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Nonlinear resonance and resonance

overlapping

e Higher-order components in the magnetic field in a ring introduce nonlinear terms
into the Hamiltonian and generate nonlinear resonances.

e This can lead to complicated motion for particles with large amplitudes of betatron
oscillations.

e When the fractional part of the tune is close to £1/3, there is a resonant structure
in the phase space due to a sextupole magnet.

e For a Hamiltonian system with many resonances, they can interact with each other
and lead to stochastic orbits in phase space.

e To understand this effect, we study a model called the standard map, that illus-
trates qualitative features of what can occur in a Hamiltonian system with many
resonances.

e The impact on dynamics is similar, whereas the origin of the nonlinearity is diverse:
nonlinear magnetic fields, RF cavities, space-charge forces among the charged par-
ticles in a bunch, or interactions between bunches.

Al 1 d The Third-Order Resonance

1.1 Hamiltonian with sextupole

The sextupole vector potential is given by



We will limit our analysis to one-dimensional betatron oscillations in the x direction, set

y =0,
3

x
Ay =—=5(s)—
()%
In the lowest order, the vector potential enters the Hamiltonian by
eA,
Po
Therefore, the new Hamiltonian is
L, 1 2 1 3
H=-P:+-K(s)z*+ =S(s)z°, (9.1)
2 2 6
where g
s=2
Po

1.2 Canonical transformation

We make a transformation to the action-angle variables J; and ¢; defined in Sect. 7.2,
and then drop the subscript 1 to simplify the notation. This transformation converts the
first two terms of the Hamiltonian (9.1) into a linear function of J:

1 1 2my
~P? + —K(s)a? —J. 2
5L + 5 (s)x* — c J (9.2)
Transforming the last, nonlinear term we obtain:
2 2 2
24— %VJ + §J3/25(s)53/2(5) cos® | — 7;”5 Fap(s)] . (9.3)

Hamiltonian 7%= W5}A]7]7] QFoRA], Thaa} 72 w4 #ghe gt

a _ oM dJ _ O(H xC)2r)
ds  0¢ d(sx2r/C) O
o _OH do _ O(H x C/2r)
ds  0J " d(sx2r/C) oJ
=, se 0= HStA 7], Holle C/2nE &3to] A HE A it
s X %T — 0
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Therefore, 0 increases by 27 every revolution. The new Hamiltonian is

H=v]+V(p,J0), (9.4)
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where the perturbation V is

V(p,J,0) = f ¢ J3/23( )6%2(0) cos®[p — v0 + (0)] (9.5)

C
127r\/_

The new Hamiltonian is periodic in # with period 27. The equations of motion for the
action-angle variables are:

——J328(0)8%%(0) {cos 3 [¢ — v + 1(0)] + 3cos [¢ — 0 + ¥(H)]} .

9J _ oM _ oV
90 96 0o
o6 oM OV
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1.3 Discussion on phase

e If we neglect the perturbation V/,

9¢

60—7/—>¢—V9+¢0

e After one turn
0 — 0+ 27

vl — P(0) — v x (0 +2m) — [(0) — 2mv] = v0 — (0)
hence,
¢ —vl+1Y(0) — ¢+ 2mv — vh +Y(0)
Therefore, after one turn, the argument in Eq. (9.5) changes by 27v.
e If the fractional part of v is close to one-third or two-thirds, v ~ n 4+ 1/3, where n

is an integer, cos 3[¢ — v + ¥(f)] returns to approximately to same value after 0
changes by 27.

3[¢p — v + ()] — 3[6 — v0 + p(0)] + 3 x 2m(n£1/3)

The effect of this part of the perturbation accumulates with each subsequent period
leading to relatively large excursions in J on the orbit.

e On the contrary,

[0 — vl +1(0)] — [0 —vO+ ()] +2m(n £ 1/3)

so, cos[p — v + 1 (0)] has a phase changing by ~ +2x/3 after each turn, and due
to continuous change of the sign of the cos function the effect of this term averages
out almost to zero over many revolutions in the ring. (This term would be resonant
for the tune close to an integer but, as we know, the integer values of the tune are
already unstable.)
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1.4 Special case of v ~n+1/3

In the rest of this section we will focus on the most interesting case when v ~ n + 1/3
and drop the cos[¢p — v0 + 1(0)] term in the perturbation,

C
127/2
Let us consider a ring with one sextupole magnet of length much shorter than the ring

circumference C'. Without loss of generality, we can assume that the magnet is located
at 6 = 0.

