega_{p e}$,

$$
\begin{equation*}
n^{2} \simeq \frac{\omega_{p e}^{2}}{\omega \omega_{c e}} \tag{4.197}
\end{equation*}
$$

so that $k=\omega n / c=\frac{\omega_{p e}}{c} \sqrt{\omega / \omega_{c e}}$ or $\omega=k^{2} c^{2} \omega_{c e} / \omega_{p e}^{2}$ and the phase and group velocities are

$$
\begin{align*}
& v_{p}=\frac{\omega}{k}=c \sqrt{\frac{\omega \omega_{c e}}{\omega_{p e}^{2}}} \propto \sqrt{\omega} \tag{4.198}\\
& v_{g}=\frac{d \omega}{d k}=\frac{2 k c^{2} \omega_{c e}}{\omega_{p e}^{2}}=2 v_{p}=2 c \sqrt{\frac{\omega \omega_{c e}}{\omega_{p e}^{2}}} \propto \sqrt{\omega} .
\end{align*}
$$

Note that both the phase and group velocities vary as $\sqrt{\omega}$ which causes high frequencies to propagate faster along the magnetic field lines.

- L-wave
- Cutoff at $\omega=\omega_{L}$.
- No resonance with the electrons.

But if we had included ion motions, the L-wave would have a resonance at $\omega=\omega_{c i}$.

- Faraday rotation

A linear polarized wave can be decomposed into a pair of right- and left- hand circularly polarized waves.

$$
\begin{gather*}
\mathbf{E}_{R}=E e^{i\left(k_{R} z-\omega t\right)}(\hat{x}+i \hat{y}) \\
\mathbf{E}_{L}=E e^{i\left(k_{L} z-\omega t\right)}(\hat{x}-i \hat{y}) \tag{4.199}\\
\mathbf{E}_{\text {total }}=\mathbf{E}_{R}+\mathbf{E}_{L}=E e^{-i \omega t}\left[\left(e^{i k_{R} z}+e^{i k_{L} z}\right) \hat{x}+i\left(e^{i k_{R} z}-e^{i k_{L} z}\right) \hat{y}\right] \tag{4.200}\\
\frac{E_{y}}{E_{x}}=i \frac{\left(e^{i k_{R} z}-e^{i k_{L} z}\right)}{\left(e^{i k_{R} z}+e^{i k_{L} z}\right)}=i \frac{1-e^{i\left(k_{L}-k_{R}\right) z}}{1+e^{i\left(k_{L}-k_{R}\right) z}}=\tan \left[\frac{1}{2}\left(k_{L}-k_{R}\right) z\right] \tag{4.201}
\end{gather*}
$$

A plane-polarized wave sent along a magnetic field in a plasma suffers a rotation of its plane of rotation. Faraday rotation can be used as a diagnostic for estimating plasma densities in laboratory plasma and interstellar space.

Figure 4.11: A plane-polarized wave as the sum of left and righthanded circularly polarized waves (top). After traversing the plasma, the L wave is advanced in phase relative to the R wave, and the plane of polarization is rotated (bottom).

