
Chapter 3

PLASMAS AS FLUIDS

3.1 Introduction

Single charged particle motion:

• Prescribed E and B −→ Eq. of motion −→ r and v

In a plasma, the E and B fields are not prescribed but are determined by the position
and motions of the charges themselves.
One must solve a self-consistent problem.

Plasma Motions:

• Fluid Theory:

1. The identity of the individual particle is neglected.

2. Only the motion of fluid elements are taken into account.

3. One deals with the macroscopic variables averaged over a distribution function.

• Kinetic Theory:

1. The identity of the individual particle is also neglected.

2. But the velocity distribution is considered.

3.2 The Fluid Equation of Motion

3.2.1 Macroscopic Variables of a Plasma

Observable properties of a system of particles are obtained through quantities averaged
over a distribution function. The average of a physical quantity M(r,v, t) is defined by

〈M(r,v, t)〉 =

∫
Mf(r,v, t)dv∫
f(r,v, t)dv

. (3.1)

• Particle number density:

n(r, t) =
∫ ∞
−∞

f(r,v, t)dv (3.2)
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• Average velocity:

u(r, t) = 〈v〉 =
1

n

∫ ∞
−∞

vf(r,v, t)dv (3.3)

• Pressure tensor:

P(r, t) =
1

n

∫
mn(v− u)(v− u)f(r,v, t)dv (3.4)

In index form

Pij = mn 〈(vi − ui)(vj − uj)〉
= mn (〈vivj〉 − uiuj)
= piiδij + Πij

= scalar pressure + shear stress

= flux in the i-direction of j-directed momentum

For an isotropic velocity distribution (e.g., Maxwellian) this reduces to a diagonal
pressure tensor

P =


p 0 0

0 p 0

0 0 p

 (3.5)

and p is the scalar pressure (assuming Ti = T⊥ = T‖)

p = nKT . (3.6)

We note for an isotropic velocity distribution,

f(r,v, t) = f(r, |v− u|, t) (3.7)

so for i = j,

pii =
1

n

∫
mn(v− u)2i fdv = 2n

(
1

n

∫ 1

2
m(v− u)2i fdv

)
= 2n× 1

2
KT (3.8)

and for i 6= j (due to cancellation between odd functions)

pij = 0 (3.9)

• Charge density:

ρ(r, t) =
∑
s

∫
qsfsdv =

∑
s

qsns(r, t) (3.10)

where the summation is carried over all particle species.

• Current density:

J(r, t) =
∑
s

∫
qsvfsdv =

∑
s

qsns(r, t)us(r, t) (3.11)

where again the summation is carried over all particle species.
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3.2.2 Equation of Continuity

The conservation of the total particle number over a volume V requires

∂N

∂t
=
∫
V

∂n

∂t
dv = −

∮
nu · da = −

∫
V
∇ · (nu)dv (3.12)

or
∂n

∂t
+∇ · (nu) = 0 . (3.13)

3.2.3 Equation of State

The equation of state (for an ideal gas of ν moles. ν = N/NA and K = R/NA):

pV = νRT (3.14)

or

p = nKT . (3.15)

The first law of thermodynamics states

dQ = dU + dW (3.16)

where U is the mean internal energy of the gas. The specific heat of the gas per mole is
defined as

C =
1

ν

dQ

dT
. (3.17)

• At constant volume, dW = pdV = 0 so that we have

dQ = νCvdT = dU . (3.18)

• At constant pressure, dQ = νCpdT by definition.
Thus for the constant pressure process the first law yields

νCpdT = νCV dT + pdV . (3.19)

Since

pdV = νRdT (3.20)

we find

Cp − CV = R . (3.21)

• For an ideal gas undergoing an adiabatic process (dQ = 0),

νCvdT + pdV = 0 (3.22)

or

dT = −pdV
νCV

(3.23)
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From the equation of state, pdV + V dp = νRdT so that we have

dT =
pdV + V dp

νR
. (3.24)

Equating these two expressions and using Cp − Cv = R, we obtain

CppdV + CV V dp = 0 (3.25)

or
dp

p
+ γ

dV

V
= 0 (3.26)

where

γ =
Cp
CV

=
2 + f

f
(3.27)

