2.5 Nonuniform Electric Field
Consider static, weak, sinusoidal electric field with slow variation given by
E(r) = E(z)t = Eycos(kzx)z .

The equation of motion is

dv
m— =q|E(z) +v x B,
dt
whose transverse components are
qB q
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Using the unperturbed orbit
T = Xog+ 71, sinw,t
we have
. 2 2 EO :
Uy = —w v, — w;, — cos k(xg + r sinwct) .

B
By averaging over a cycle, we obtain

E
(i) = 0 = —w? (v,) — wzgo (cosk(zg + rp sinw,t)) .
Expanding the cosine, we have
cos k(o + 1y sinw.t) = cos(kxg) cos(kry, sinw.t) — sin(kxg) sin(kry, sinw,t) ,

and for krp, < 1,

cos k(xg + 7y sinw,t) ~ cos(kxg)

Thus we obtain

(vy) = —E;O(cos ko) (1 — ik%i) __EW (1 _ 1k2rf) 7

4
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or

For E(r) = EeXT,
V2E(r) = —k2Eye’®T = —k?E(r).
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Therefore, we may generalize the result to

ExB
B2

(2.90)

1
VE = (1 + 4TEV2>

NOTES:
e The second term is called the finite Larmor radius effect.

e vg is no longer independent of species.
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2.6 Static Magnetic and Time—varying Electric field

Let us take E and B to be uniform in space but E slowly varying in time.
Let E = Ez. The equation of motion is

m— =q(E+v xB), (2.91)

whose tranverse components are

oty
(2.92)
. g¢B
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Vg + wcvm:j:wcg
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Homogeneous solutions are

gy OC €5 circular motion, (2.94)

and particular solutions are

opposite for oppositely charged particle
we (2.95)

v=——75~ ExBdif.

Generally, the polarization drift (i.e., startup drift due to inertia) is given as

1 dE
=4 — 2.
ve w.B dt |’ (2.96)
and the total velocity is
V=V +Vg+vVp, (2.97)

where v is the velocity of circular motion and the vg is the E x B drift. The polariztion
drift leads to a polarization current

ne dE  pp, dE

Jp = ne(vip — Vep) = E(me + m,)ﬂ = ﬁ% s (298)
where p,, is the mass density. The total current density is
OE
J=Jeu+eo— +Jp. (2.99)

ot

Then Ampere’s Law becomes

E . D
VXH—Jext+eoa—i—Jp—Jext—i—a[eO(l—i—p )E}—Jmt—i—a (2.100)

ot ot 0 B? ot
where
D=« (1+€0ng)E:eE:eOE+P (2.101)
and
P= %E. (2.102)
NOTES:

e For a steady E, ions and electrons move around to preserve quasineutrality.

o [f E oscillates, an oscillating current results from the lag due to the ion inertia.
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Figure 2.11:

2.7 Time-varying Magnetic Field

Let us consider the case which B is spatially uniform and its magnitude varies with time.

1. Since B varies with time, E will be set up and given by V x E = —

2. This induced field accelerates particle and changes transverse kinetic energy.

Take the dot product of the tranverse equation of motion

dVL

mﬂ = ¢(Ejpa+ v, x B)
with v, to get
d /1 dl
dt ( mvi) qEznd V] = qE %

The change in kinetic energy during one gyration in slowly-varying B(t) is

2= B
“E. —dt*q/VxE ds—q/a . ds
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Since ;mv] = By,

so that we find
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which means that the magnetic moment is invariant in slowly varying magnetic fields. The

magnetic moment is not a strict constant since the above treatment requires that B be
essentially constant throughout an orbit.
The magnetic flux is constant if x is constant, since

2mmp _ ﬂm%i _ 2mm %mvi _ 27rmu'
e 42 B2 ¢ B >

(2.108)

The magnetic flux through a Larmor orbit is constant.

2.8 Adiabatic Invariants

2.8.1 A Brief Review of Classical Mechanics
Lagrangian
The Lagrangian function of a system is defined by

L=7-7] 2:100)

where T is the kinetic energy and V is the potential energy of the system.
Lagrange’s equation is given by

gL 2% ), (2.110)

where gy, is the generalized coordinate (no restriction; any quantity may define the posi-
tion of the system).

