4.9 Review of Electromagnetic Waves in a Vacuum

The Maxwell equations in a vacuum are

eoV-E = 0
0B
VXxE = ———
8 ot
V-B =0
OE
VxB = —
X Ho€o ot
Two curl equations can be combined into one
V x (V xE) ——QVXB
Ot
O’E
= —Un€En——
Ho€o o2

Since V x (V x E) = V(V - E) — V?E and poeg = ¢ 2,

Assuming plane waves varying exp[i(k - r — wt)|, we have
2
FE =2 E
c

which leads to
W2 = k22

NOTES
e phase velocity: v, = ¢

e group velocity: vy = ¢

4.10 Electromagnetic Waves with By = 0

ASSUMPTIONS

e Homogeneous infinite quasineutral plasma
e No external field: Eo = Bg =10

e Cold Plasma: T; =T, =0
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e Immobile ions: v;; =0, n;; =0

FLUID EQUATIONS

v,
MeNe [ 8‘; + (Ve - V)Ve] = —n.eE —en.v. x B
J=—en.v,
0B
VxE = ———
8 ot
OE
VxB = J —
X Hod + oo o
LINEARIZED EQUATIONS
8V61 €E1
‘ot —eEr = va = 1MW
in062E1
Ji = —engve =
Mew
0
VXx(VxE) =—-=VxB,
ot
0Jq 0’E,
o Y
Ho It Ho€o o2
_ nOeZE 0’E,
= ~Ho . 1 MOGOTtQ .
Therefore, we obtain
w2 1 82E1
‘E)) - V’E, = —E, - >
VIV-Ey) = VE: 22 o
or
w2 2

—w
—k(k : El) + k'QEl - 72p6E1
C

E; may be spilt into two parts (longitudinal part and transverse part)

E]_:E”“I_EJ_

where E; 1 k and Ej || k.
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DISPERSION RELATION

e Longitudinal part:
2 2

W —w
—kQEH + ]{?2E|| = 72]76]3“ (4.156)
c
w? = w>, | plasma oscillation (4.157)
e Transverse part:
W2 — w2
FE, = T?”‘”EL (4.158)
So the dispersion relation is given by
w? = wl, + k*c? (4.159)
NOTES
For transverse waves,
e Phase velocity:
W2 w2,
v = == ¢+ 5> ? (4.160)
e Group velocity:
dw
— - - 4.161
Ug dk Up ¢ ( )

UJ2
e The index of refraction: n? = (i)2 = (k)2 =12 <1

2_,,2
w—wy,

e Since k* = ~—;

1. w > wpe: K is real so that the wave is propagating.
2. w=wpe: k=0 (cutoff)

3. w < wpe: k is imaginary so that the wave is evanescent.
etk — ef\k\x —z/é

where § = ﬁ = w; — skin depth.

pe

=€

e Detecting the phase shift, the plasma density may be measured.
e The wave with w < wy, is reflected from the plasma.

— It is possible to send radio waves around the earth.
— It is necessary to use frequency above wy. to communicate with space vehicle.

— The plasma density may be estimated from the cut-off frequency.
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Figure 4.7: Microwave measurement of plasma density by the cutoff of the transmitted
signal (top), and a microwave interferometer for plasma density measurement (bottom).

4.11 Electromagnetic Waves with k | By

4.11.1 Ordinary Waves (E; || By)

ASSUMPTIONS

e Homogeneous infinite quasineutral plasma
o EO = 0, B(] 7£ 0
e Cold Plasma: T, =T, =0

e Immobile ions: v;; =0, n;; =0

FLUID EQUATIONS

mne [ + (Ve - V)VB] = —neE —en.v. x B

ot
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0B

E = ———
V X T

OE
VxB = MOJ‘FMOEOE

with
J = —engv,

LINEARIZED EQUATIONS

Since E; || Bg = BoZ, E; = F1Z and let k = kz.

