2.4 Nonuniform Magnetic Field

Assume that B is slightly inhomogeneous so that

$$
\begin{equation*}
r_{\mathrm{L}}\left|\frac{\nabla \mathbf{B}}{\mathbf{B}}\right| \ll 1 \tag{2.41}
\end{equation*}
$$

B can be expressed by the Taylor series

$$
\begin{equation*}
\mathbf{B}=\mathbf{B}_{0}+(\mathbf{r} \cdot \nabla) \mathbf{B}+\cdots \tag{2.42}
\end{equation*}
$$

where \mathbf{B}_{0} is the magnetic field at the guiding center and \mathbf{r} is the vector from the guiding center to the instantaneous position of the particle. Then the equation of motion becomes

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=\frac{q}{m}\left[\mathbf{v} \times \mathbf{B}_{0}+\mathbf{v} \times(\mathbf{r} \cdot \nabla) \mathbf{B}\right] \tag{2.43}
\end{equation*}
$$

where the first term on the right represents the motion in homogeneous \mathbf{B}_{0} and the second term, which can be viewed as a correction term, arises from the perturbation of the orbit due to the inhomogeneous magnetic field. As an approximation, we use the undisturbed orbit: we replace \mathbf{r} and \mathbf{v} with \mathbf{r}_{0} and \mathbf{v}_{0} respectively, where \mathbf{r}_{0} and \mathbf{v}_{0} are solutions with \mathbf{B}_{0}. Then the equation of motion is

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=\frac{q}{m}\left[\mathbf{v} \times \mathbf{B}_{0}+\mathbf{v}_{0} \times\left(\mathbf{r}_{0} \cdot \nabla\right) \mathbf{B}\right] \tag{2.44}
\end{equation*}
$$

- This equation can be treated by using the guiding center concept.

The second term corresponds to an external force.

- This force is not constant because \mathbf{r}_{0} is rotating.

Therefore, the force must be averaged over a gyration orbit. Thus

$$
\begin{equation*}
\mathbf{F}=\left\langle q \mathbf{v}_{0} \times\left(\mathbf{r}_{0} \cdot \nabla\right) \mathbf{B}\right\rangle \tag{2.45}
\end{equation*}
$$

2.4.1 Grad-B Drift (Transverse gradient)

Figure 2.4:
Assume

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=B(y) \hat{z} \quad(\text { make sure } \nabla \cdot \mathbf{B}=0) \tag{2.46}
\end{equation*}
$$

so that we have

$$
\begin{equation*}
\mathbf{B}=\mathbf{B}_{0}+(\mathbf{r} \cdot \nabla) \mathbf{B}=\mathbf{B}_{0}+y \frac{\partial \mathbf{B}}{\partial y} \tag{2.47}
\end{equation*}
$$

We evaluate the Lorentz force, $\mathbf{F}=q \mathbf{v} \times \mathbf{B}$, compute the average force, and determine the guiding center drift.
Using undisturbed orbits,

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=r_{\mathrm{L}} \sin \omega_{c} t \\
y= \pm r_{\mathrm{L}} \cos \omega_{c} t
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{x}=v_{\perp} \cos \omega_{c} t \\
v_{y}=\mp v_{\perp} \sin \omega_{c} t
\end{array}\right.
\end{aligned}
$$

we can approximate the Lorentz force:

$$
\begin{aligned}
& F_{x}=q v_{y} B=\mp q v_{\perp} \sin \omega_{c} t \times\left(\pm r_{\mathrm{L}} \cos \omega_{c} t \frac{\partial B}{\partial y}\right) \\
& F_{y}=-q v_{x} B=-q v_{\perp} \cos \omega_{c} t \times\left(\pm r_{\mathrm{L}} \cos \omega_{c} t \frac{\partial B}{\partial y}\right) \\
& F_{z}=0
\end{aligned}
$$

