
2.5 Nonuniform Electric Field

Consider static, weak, sinusoidal electric field with slow variation given by

E(r) = E(x)x̂ = E0 cos(kx)x̂ . (2.79)

The equation of motion is

m
dv

dt
= q [E(x) + v×B] , (2.80)

whose transverse components are
v̇x=+

qB

m
vy +

q

m
E(x)

v̇y=−
qB

m
vx

(2.81)

so that 
v̈x=−ω2

cvx ± ωc
Ė

B

v̈y=−ω2
cvy − ω2

c

E

B
.

(2.82)

Using the unperturbed orbit
x = x0 + rL sinωct

we have

v̈y = −ω2
cvy − ω2

c

E0

B
cos k(x0 + rL sinωct) . (2.83)

By averaging over a cycle, we obtain

〈v̈y〉 = 0 = −ω2
c 〈vy〉 − ω2

c

E0

B
〈cos k(x0 + rL sinωct)〉 . (2.84)

Expanding the cosine, we have

cos k(x0 + rL sinωct) = cos(kx0) cos(krL sinωct)− sin(kx0) sin(krL sinωct) , (2.85)

and for krL � 1,

cos k(x0 + rL sinωct) ' cos(kx0)
[
1− 1

2
k2r2L sin2 ωct

]
− sin(kx0)(krL sinωct) . (2.86)

Thus we obtain

〈vy〉 = −E0

B
(cos kx0)

(
1− 1

4
k2r2L

)
= −E(x)

B

(
1− 1

4
k2r2L

)
, (2.87)

or

vE =
E×B

B2

(
1− 1

4
k2r2L

)
. (2.88)

For E(r) = E0e
ik·r,

∇2E(r) = −k2E0e
ik·r = −k2E(r) . (2.89)
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Therefore, we may generalize the result to

vE =
(

1 +
1

4
r2L∇2

)
E×B

B2
. (2.90)

NOTES:

• The second term is called the finite Larmor radius effect.

• vE is no longer independent of species.

Figure 2.10:

2.6 Static Magnetic and Time–varying Electric field

Let us take E and B to be uniform in space but E slowly varying in time.
Let E = Ex̂. The equation of motion is

m
dv

dt
= q(E + v×B) , (2.91)

whose tranverse components are 
v̇x=+

qB

m
vy +

q

m
E

v̇y=−
qB

m
vx ,

(2.92)

so 
v̈x + ω2

cvx=±ωc
Ė

B

v̈y + ω2
cvy=−ω2

c

E

B
.

(2.93)
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Homogeneous solutions are

vx,y ∝ e±iωct : circular motion, (2.94)

and particular solutions are


vx=±

Ėx
ωcB

opposite for oppositely charged particle

vy=−
Ex(t)

B
E×B drift.

(2.95)

Generally, the polarization drift (i.e., startup drift due to inertia) is given as

vP = ± 1

ωcB

dE

dt
, (2.96)

and the total velocity is

v = v⊥ + vE + vP , (2.97)

where v⊥ is the velocity of circular motion and the vE is the E×B drift. The polariztion
drift leads to a polarization current

JP = ne(vip − vep) =
ne

eB2
(me +mi)

dE

dt
=
ρm
B2

dE

dt
, (2.98)

where ρm is the mass density. The total current density is

J = Jext + ε0
∂E

∂t
+ JP . (2.99)

Then Ampere’s Law becomes

∇×H = Jext + ε0
∂E

∂t
+ JP = Jext +

∂

∂t

[
ε0

(
1 +

ρm
ε0B2

)
E
]

= Jext +
∂D

∂t
(2.100)

where

D = ε0

(
1 +

ρm
ε0B2

)
E = εE = ε0E + P (2.101)

and

P =
ρm
B2

E . (2.102)

NOTES:

• For a steady E, ions and electrons move around to preserve quasineutrality.

• If E oscillates, an oscillating current results from the lag due to the ion inertia.
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Figure 2.11:

2.7 Time-varying Magnetic Field

Let us consider the case which B is spatially uniform and its magnitude varies with time.