Thus

ln p+ γ lnV = const (3.28)

or

pV γ = const . (3.29)

• For an isothermal process (T = const),

pV = const . (3.30)

NOTES:

• For an adiabatic process (compression is faster than thermal conduction),

pV γ = const (3.31)

or

pρ−γm = const ≡ c (3.32)

p = cργm = c(mn)γ . (3.33)

Therefore we have

∇p = γc(mn)γ−1m∇n (3.34)

or
∇p
p

= γ
∇n
n
. (3.35)

or

∇p = γKT∇n (3.36)

• For an isothermal process (compression is slow compared to thermal conduction),

p = nKT (3.37)

thus

∇p = kT∇n . (3.38)
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3.2.4 Equation of Motion

Convective Derivative (material derivative or Lagrangian derivative)
Change of physical quantity G in moving frame is

d

dt
G(r, t) =

∂G

∂t
+
∂G

∂x

dx

dt
+ · · · = ∂G

∂t
+ (u · ∇)G

• partial derivative: ∂
∂t
−→ change with time at a fixed position in space

• convective derivative: d
dt
−→ derivative following the motion

d

dt
=

∂

∂t
+ u · ∇ =

D

Dt
(3.39)

where u is the local fluid velocity. For a plasma, take G to be the fluid velocity u to get

mn

[
∂u

∂t
+ (u · ∇)u

]
= nq(E + u×B) . (3.40)

Pressure
Let us consider some volume in a fluid. The total force acting on this volume is equal to
the integral

−
∮
S
pda (3.41)

of the pressure, taken over the surface bounding the volume. Transforming it to a volume
integral, we have

−
∮
S
pda = −

∫
V
∇pdv (3.42)

We can say that a force −∇p acts on unit volume of the fluid. Thus the fluid equation
of motion is

mn

[
∂u

∂t
+ (u · ∇)u

]
= nq(E + u×B)−∇p (3.43)

Collision
The momentum loss per collision is proportional to the relative velocity u − u0, where
u0 is the velocity of the neutral fluid.
If τ , the mean free time between collisions, is approximately constant, the resulting force
term can be roughly written as

∆p

∆t
= −mn(u− u0)

τ
(3.44)

or

−mnν(u− u0) (3.45)

where ν = 1/τ (mean collision frequency). Therefore, the fluid equation of motion is

mn

[
∂u

∂t
+ (u · ∇)u

]
= nq(E + u×B)−∇p−mnν(u− u0) . (3.46)
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3.2.5 The Complete Set of Fluid Equation (with u→ v)

The charge and current densities are given by

ρ = niqi + neqe (3.47)

J = niqivi + neqeve (3.48)

Assuming

• Isotropic: −∇ · P = −∇pI = −∇p (pressure only)

• No collisions: −mnν(u− u0) = 0

• No external sources: ρext = Jext = 0,

we have

ε0∇ · E = niqi + neqe (3.49)

∇× E = −∂B
∂t

(3.50)

∇ ·B = 0 (3.51)

1

µ0

∇×B = niqivi + neqeve + ε0
∂E

∂t
(3.52)

∂ns
∂t

+∇ · (nsvs) = 0 (3.53)

msns

[
∂vs
∂t

+ (vs · ∇)vs

]
= −∇ps + nsqs(E + vs ×B) (3.54)

ps = Csn
γs
s (3.55)

for s = i, e.

NOTES:

• E, B, ni, ne, vi, ve, pi, pe: 16 scalar unknowns.

• 18 scalar equations with two redundant equations. Note that two divergence equa-
tions are superfluous since they can be reduced from curl equations.

• The simultaneous solution of this set of 16 equations in 16 unknowns gives a self
consistent set of fields and motions in the fluid approximation.

• In plasma physics, one generally works with the vacuum Maxwell equations (i.e.,
no bound charges and currents), and includes all the charges and currents, both
external and internal (i.e., from the plasma).