Since

$$
\begin{aligned}
\langle\sin \omega t\rangle & =\frac{1}{T} \int_{0}^{T} \sin \omega t d t=0 \\
\langle\cos \omega t\rangle & =\frac{1}{T} \int_{0}^{T} \cos \omega t d t=0 \\
\left\langle\sin ^{2} \omega t\right\rangle & =\frac{1}{T} \int_{0}^{T} \sin ^{2} \omega t d t=\frac{1}{T} \int_{0}^{T} \frac{1-\cos 2 \omega t}{2} d t=\frac{1}{2} \\
\left\langle\cos ^{2} \omega t\right\rangle & =\frac{1}{T} \int_{0}^{T} \cos ^{2} \omega t d t=\frac{1}{T} \int_{0}^{T} \frac{1+\cos 2 \omega t}{2} d t=\frac{1}{2} \\
\langle\sin \omega t \cos \omega t\rangle & =\frac{1}{T} \int_{0}^{T} \cos \omega t \sin \omega t d t=\frac{1}{T} \int_{0}^{T} \frac{1}{2} \sin 2 \omega t d t=0,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\left\langle F_{x}\right\rangle & =\frac{1}{T} \int_{0}^{T} F_{x} d t=0 \\
\left\langle F_{y}\right\rangle & =\frac{1}{T} \int_{0}^{T} F_{y} d t \\
& =\mp q v_{\perp} r_{\mathrm{L}} \frac{\partial B}{\partial y} \frac{1}{2} \\
& =-\mu \frac{\partial B}{\partial y}
\end{aligned}
$$

where $\mu= \pm \frac{1}{2} q v_{\perp} r_{\mathrm{L}}$. Thus the drift velocity is

$$
\begin{align*}
\mathbf{v}_{\nabla B} & =\frac{\mathbf{F} \times \mathbf{B}}{q B^{2}} \\
& =\frac{F_{y} \hat{y} \times B \hat{z}}{q B^{2}} \\
& =\frac{F_{y}}{q B} \hat{x} \tag{2.48}\\
& =-\frac{\mu}{q B} \frac{\partial B}{\partial y} \hat{x} .
\end{align*}
$$

This expression may be generalized as

$$
\begin{equation*}
\mathbf{v}_{\nabla B}=\frac{\mu}{q} \frac{\mathbf{B} \times \nabla B}{B^{2}} \tag{2.49}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{v}_{\nabla B}=\frac{\frac{1}{2} m v_{\perp}^{2}}{q B} \frac{\mathbf{B} \times \nabla B}{B^{2}} . \tag{2.50}
\end{equation*}
$$

Note that this grad-B drift depends on the sign of the charge and can cause plasma currents and charge separation.

2.4.2 Curvature Drift

Figure 2.5:
Consider a magnetic field that has curvature.

- Such a magnetic field has a gradient perpendicular to its direction. This results in the grad-B drift.
- If the particle has a velocity along the magnetic field, it experiences a centrifugal force due to the field curvature and this force gives a drift.

The centrifugal force on a charged particle with $\mathbf{v}_{\|}$along \mathbf{B} is

$$
\begin{equation*}
\mathbf{F}_{c f}=m \frac{v_{\|}^{2}}{R_{c}} \hat{r}=\frac{m v_{\|}^{2}}{R_{c}} \frac{\mathbf{R}_{c}}{R_{c}}, \tag{2.51}
\end{equation*}
$$

where \mathbf{R}_{c} is the radius of curvature. The drift velocity due to $\mathbf{F}_{c f}$ (the curvature drift) is then

$$
\begin{equation*}
\mathbf{v}_{\mathrm{R}}=\frac{m v_{\|}^{2}}{q B^{2}} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R_{c}^{2}} . \tag{2.52}
\end{equation*}
$$

Form Ampere's Law, $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}$, we have $\nabla \times \mathbf{B}=0$ in a vacuum. Since For $\mathbf{B}=B(r) \hat{\theta}$,

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}(r B)=0 \tag{2.53}
\end{equation*}
$$

so that

$$
\begin{equation*}
B(r) \propto \frac{1}{r} \tag{2.54}
\end{equation*}
$$

or

$$
\begin{equation*}
B(r) \propto \frac{1}{R_{c}} \tag{2.55}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\nabla B}{B}=\frac{1}{B} \frac{\partial B}{\partial r} \hat{\mathbf{r}}=-\frac{\mathbf{R}_{c}}{R_{c}^{2}} . \tag{2.56}
\end{equation*}
$$