1. Since B varies with time, E will be set up and given by ∇× E = −Ḃ.

2. This induced field accelerates particle and changes transverse kinetic energy.

Take the dot product of the tranverse equation of motion

m
dv⊥
dt

= q(Eind + v⊥ ×B) (2.103)

with v⊥ to get
d

dt

(
1

2
mv2⊥

)
= qEind · v⊥ = qE · dl

dt
. (2.104)

The change in kinetic energy during one gyration in slowly-varying B(t) is

δ
(

1

2
mv2⊥

)
= q

∫ 2π
ωc

0
E · dl

dt
dt = q

∫
A
∇× E · ds = −q

∫
A

∂B

∂t
· ds

' qδB
ωc
2π
πr2L =

1
2
mv2⊥
B
× δB = µδB .

(2.105)

Since 1
2
mv2⊥ = Bµ,

δ
(

1

2
mv2⊥

)
= Bδµ+ µδB , (2.106)

so that we find
δµ = 0 (2.107)
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which means that the magnetic moment is invariant in slowly varying magnetic fields. The

magnetic moment is not a strict constant since the above treatment requires that Ḃ be
essentially constant throughout an orbit.
The magnetic flux is constant if µ is constant, since

φ = Bπr2L =
2πmµ

q2
= Bπ

m2v2⊥
q2B2

=
2πm

q2

1
2
mv2⊥
B

=
2πm

q2
µ . (2.108)

The magnetic flux through a Larmor orbit is constant.

2.8 Adiabatic Invariants

2.8.1 A Brief Review of Classical Mechanics

Lagrangian

The Lagrangian function of a system is defined by

L = T − V , (2.109)

where T is the kinetic energy and V is the potential energy of the system.
Lagrange’s equation is given by

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0 , (2.110)

where qk is the generalized coordinate (no restriction; any quantity may define the posi-
tion of the system).

Consider the case of a one-dimensional oscillator.

L = T − V =
1

2
mẋ2 − 1

2
kx2 (2.111)


∂L

∂ẋ
=mẋ

∂L

∂x
=−kx

The equation of motion is then
mẍ+ kx = 0 (2.112)

Let us find Lagrange’s equation of motion for a particle moving in a plane under a central
force. Choose q1 = r and q2 = θ. Then we have

L = T − V =
1

2
mv2 − V (r) =

1

2
m(ṙ2 + r2θ̇2)− V (r) (2.113)

∂L

∂ṙ
=mṙ

∂L

∂r
=mrθ̇2 − ∂V

∂r
= mrθ̇2 + Fr

∂L

∂θ̇
=mr2θ̇

∂L

∂θ
=0 .
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Therefore, the Lagrange equation yields

mr̈ = mrθ̇2 + Fr

d

dt
(mr2θ̇) = 0 .

(2.114)

Hamiltonian

The generalized momenta is (the last equality holds only for velocity independent poten-
tial)

pk =
∂L

∂q̇k
=
∂T

∂q̇k
. (2.115)

For example in the above cylindrical coordinates:

p2 = pθ =
∂L

∂θ̇
= mr2θ̇ = l = canonical momentum or angular momentum (2.116)

The Hamiltonian of a system is defined by

H =
∑
k

q̇kpk − L , (2.117)

and it can be shown that
H = T + V . (2.118)

Hamilton’s canonical equations of motion are given as

∂H

∂pk
=q̇k

∂H

∂qk
=−ṗk

(2.119)

In addition,

dH

dt
= −∂L

∂t
=
∂H

∂t
(= 0 when Hamiltonian is independent of t) (2.120)

For a one-dimensional harmonic oscillator,

T =
1

2
mẋ2 V =

1

2
kx2

p =
∂T

∂ẋ
= mẋ so that ẋ =

p

m

H = T + V =
p2

2m
+

1

2
kx2 (2.121)

The equations of motion
∂H

∂p
= ẋ

∂H

∂x
= −ṗ

then read
p

m
= ẋ kx = −ṗ

These equations may be combined into a sinle equation

mẍ+ kx = 0
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Action integral

In classical mechanics, whenever a system has a periodic motion, the action integral taken
over a period is a constant of the motion,i.e.,

∮
pdq = const. (2.122)

Here, p and q are the generalized momentum and coordinate.

If a slow change is made in the system, so that the motion is not quite periodic, the
constant of the motion still does not change and is called an adiabatic invariant.