8V 1 €E1
Me—— = —eB) —evey X By — v = - same as for By = 0
0 0
ot 1Mew
in062E1
J1 = —engve =
Mew
(U2 1 82E1

2 o e
V(V-E) - VE = — 5B - 5~

DISPERSION RELATION

The wave equation becomes

2 2

w? —w
pe

2 E,
c

KE, =

so the dispersion relation is given by

2 _ 2 2 2
w” =w,, +kc

so that the index of refraction is

NOTES

e Same dispersion relation for By = 0.
The ordinary wave propagates as if there were no magnetic field.

o Cut-off at w = wye.

e No propagation when w < wpe.

4.11.2 Extraordinary Waves (E; L By)

ASSUMPTIONS:

Same as for the ordinary wave, but E; 1 By.
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e Homogeneous infinite quasineutral plasma

EOIO,B07£O

e Cold Plasma: T, =T, =0

Immobile ions: v;; =0, n;; =0

FLUID EQUATIONS

MeMe [6@\;6 + (Ve - V)Ve] = —neE —en.,v. x B
J = —engve
0B
E = ——
V x 5

0
VB = J —
X Hod + Ho€o e

LINEARIZED EQUATIONS

Since E; 1 By, let k = k2 and E| = E,2 + E,3.

aVel
ot

Me = —€E1 — €Ve1 X BO

_ e
1WUp=—Fg 4 Weely
e

_ e
iwWvy=—Fy — Wey
Me

’Uy:

V= € (—ZEz — Wee Ey> (1 —
mew w

2 —1
(mim+ ) (1- %)
MeW w w

2\ —1
Wee
UJ2

0J 1 0°E
V(V-B) = VB =~ 5o

— (W = K*AE, + *kEk = —EJl _ e
€0 €0

W E,=—

€oTnw
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<2Ex + E,)|1- 026
I, w w

. 2 2\ —1
iwnge? /. Wee w2,
(w? — K**)E,=— <2Ey - Ez> (1 - )
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nge?

- 2 _
Since wy,, = e,

w
) ) (4.178)
W2, Wee wk
i pw E, + [(w2 k*c?) (1 oﬂ) —wze] E,=0
DISPERSION RELATION
2
2 wce 2 w ewce
() g
) ) —0 (4.179)
W2 Wee w2,
— pw [(wQ — k%) (1 w2> — wf,e]
Or
122 2 2 2
2= e T e (4.180)
w w? w? — wiy
NOTES

e Resonance: n — 0o, when w? = Wiy = Wy, + w2,

As a wave of given w approaches the resonance point,
v, — 0 and vy, — 0, and the wave energy is converted into upper hybrid oscilla-

tion.
e Cutoff: n=0
w1
w2 1 - w2oig;2
Or
W? F Wee — w;e =0 (4.181)

so that w = wp, wr, where

wR—; [+eee + /w2, + w2, ]
wL:; [—wce + /w2 + 4%%6 .

(4.182)
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Figure 4.8: The E-vector of an extraordinary wave is elliptically polarized. The compo-
nents I, and £, oscillate 90° out of phase, so that the total electric field vector F; has
a tip that moves in an ellipse once in each wave period.

. Ball will be
Ball will return. stacked at the top.

Kinetic + . /
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Figure 4.9: Mechanical analog to wave cutoffs and resonances (top). Behavior of the rays
near cutoff and resonance surfaces (bottom).
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4.12 Electromagnetic Waves with k || By

ASSUMPTIONS

e Homogeneous infinite quasineutral plasma
® EO = 0, BQ 7§ 0
e Cold Plasma: T; =T, =0

e Immobile ions: v;1 =0, n;; =0

FLUID EQUATIONS

MeMe [8(;;6 + (Ve V)Ve] = —n.eE —en.v. x B
J = —engv,
0J O’E
Vx(VxE)= _Moaitl — MOEOWQI