Then the grad-B drift velocity may be written as

$$
\begin{equation*}
\mathbf{v}_{\nabla B}=\frac{\frac{1}{2} m v_{\perp}^{2}}{q B} \frac{\mathbf{B} \times \nabla B}{B^{2}}=\frac{\frac{1}{2} m v_{\perp}^{2}}{q B} \frac{\mathbf{B}}{B} \times\left(-\frac{\mathbf{R}_{c}}{R_{c}^{2}}\right)=\frac{\frac{1}{2} m v_{\perp}^{2}}{q B^{2}} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R_{c}^{2}} . \tag{2.57}
\end{equation*}
$$

Hence, we have the total drift in a curved magnetic field:

$$
\begin{equation*}
\mathbf{v}_{R}+\mathbf{v}_{\nabla B}=\frac{m}{q} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R_{c}^{2} B^{2}}\left(v_{\|}^{2}+\frac{1}{2} v_{\perp}^{2}\right) \tag{2.58}
\end{equation*}
$$

Note that this drift depends on the sign of the charge and will give rise to a current and a charge separation in a plasma.

Figure 2.6:

2.4.3 Longitudinal Gradient (Magnetic Mirror)

Consider an axially symmetric magnetic field which is primarily in the z direction and whose magnitude varies in the z direction.

$$
\begin{equation*}
\mathbf{B}=B_{r}(r, z) \hat{r}+B_{z}(r, z) \hat{z} \tag{2.59}
\end{equation*}
$$

with slow variation of B_{z} with z.

Figure 2.7:
Since

$$
\begin{align*}
& \nabla \cdot \mathbf{B}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}=0 \tag{2.60}\\
& \int_{0}^{r} \frac{\partial}{\partial r}\left(r B_{r}\right) d r=-\int_{0}^{r} r \frac{\partial B_{z}}{\partial z} d r \tag{2.61}
\end{align*}
$$

If $\partial B_{z} / \partial z$ is given at $r=0$ and does not vary much with r, we have approximately

$$
\begin{equation*}
r B_{r}(r)=-\int_{0}^{r} r \frac{\partial B_{z}}{\partial z} d r \simeq-\frac{1}{2} r^{2} \frac{\partial B_{z}}{\partial z}, \tag{2.62}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{r}=-\frac{r}{2} \frac{\partial B_{z}}{\partial z} \tag{2.63}
\end{equation*}
$$

The presence of this radial field gives rise to a force F_{z}

$$
\begin{equation*}
F_{z}=q\left(v_{r} B_{\theta}-v_{\theta} B_{r}\right)=-q v_{\theta} B_{r}=\frac{1}{2} q v_{\theta} r \frac{\partial B_{z}}{\partial z}, \tag{2.64}
\end{equation*}
$$

and the time average is

$$
\begin{equation*}
\left\langle F_{z}\right\rangle=\mp \frac{1}{2} q v_{\perp} r_{\mathrm{L}} \frac{\partial B_{z}}{\partial z}=-\mu \frac{\partial B_{z}}{\partial z} \tag{2.65}
\end{equation*}
$$

In general, the force on a particle along the magnetic field can be written as

$$
\begin{equation*}
\mathbf{F}_{\|}=-\mu \frac{\partial B}{\partial \mathbf{s}}=-\mu \nabla_{\|} B \tag{2.66}
\end{equation*}
$$

where $d \mathbf{s}$ is the line segment along \mathbf{B}.
The equation of motion along \mathbf{B} is

$$
\begin{equation*}
m \frac{d v_{\|}}{d t}=-\mu \frac{\partial B}{\partial s} \tag{2.67}
\end{equation*}
$$

