2.4 Nonuniform Magnetic Field

Assume that B is slightly inhomogeneous so that

VB
B can be expressed by the Taylor series
B=By+(r-V)B+---. (2.42)

where By is the magnetic field at the guiding center and r is the vector from the guiding
center to the instantaneous position of the particle. Then the equation of motion becomes

dv. g

—=—|vxBy+vx(r-V)B|, 2.43
Y I [yxBy+vx (rV)B] (243
where the first term on the right represents the motion in homogeneous By and the
second term, which can be viewed as a correction term, arises from the perturbation of
the orbit due to the inhomogeneous magnetic field. As an approximation, we use the
undisturbed orbit: we replace r and v with ry and vy respectively, where ry and v, are
solutions with By. Then the equation of motion is
N 4y Byt vo x (ro - V)B] (2.44)
—=—1v v, ro - , .
i m 0 0 0
e This equation can be treated by using the guiding center concept.
The second term corresponds to an external force.

e This force is not constant because r( is rotating.
Therefore, the force must be averaged over a gyration orbit. Thus

F = (qvo x (ro-V)B) . (2.45)

2.4.1 Grad-B Drift (Transverse gradient)
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Figure 2.4:
Assume
B(r) = B(y)z (make sure V-B =0), (2.46)

so that we have 5B
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We evaluate the Lorentz force, F = gv x B, compute the average force, and determine
the guiding center drift.

Using undisturbed orbits,

T=r, sin w,t

y==7rL coswt

Vp="0] COSW,t
Vy=TF v SInw,t
we can approximate the Lorentz force:
F, = qu,B = Fqu, sinw,t X (j:rL cos wct(((?)f)

0B
F, = —qu,B = —qu, cosw,.t X <:|:7“L cos wcta>
Y

F.=0
Since
1 /T
(sinwt)= / sinwtdt = 0
T
(coswt)= / coswtdt =0
T1-— 2wt 1
sm wt / sin? wtdt = / ﬂdt ==
T 2 2
1 /71 2wt 1
(cos? wt)= / cos® wtdt = —/ mdt =
T Jo 2
. Y
(sin wt cos wt)= / coswtsinwtdt = — / —sin2wtdt =0,
T Jo 2
we obtain
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where p = i%qv 1 rp. Thus the drift velocity is

FxB
VvB=

(2.48)

This expression may be generalized as

(2.49)

VvB =

or

smv? B x VB
qB Bz |

VvB — (250)

Note that this grad-B drift depends on the sign of the charge and can cause plasma
currents and charge separation.

2.4.2 Curvature Drift
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Figure 2.5:

Consider a magnetic field that has curvature.

e Such a magnetic field has a gradient perpendicular to its direction. This results in
the grad-B drift.

e [f the particle has a velocity along the magnetic field, it experiences a centrifugal
force due to the field curvature and this force gives a drift.
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The centrifugal force on a charged particle with v along B is

2
o, _ moj R.
F. = mols— 2.51
F="R" " R. R (2:51)
where R, is the radius of curvature. The drift velocity due to F.s (the curvature drift)
is then

_ mujR, x B

2.52
qB?> R? (2.52)

Form Ampere’s Law, VxB = ppJ, we have VxB = 0 in a vacuum. Since For B = B(T)é,

-—((rB)=0 2.53
TdT’(r ) ( )
so that .
B(r) o —, (2.54)
r
or )
B —. 2.55
() 3 (255)
s VB _10B._ R
T 2.56
B Bor R? (2.56)
Then the grad—B drift velocity may be written as
_ ymvi Bx VB §mvl B R.\ 4{mviR.xB
VyB = —7 | = . (257)
qB B2 qB B R? qB*> R?
Hence, we have the total drift in a curved magnetic field:
mR. x B 1,
VR + Vyg = , RIBT (v” + 22@) : (2.58)

Note that this drift depends on the sign of the charge and will give rise to a current and
a charge separation in a plasma.
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Figure 2.6:
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2.4.3 Longitudinal Gradient (Magnetic Mirror)

Consider an axially symmetric magnetic field which is primarily in the 2z direction and

whose magnitude varies in the z direction.
B = B,.(r,2)r + B.(r,2)2

with slow variation of B, with z.

Figure 2.7:

Since L 8 9B
V-B=-—(B,)+— =0,
T 0

r Or 0z
T 0B,

/0 5(7‘37«)(17”:— ; ", dr .

(2.59)

(2.60)

(2.61)

If 0B,/0z is given at r = 0 and does not vary much with r, we have approximately

r 0B 1 ,0B
B.(r) =— “dr ~ ——r? =
rB:(r) ooz 2" 9z
or 9B
r z
B, =—- .
2 0z
The presence of this radial field gives rise to a force F,
1 0B,
F, = TB - Br = - BT =3 )
. = q(v,Bg — vy B,.) qUe QQUGT 02
and the time average is
(F.) 1 0B, 0B,
z) — —qu, T = —
:FQq Ry * .
In general, the force on a particle along the magnetic field can be written as
0B
Fy=—-—pu—=—-uVB
[ s V|
where ds is the line segment along B.
The equation of motion along B is
dU” 0B
m— = —j—
dt Fas
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Figure 2.8:
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mUHcTt” = —/UL%U” s (268)
d /1 0B ds
Z (= - —py— 2.69
dt <2mv”> Hos dt’ (2.69)
d /1, dB
Since the total kinetic energy must be conserved, we have
d/1 5 1 d /1
o dB  d
—u— 4+ —(uB) = 2.72
P S uB) =0, (272)
thus
dp
— =0 2.73
o (2.73)

which means that p constant along the orbit, to the accuracy of this calculation. As a
particle moves from one region to another one of B, y remains invariant while r, changes.
Consider a particle moving into a region of increased magnetic field. As the particle
moves, it feels a force F|| = —u V| B. Does the particle get reflected by the force, or is it
lost? This will depend on its initial v)g and v .

1. As the particle moves to the high magnetic field region W, = %mvi must increase
to conserve .

2. If W, ever reaches Wy = %mvi, then all the energy will be in perpendicular motion,
v will vanish, and the particle will be reflected back.

A particle with v, = vy and v = v at the midplane, where B is minimum (B =
Bpin = By), will have v, = ¢, and v = 0 at its turning point. Let the field be B’ at the
turning point. The invariance of u yields

%m’l}io o %mﬂf 9 74
BO - B/ ( . )
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and conservation of energy requires
vy = vy +vf =0T (2.75)
Combining two equations, we find

2 2

Vg Ulo By

— T e— T e— 2 . 76
vi v'? B’ ( )

or

By

o (2.77)

sin2 00 =

where 6 is the pitch angle at the midplane.
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Figure 2.9: Particle with the pitch angle at the midplane 6y will move toward the v, -axis
as it approaches to the stronger magnetic filed. If 6, is less than 6,,, then even at the
maximum magnetic field, there still remains the parallel velocity component.

e Particles with smaller pitch angles will be reflected in regions of higher magnetic

field.

e If # is too small, B’ exceeds the maximum field B,,; and the particles are not
reflected at all.
e The smallest 6 of a contained particle is given by

B, 1

—_— = — 2.
B. - R (2.78)

sin?6,, =
where R is the mirror ratio.

e For trapping, 0y > 0,,.

e This equation defines the boundary of a region in velocity space in the shape of
a cone, called a loss cone. Particles with velocity vectors inside the loss cone in
velocity space will escape so that a mirror—confined plasma is never isotropic.
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e Mirror confinement was one of basis of major approaches to magnetic fusion. An-
other example of the mirror effect is the confinement of particles in the Van Allen
belts.
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