
Chapter 2

SINGLE PARTICLE MOTIONS

2.1 Introduction

Prescribed E, B - Eq. of motion - r(t), v(t)

The “nonrelativistic” equation of motion for a particle of mass m and charge q in an
electric and magnetic field is

m
dv

dt
= q(E + v×B) . (2.1)

Simple cases:

• Field–free motion
For the case of zero electri and magnetic field, the velocity v0, the momentum mv0,
and the kinetic energy 1

2
mv20 are all constants of the motion.

• Motion in a Static Electric Field
For the case of zero magnetic field and static electric field, the equation of motion
has the solution

v(t) = v0 +
q

m
Et . (2.2)

2.2 Uniform Magnetic Field

The Lorentz equation of motion is

m
dv

dt
= qv×B . (2.3)

Taking the dot product of this equation with v yields

mv · dv
dt

=
d

dt

(
1

2
mv2

)
= qv · v×B = 0 , (2.4)
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so
1

2
mv2: const. of motion

Let v = v‖ + v⊥.

From the equation of motion we have

m
dv‖
dt

+m
dv⊥
dt

= q
[
(v‖ ×B) + (v⊥ ×B)

]
= qv⊥ ×B (2.5)

which splits into two equations

dv‖
dt

=0

dv⊥
dt

=
q

m
v⊥ ×B .

(2.6)

Since v‖ is constant and 1
2
mv2 is a constant of motion, we note that

1
2
mv2‖: const. of motion

1
2
mv2⊥: const. of motion

Choose B = Bẑ, then

m
dv

dt
= qv⊥ ×B

becomes 
v̇x=+

q

m
Bvy

v̇y=−
q

m
Bvx

(2.7)

so that we have 
v̈x=−

(
qB

m

)2

vx

v̈y=−
(
qB

m

)2

vy

(2.8)

or
v̈j + ω2

cvj = 0 (2.9)

where

ωc =
∣∣∣∣qBm

∣∣∣∣ cyclotron frequency . (2.10)

The solution of Eq. (2.9) is (j = x or y)

vj = v⊥ exp(iωct+ iδj) (2.11)

Choose (with ± = sgn(q) = |q|/q)
vx=v⊥e

iωct

vy=
m

qB
v̇x = ± 1

ωc

v̇x = ±iv⊥eiωct
(2.12)
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Figure 2.1:

then 
x− x0=−i

v⊥
ωc

eiωct

y − y0=±
v⊥
ωc

eiωct

Taking the real part, we obtain (x0 and y0 are not necessarily the initial conditions)
x− x0=rL sinωct

y − y0=±rL cosωct

where

rL ≡
v⊥
ωc

=

∣∣∣∣∣mv⊥qB

∣∣∣∣∣ Lamor radius . (2.13)

NOTES:

• Trajectory

– Since v‖ is constant, the motion in the direction parallel to the magnetic field
is given by

z − z0 = v‖t .

– In the perpendicular direction, the motion is

(x− x0)2 + (y − y0)2 = r2L ,

which describes a circle in the xy–plane.
Note different path direction for different sign of q.
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– The trajectory of a particle in a uniform magnetic field is a helix with its axis
parallel to the magnetic field.
If the motion of particle is viewed by an observer moving along B with a
velocity v‖, the motion is a circle with its center at (x0, y0).
The point (x0, y0, z0 + v‖t) describes the locus of the center of the circle and
is called a guiding center.

• Pitch Angle
The pitch angle is defined as the angle between the velocity vector of the particle
and the magnetic field:

α = tan−1
v⊥
v‖

. (2.14)

Note that v‖ = v cosα and v⊥ = v sinα.

• Magnetic Moment

– The perpendicular motion gives rise to a circulating current

I =
|q|ωc

2π
=

q2B

2πm
(2.15)

The magnitude of the magnetic moment by circular motion of a charged par-
ticle is current×area;

µ =
q2B

2πm
· πr2L =

1
2
mv2⊥
B

= ±1

2
qrLv⊥ . (2.16)

– The direction of µ is independent of the charge and antiparallel to B. Since the
magnetic field generated by the charged particle is opposite to the externally
imposed field, plasma particles tend to reduce the magnetic field (diamag-
netic).

– The magnetic moment may be regarded as a vector by using the fact that the
field set up by the circulating particle opposes the ordinal field

µ = −
1
2
mv2⊥
B

b̂ , (2.17)

where b̂ = B/B is an unit vector in the direction of the magnetic field.

2.3 Uniform Magnetic and Electric Fields

Consider for simplicity (without loss of generality) the magnetic and electric fields given
by B = Bẑ and E = Exx̂+ Ez ẑ. The components of the equation of motion are

v̇x=
q

m
Ex +

q

m
Bvy

v̇y= − q

m
Bvx

v̇z=
q

m
Ez

. (2.18)
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From the z component equation,

vz =
qEz

m
t+ vz0 (2.19)

which is a straightforward acceleration along B. The transverse components can be
written as

v̇x=
q

m
Ex ±ωcvy

v̇y= ∓ωcvx .