Figure 2.8:
or

$$
\begin{gather*}
m v_{\|} \frac{d v_{\|}}{d t}=-\mu \frac{\partial B}{\partial s} v_{\|} \tag{2.68}\\
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}\right)=-\mu \frac{\partial B}{\partial s} \frac{d s}{d t} \tag{2.69}\\
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}\right)=-\mu \frac{d B}{d t} \tag{2.70}
\end{gather*}
$$

Since the total kinetic energy must be conserved, we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}+\frac{1}{2} m v_{\perp}^{2}\right)=\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}+\mu B\right)=0 \tag{2.71}
\end{equation*}
$$

or

$$
\begin{equation*}
-\mu \frac{d B}{d t}+\frac{d}{d t}(\mu B)=0 \tag{2.72}
\end{equation*}
$$

thus

$$
\begin{equation*}
\frac{d \mu}{d t}=0 \tag{2.73}
\end{equation*}
$$

which means that μ constant along the orbit, to the accuracy of this calculation. As a particle moves from one region to another one of \mathbf{B}, μ remains invariant while r_{L} changes. Consider a particle moving into a region of increased magnetic field. As the particle moves, it feels a force $\mathbf{F}_{\|}=-\mu \nabla_{\|} B$. Does the particle get reflected by the force, or is it lost? This will depend on its initial $v_{\| 0}$ and $v_{\perp 0}$.

1. As the particle moves to the high magnetic field region $W_{\perp}=\frac{1}{2} m v_{\perp}^{2}$ must increase to conserve μ.
2. If W_{\perp} ever reaches $W_{0}=\frac{1}{2} m v_{\perp}^{2}$, then all the energy will be in perpendicular motion, $v_{\|}$will vanish, and the particle will be reflected back.

A particle with $v_{\perp}=v_{\perp 0}$ and $v_{\|}=v_{\| 0}$ at the midplane, where B is minimum $(B=$ $B_{\text {min }}=B_{0}$), will have $v_{\perp}=v_{\perp}^{\prime}$ and $v_{\|}=0$ at its turning point. Let the field be B^{\prime} at the turning point. The invariance of μ yields

$$
\begin{equation*}
\frac{\frac{1}{2} m v_{\perp 0}^{2}}{B_{0}}=\frac{\frac{1}{2} m v_{\perp}^{\prime 2}}{B^{\prime}} \tag{2.74}
\end{equation*}
$$

and conservation of energy requires

$$
\begin{equation*}
v_{0}^{2}=v_{\perp 0}^{2}+v_{\| 0}^{2}=v_{\perp}^{\prime 2} \tag{2.75}
\end{equation*}
$$

Combining two equations, we find

$$
\begin{equation*}
\frac{v_{\perp 0}^{2}}{v_{0}^{2}}=\frac{v_{\perp 0}^{2}}{v_{\perp}^{\prime 2}}=\frac{B_{0}}{B^{\prime}}, \tag{2.76}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin ^{2} \theta_{0}=\frac{B_{0}}{B^{\prime}} \tag{2.77}
\end{equation*}
$$

where θ_{0} is the pitch angle at the midplane.

Figure 2.9: Particle with the pitch angle at the midplane θ_{0} will move toward the v_{\perp}-axis as it approaches to the stronger magnetic filed. If θ_{0} is less than θ_{m}, then even at the maximum magnetic field, there still remains the parallel velocity component.

- Particles with smaller pitch angles will be reflected in regions of higher magnetic field.
- If θ is too small, B^{\prime} exceeds the maximum field B_{m}; and the particles are not reflected at all.
- The smallest θ of a contained particle is given by

$$
\begin{equation*}
\sin ^{2} \theta_{m}=\frac{B_{0}}{B_{m}} \equiv \frac{1}{R} \tag{2.78}
\end{equation*}
$$

where R is the mirror ratio.

- For trapping, $\theta_{0}>\theta_{m}$.
- This equation defines the boundary of a region in velocity space in the shape of a cone, called a loss cone. Particles with velocity vectors inside the loss cone in velocity space will escape so that a mirror-confined plasma is never isotropic.
- Mirror confinement was one of basis of major approaches to magnetic fusion. Another example of the mirror effect is the confinement of particles in the Van Allen belts.