• Each time we take a moment of Vlasov equation, an equation for the moment
is obtained, but at the same time, a next higher moment also appears. Thus
moment-taking never leads to a closed system of equation. Some sort of ad hoc
closure must always be invoked to terminate this chain. Typical closures involve
invoking adiabatic or isothermal assumptions. (From Bellan)
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3.3 Fluid Drifts Perpendicular to B

Figure 3.1:

mn

[
∂v

∂t
+ (v · ∇)v

]
= nq(E + v×B)−∇p (3.56)

Consider the ratio of term (1) to (3) ( ∂
∂t
−→ iω)

(1)

(3)
∼
∣∣∣∣∣mniωvqnvB

∣∣∣∣∣ ∼ ω

ωc
� 1 for low frequency motion

If the (v · ∇)v term is neglected, the equation of motion is reduced to

0 = nq(E + v×B)−∇p (3.57)

Take the cross product of Eq. (3.57) with B to get

0 = −∇p×B + nq[E×B + (v⊥ ×B)×B]

= −∇p×B + nqE×B− nqv⊥B2 .

So we have

v⊥ =
E×B

B2
− ∇p×B

nqB2
≡ vE + vD (3.58)

where

vE =
E×B

B2
: E×B drift

vD = −∇p×B

nqB2
=
γKT

qB

B×∇n
Bn

: Diamagnetic Drift

Since ions and electrons drift in opposite directions, there is a current which is given by
(for singly charged ions)

JD = en(vDi − vDe) = (γikTi + γekTe)
B×∇n
B2

(3.59)

NOTES:
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Figure 3.2:

• The current due to the diamagnetic drift produces the magnetic field which is in the
opposite direction of the external field (This is why we call the drift “diamagnetic”).

• The diamagnetic current does not exist in the single particle model.
The ∇p term appears only in the fluid equation.

• The curvature drift also exists in the fluid theory.
If the magnetic field is bent in space, the centrifugal force 〈Fcf〉 =

〈
nmv2‖/Rc

〉
=

nKT‖/Rc has to be added in the fluid equation of motion.

The magnitude of this drift velocity is |vR| =
nKT‖
|q|RcB

.

• Since vD is perpendicular to the direction of the gradient, (v · ∇)v ≈ 0 is justified
if E = 0. Even if E = −∇φ 6= 0, (v · ∇)v is still 0 if ∇φ ‖ ∇p.

• The grad-B drift does not exist in the fluid theory. A magnetic field does not affect
a Maxwellian distribution. This is because the Lorentz force is perpendicular to v
and cannot change the energy of any particle. The most probable distribution f(v)
in the absence of B is also the most probable distribution in the presence of B.

Figure 3.3:
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3.4 Fluid Drifts Parallel to B

The z component of the fluid equation of motion is

mn

[
∂vz
∂t

+ (v · ∇)vz

]
= −enEz −

∂p

∂z
. (3.60)

For an electron, take the limit m −→ 0 to get

0 = −∂p
∂z
− enEz . (3.61)

Since Ez = −∂φ
∂z

,

0 = −γKTe
∂n

∂z
+ en

∂φ

∂z
. (3.62)

Assuming electrons are isothermal (γ = 1), we have

1

n

∂n

∂z
=

e

KTe

∂φ

∂z
. (3.63)

An integration yields

lnn =
eφ

KTe
+ C (3.64)

or

n = n0 exp

[
eφ

KTe

]
: Boltzman Relation . (3.65)

Figure 3.4: A local density clump in the plasma. Since the plasma is quasi-neutral, the
gradients exist for both the electron and ion fluids. In the middle, n > n0.

NOTES:

• The Boltzmann relation results from the assumption that the perturbation is very
slow.
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• There is balance between pressure gradient force and electrostatic force.

• ne = n(z) and ni ≈ ne, but there is a finite electric field E 6= 0.

• If n(z) = n0 = uniform, then φ = 0 and E = 0.

• The Boltzmann relation applies to each line of force separately.

3.5 The Plasma Approximation

Quasineutrality requires ni = ne = n but ∇ · E 6= 0 (Do not use Poisson’s equation to
obtain E).

• E is found from the equation of motion.
E must adjust itself so that the orbits of the electrons and ions preserve neutrality.
Poission’s equation may be used to find the charge density.

• The plasma approximation is valid only for low frequency motion in which the
electron inertia is not a factor.

• The plasma approximation is a mathematical shortcut.

• As long as motions are slow enough that both ions and electrons have time to move,
it is a good approximation.
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