PROOF: (from Bellan)

Figure 2.12:

Let the Hamiltonian depend on time via a slowly changing parameter λ(t), so that
H = H(P,Q, λ(t)). The energy is given by

E(t) = H(P,Q, λ(t)) −→︸︷︷︸
inverted

P = P (E(t), Q, λ(t)) (2.123)

It the motion is periodic, then turning point for the (N + 1)th period will be the same
as the turning point for the Nth period. When the motion is not exactly periodic, this
turning point is such that Qtp(t + τ) 6= Qtp(t), where τ is the time interval two turning
points.

S =
∮
PdQ =

∫ Qtp(t+τ)

Qtp(t)
PdQ (2.124)

dS

dt
=

d

dt

∮
PdQ =

d

dt

∫ Qtp(t+τ)

Qtp(t)
P (E(t), Q, λ(t))dQ
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=

[
P
dQ

dt

]Qtp(t+τ)
Qtp(t)

+
∫ Qtp(t+τ)

Qtp(t)

(
∂P

∂t

)
Q

dQ (2.125)

= 0 +
∫ Qtp(t+τ)

Qtp(t)

(∂P
∂E

)
Q,λ

dE

dt
+

(
∂P

∂λ

)
Q,E

dλ

dt

 dQ
From Eq. (2.123),

∂E

∂E
= 1 =

∂H

∂P

(
∂P

∂E

)
Q,λ

(2.126)

and
∂E

∂λ
= 0 =

∂H

∂P

(
∂P

∂λ

)
Q,E

+
∂H

∂λ
. (2.127)

So
dS

dt
=
∮ (

∂H

∂P

)−1 [
dE

dt
− ∂H

∂λ

dλ

dt

]
dQ. (2.128)

From Eq. (2.123) we have

dE

dt
=
∂H

∂P︸︷︷︸
=Q̇

dP

dt
+
∂H

∂Q︸︷︷︸
=−Ṗ

dQ

dt
+
∂H

∂λ

dλ

dt
=
∂H

∂λ

dλ

dt
. (2.129)

Therefore, dS/dt = 0, completing the proof of adiabatic invariance.

EXAMPLE:
As an example, let us determine the adiabatic invariant for a one-dimensional oscillator.

H =
p2

2m
+

1

2
mω2q2 (2.130)

The equation of the phase path is given by the conservation of energy H(p, q) = E.

p(q) =
√

2mE −m2ω2q2 (2.131)

J =
∮
p(q)dq = Area of ellipse with semiaxes

√
2mE and

√
2E

mω2
(2.132)

Or

J =
2πE

ω
(2.133)

The adiabatic invariance of J signifies that, when the parameters of the oscillator vary
slowly, the energy is proportional to the frequency.

EXAMPLE:
In accelerator physics, we often have the following relation

J =
1

2

(
γx2 + 2αxpx + βp2x

)
(2.134)
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or

1 =
1

2J
(x, px)

(
γ α
α β

)(
x
px

)
= (x, px)A

(
x
px

)
(2.135)

with βγ = 1 + α2. The area in the phase space defined by the above ellipse is∮
pxdx = π/

√
detA = 2πJ (2.136)

We used the eigenvalues analysis of the matrix A.

2.8.2 The First Adiabatic Invariant, µ

The first invariant is associated with the cyclotron motion of the particle. Let
p=mv⊥r

q=θ .
(2.137)

Then the action integral is ∮
pdq=

∫ 2π

0
mv⊥rLdθ

=2πmv⊥rL

=
4πm

|q|
µ

=const.

(2.138)

2.8.3 The Second Adiabatic Invariant, J

Consider a particle trapped between two magnetic mirrors.

1. The trapped particle executes periodic motion.

2. A constant of this motion is given by
∮
mv‖ds, where ds is an element of path

length along a field line.

3. However, since the guiding center drifts across field lines, the motion is not exactly
periodic, and the constant of the motion becoms an adiabatic invariant.

4. This is called the longitudinal invariant J and is defined by

J =
∫ b

a
v‖ds = const. (2.139)

2.8.4 The Third Adiabatic Invariant, Φ

1. The first invariant is associated with the cyclotron motion.

2. The second invariant is associated with the longitudinal motion.

3. It would seem natural to conclude that there must be an invariant associated with
the drift motion. The adiabatic invariant connected with this turns out to be the
total magnetic flux inclosed by the drift surface.
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