(2.20)

Differentiating, we have

v̈x=−ω2
cvx

v̈y=∓ωc

(
q

m
Ex ± ωcvy

)
= −ω2

c

(
Ex

B
+ vy

)
.

(2.21)

The last equation may be written as (because Ex/B = const.)

d2

dt2

(
vy +

Ex

B

)
= −ω2

c

(
vy +

Ex

B

)
, (2.22)

which reduces to the equation for vy without the electric field if vy is replaced by vy +
Ex/B. Therefore, we obtain

vx=v⊥e
iωct

vy=±iv⊥eiωct − Ex

B
.

(2.23)

The gyrating motion is the same as before, but there is superimposed a drift velocity of
the guiding center in the −y direction.

Figure 2.2: Here, u = v⊥ i.e., |v⊥| without electric field. v⊥ 6= |v⊥| = |vE + vB(t)|
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To obtain a general formula for the drift velocity, let

B=Bẑ

v=v‖ + v⊥

E=E‖ + E⊥ .

The parallel component of the equation of motion is

dv‖
dt

=
q

m
E‖

and the solution is
v‖(t) = v‖0 +

q

m
E‖t ,

which shows a motion of a constant acceleration along the magnetic field.

The perpendicular component is

dv⊥
dt

=
q

m
(E⊥ + v⊥ ×B) .

Let v⊥ = vE + vB(t) where vE = const, then we have

d

dt
[vE + vB(t)] =

q

m
(E⊥ + vE ×B + vB ×B) . (2.24)

Now transform this equation to a coordinate frame moving with vE so that in this frame
the particle motion is described by a purely cyclotron motion

dvB

dt
=

q

m
vB ×B . (2.25)

This requires vE to satisfy the equation

qE⊥ + qvE ×B = 0 . (2.26)

Taking the cross product of Eq. (2.26) with B yields [A×(B×C) = B(A ·C)−C(A ·B)]

E⊥ ×B + (vE ×B)×B = 0 ,

or
E⊥ ×B + (B · vE)B−B2vE = 0 ,

so (because B ⊥ vE)

vE =
E⊥ ×B

B2
.

Since E×B = E⊥ ×B, we have

vE =
E×B

B2
, (2.27)

which is the drift velocity of the particle perpendicular to both the electric and magnetic
fields.

NOTES:
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• The guiding center drifts with vE.
vE is independent of q, m, and v⊥.
No current flows or charge separation results from this motion since both positive
and negative particles drift in the same direction with the same velocity.

• This result can be applied to other forces by replacing qE in the equation of motion
by a general force F. The guiding center drift caused by an “arbitrary constant
force F” is

vF =
F×B

qB2
. (2.28)

• For the force of gravity mg, there is a drift

vg =
m

q

g×B

B2
. (2.29)

This drift veclocity depends on the mass and on the sign of the charge. Thus the
gravitational drift motion gives rise to plasma currents and charge separation. The
net current density in the plasma is

j = nqivgi + nqevge = n(mi +me)
g×B

B2
. (2.30)

Figure 2.3: Here, r = rgc + ρ = x = xgc + rL

Appendix (Optional topic)

A guiding center is a point defined by

rgc = r− ρ , (2.31)
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where r is the position vector of the particle and ρ (in some books, rL) is the radius of
curvature which is a vector from the position of the particle to the center of gyration. In
the plane perpendicular to B, we have

mω2
cρ = −qv×B . (2.32)

Since ω2
c = q2B2/m2, this equation can be written as

ρ = −p×B

qB2
, (2.33)

where p is the momentum of the particle. Therefore, the guiding center is given by

rgc = r +
p×B

qB2
. (2.34)

Suppose that a non-magnetic force F is applied, then we have

drgc
dt

=
dr

dt
+

(dp/dt)×B

qB2
. (2.35)

Using the equation of motion
dp

dt
= qv×B + F , (2.36)

we obtain
drgc
dt

=v +
(F + qv×B)×B

qB2

=v +
F×B + q(v×B)×B

qB2

=v‖ +
F×B

qB2
.

(2.37)

We use

(v×B)×B =
{

(v⊥ + v‖)×B
}
×B

= (v⊥ ×B)×B

= B(B · v⊥)− v⊥B
2. (2.38)

We may write
drgc
dt

= vgc = v‖ + vF (2.39)

dr

dt
= v = v‖ + v⊥ = v‖ + vF + vB(t) = vgc + vB(t) = slow + fast (2.40)

In this more general situation a charged particle will gyrate about B, stream parallel to
B, have E × B drifts across B, and may also have force-based drifts. The analysis is
based on the assumption that all these various motions are well-separated. The assumed
separation of scales is expressed by decomposing the particle motion into a fast, oscillatory
component – the gyro-motion – and a slow component obtained by averaging out the
gyromotion. (Bellan)
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