Consider the case of a one-dimensional oscillator.
L=T-V="tmiz L (2.111)
2 2
oL
i
oL
e

=mx

—kx

The equation of motion is then
mi + kz = 0 (2.112)

Let us find Lagrange’s equation of motion for a particle moving in a plane under a central
force. Choose ¢ = r and ¢o = 6. Then we have

1 1 .
L=T-V = §m112 - V(r)= im(f“2 +17%0%) — V(r) (2.113)
gf::mf“ gf:mréz — 88‘; = mré? + EF,
oL o oL
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Therefore, the Lagrange equation yields
mit = mr? + F,

a i) = (2.114)
dt -

Hamiltonian

The generalized momenta is (the last equality holds only for velocity independent poten-
tial)

oL 0T
Pr = 90r = ir | (2.115)
For example in the above cylindrical coordinates:
Dy =Py = ((‘9319; = mr?0 = | = canonical momentum or angular momentum (2.116)
The Hamiltonian of a system is defined by
, (2.117)

H=Y qp— L
!

and it can be shown that

H=T+7] 2118)

Hamilton’s canonical equations of motion are given as

oH .
0
Pr (2.119)
oH___
In addition,
dH oL O0H
e E(: 0 when Hamiltonian is independent of t) (2.120)
For a one-dimensional harmonic oscillator,
1 1
T = imIQ V = 5]{:&72
oT
p=———=mzT so that j3:£
oz m
P’ L,
H=T =— 4+ —k 2.121
+V T + Sk ( )
The equations of motion
oH | OH .
— =2 - = =
ap ox T
then read
p . .
— =1 kx = —p
m

These equations may be combined into a sinle equation

mi+kr=0
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Action integral

In classical mechanics, whenever a system has a periodic motion, the action integral taken
over a period is a constant of the motion,i.e.,

%pdq = const. (2.122)

Here, p and g are the generalized momentum and coordinate.

If a slow change is made in the system, so that the motion is not quite periodic, the
constant of the motion still does not change and is called an adiabatic invariant.

PROOF: (from Bellan)

P

N

Figure 2.12:

Let the Hamiltonian depend on time via a slowly changing parameter A(t), so that
H = H(P,Q,\(t)). The energy is given by

E(t)=H(P,Q,\(1)) = P =P(E(t),Q, (1)) (2.123)

inverted

It the motion is periodic, then turning point for the (N + 1)th period will be the same
as the turning point for the Nth period. When the motion is not exactly periodic, this
turning point is such that Q,(t + 7) # Q4,(t), where 7 is the time interval two turning

points.
Qtp t+7'
S = %Pd@ / (2.124)
Qtp

o= fra=g [ .m0
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Qup(t+7) Qup(t+7)
— [PCZ@ / <8P> dQ (2.125)
dt | o, @en(®) ot )
Qup(t+7) | [ OP dE oP d\
= =) =4 (=) 24
" Jown <8E>QAdt +<8/\>QEdt] ©
From Eq. (2.123),
oF 0H <8P>
oL _ o [of (2.126)
OF oP \0E),,,
and
oF 0H <(9P> oOH
e R (2.127)
A dP \ox) ., O
So ,
ds OH\ " [dE OH d\
a1 (ap) [dt - am] 1Q. (2.128)
From Eq. (2.123) we have
dEOH dP 0H dQ OHdX\ OH d\ 2.129)

dt 0P dt T oQ dt T ondt  ondt
V. v
~0 _p

Therefore, dS/dt = 0, completing the proof of adiabatic invariance.

EXAMPLE:
As an example, let us determine the adiabatic invariant for a one-dimensional oscillator.
2
p 1 2 2
H=—+- 2.1
oy T 5w d (2.130)

The equation of the phase path is given by the conservation of energy H(p,q) = E.

p(q) = \/2mE — m2w?q? (2.131)
: . . 2F
J = }{p(q)dq = Area of ellipse with semiaxesv2mF and 5 (2.132)
mw
Or -
J="= (2.133)
w

The adiabatic invariance of J signifies that, when the parameters of the oscillator vary
slowly, the energy is proportional to the frequency.

EXAMPLE:
In accelerator physics, we often have the following relation

1
J = 5 (ny + 2axp, + Bpi) (2.134)
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or

1 o x z

with 8y = 1 + o2. The area in the phase space defined by the above ellipse is
%pxda: =mn/Vdet A =2nJ

We used the eigenvalues analysis of the matrix A.

2.8.2 The First Adiabatic Invariant, u

The first invariant is associated with the cyclotron motion of the particle. Let

p=muv,r

q=0.
Then the action integral is
2
j{ pdg= mu | ri,df
0

=2mmuv | 1y,

4d7m
=M
lq

=const.

2.8.3 The Second Adiabatic Invariant, .J

Consider a particle trapped between two magnetic mirrors.

1. The trapped particle executes periodic motion.

(2.135)

(2.136)

(2.137)

(2.138)

2. A constant of this motion is given by § muvjds, where ds is an element of path

length along a field line.

3. However, since the guiding center drifts across field lines, the motion is not exactly

periodic, and the constant of the motion becoms an adiabatic invariant.

4. This is called the longitudinal invariant J and is defined by
b
J :/ v|ds = const.
2.8.4 The Third Adiabatic Invariant, ¢

1. The first invariant is associated with the cyclotron motion.

2. The second invariant is associated with the longitudinal motion.

(2.139)

3. It would seem natural to conclude that there must be an invariant associated with
the drift motion. The adiabatic invariant connected with this turns out to be the

total magnetic flux inclosed by the drift surface.
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