LINEARIZED EQUATIONS

k=Fkzand E, = E,2 + E,3.
The wave equation is

2
—k(k . E1> + /{32E1 == z'w,qul + %El y

or .
iwnge
(w? = K*¢*)E; = Vel
€0
or ,
w
(w? — k2P EB,=—15; (Ex e Ey) ,
1 —
2
(w? — KA E,=—21 (E i¥ep )
y— 2 Yy x
w
Let )
w
Q= pez )
- %
then "
(w? — k*c — @) E, + ia—=E,=0
w
i E, + (W’ - k°¢* —a)E,=0.

w
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DISPERSION RELATION

(w? — k*c* — a) i e
w
. =0 (4.191)
—ia—= (w? — k*c* — a)
w
Or
(w? — k22 — a)? = (awce)z
w
2 2.2 Wee
w®— k"¢ —a =+« (4.192)
w
Thus )
w? — k*ct=a <1j: Ce) = Wpe2 <1:i: wC@)
w 1 t’ucze w

w2,
n?=1- — L-wave (4.193)
(1+=)
w?Ze
n*=1-——| R-wave (4.194)
(1-2)
i‘ L WAVE | R WAVE
2 | |
. | |
c2 | |
|
1 }
0

Figure 4.10: For vé /c? < 0, they are regions of nonpropagation. The L wave has a stop
band at low frequencies; the R wave has a stop band between wg and w,.
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NOTES

e Polarization for parallel propagation
We define the terms right-handed and left-handed in terms of the rotation of the
electric field vector as a wave propagates.
If the electric vector rotates clockwise as we look along the k direction, then this
is a right-handed wave, and the left-handed wave rotates counterclockwise.
To see what this implies, we consider a wave with complex £, and F, which rep-
resent a circularly polarized R—wave by representing

Re[E,] = Ecos(—wt) = Re[Ee ™

(4.195)
Re [Ey} =-F Sin(—wt) = Re [iEei‘*’t]

It is clear that the measurable field represented by Eq. (4.195) with real E rotates
clockwise. Thus it follows that the phases of the waves are given by
1By = By R-wave
(4.196)
1By = —Fy L-wave

e For upper sign in Eq. (4.192), which results in the dispersion relation represented
by Eq. (4.194), we have iE, = E, from Eq. (4.190).
This verifies our labeling of the waves as being R-wave and L-wave.

¢ R-wave

— Resonance at w = wee.
— Cutoff at w = wp.

— The direction of rotation of the plane polarization is the same as the direction
of gyration of electrons; the wave loses its energy in continuously accelerating
the electrons, and it can not propagate.

— The whistler mode
For Weg K W K Wee ™~ Wpe,

w2

n? o~ ¢ (4.197)

 Wiee

so that k = wn/c = *2%, Jw/we. or w = kQCche/wf,e and the phase and group
velocities are

w Wlee
= o =C 2, X w
o o2 (4.198)
w C ' Wee Wlce
V== 2, =2, =2 2, X W

Note that both the phase and group velocities vary as \/w which causes high
frequencies to propagate faster along the magnetic field lines.
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o L-wave

— Cutoff at w = wy.

— No resonance with the electrons.
But if we had included ion motions, the L-wave would have a resonance at
W = Wej-

e Faraday rotation
A linear polarized wave can be decomposed into a pair of right— and left— hand
circularly polarized waves.

ER:Eei(kszwt) (L% + ,lg)
(4.199)
E =Ee' "= (3 — i)
_ _ —iwt ikrz ikpz\ 4 - _ikpz ikpz\ o
Eiotar = Er + B = Ee [(e +e ) T+ (e —e ) y} (4.200)

E

’ (eikRZ — eikLZ> 1 — eilkL—Fkr)z

E, (etkn= + eikr2) - 21 T cilkn—kr)2

= tan B(k‘L — k:R)z] (4.201)

A plane-polarized wave sent along a magnetic field in a plasma suffers a rotation of
its plane of rotation. Faraday rotation can be used as a diagnostic for estimating
plasma densities in laboratory plasma and interstellar space.

®8,
®s,

Figure 4.11: A plane-polarized wave as the sum of left and righthanded circularly polar-
ized waves (top). After traversing the plasma, the L wave is advanced in phase relative
to the R wave, and the plane of polarization is rotated (bottom).