V(p,J,0) = J328(0)3%2(0) cos 3[¢ — v0 + (9] . (9.7)

S(6) = Sod(6), 9.8)

where

The requirement of the periodicity of S(6) follows from the fact that two values of € that
differ by 27 correspond to the same position in the ring.

V(p,J,0) = ffﬁ/?‘s 332(0)5(0) cos 3[p — 10 + Y (6)]

— gRﬁ/?a(e) cos 3[¢ — v + ¥ (0)], (9.9)

where

R = C8,3% ) (4mv/2)
with 8y = 5(0)

g—‘ej = RJ3%5(0) sin 3[p — v0 + (0)],
Zq; v+ = RJ1/25(0) cos 3[¢ — v + (0)]. (9.10)
1.5 Evolution of J and ¢ over one turn from § = -0 to 6 =27 -0

We first need to integrate these equations through the delta-function kick, that is from
0 = —0to 6 =+0.

%‘07 = J%%5(0) sin 3¢,
96 _ 1 1o
50 2] 3(0) cos 3¢, (9.11)

e Without loss of generality, we can assume that ¢ (0) = 0.
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e We rescaled the action introducing J = R%J.
o We set # = 0 everywhere except in the argument of the delta function.

e We discarded the constant v term from the second equation of (9.10) in comparison
to the delta function.

1.6 How to solve?

Taking advantage of the fact that the delta function §(6) is a derivative of the step
function h(0),

dh

-5 =10(0). (9.12)

where h(6) is equal to 1 for # > 0 and zero otherwise. By noting that

0 dh o 0
we replace Eq. (9.11)
%—‘Z = j3/zsin3¢,
1
% B 5«71/2 cos 3¢, (9.14)

where the independent variable h now changes from 0 to 1 when 6 traverses the delta-
function.

H(p, T) = %Jgﬂ cos 3¢ |, (9.15)

Since the Hamiltonian does not depend on the independent variable h, it is conserved,
and its trajectories can be easily found from the equation

H(p, J) = const.

1.7 Map

By numerically integrating Eq. (9.14) from h = 0 to h = 1, we can generate the map
that moves our particle through the sextupole magnet according to our approximate
Hamiltonian.

e Action-angle variables at § = —0:

(¢1,71)
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e To get an entire full-turn map we then need to evaluate the equations of motion
from the exit from the sextupole, § = +0, through the whole ring, to the next
entrance to the magnet, § = 27 — 0.

T2 = f(é1,T1), P2 = g(¢1, 1) + 270 (9.16)
o At the start of the n-th revolution:
Tn = f(On—1,Tn-1), On = 9(On-1, Tn—1) + 27mv|. (9.17)

Each pair (¢, J,) was converted to the original canonical variables x and P,:

:ER/\/E = /27 cos ¢, PxR\/E = —V/2T sing, (9.18)

where for simplicity we have assumed o = 0.

4F . T -

O™ 9.1: H(p,T) = £T%*cos3¢ = const. THZE oJ27je] H gl dis] 2= AL
3¢ =m/2,3w/2,57/2,Tn /2,97 /2, 117 /2 o] Tjs]| T Zro] F3tci= 7.

Al 2 A Standard Model and Resonance Overlapping

e As we saw in the previous section, the effect of a sextupole on betatron oscillations
can be reduced to a map, Eq. (9.17), which demonstrates particle confinement near
the axis and particle losses outside of the separatrix.

e Many other nonlinear beam dynamics phenomena can also be formulated in terms
of Hamiltonian maps.

e In this section, we will consider one such map often called the standard, or Chirikov-
Taylor, map.

e The remarkable feature of this map is that it demonstrates a transition from regular
to chaotic motion in a non-integrable, time-dependent Hamiltonian system with
only one degree of freedom.
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2.1 Standard map

The standard map describes the evolution in time of a system with the following Hamil-
tonian:

1 .
H(0,1,t) = 512 + K6(t) cosf, (9.19)

o

where K is a parameter, 0(t) = Yol 6(t+n) is the periodic ¢ function that describes
kicks repeating with the unit period (7" = 1). Here, I can be considered as an action,
and 6 as an angle variable; they are both dimensionless. The equations of motion for
and 0 are

- 8H T . OH
I,y =1,+ Ksin,,
0n+1 - Qn + In+1 . <921)

These equations transform the action-angle variables from their values at time t = n to
time ¢ = n + 1. This transformation is called the standard map. [©] map®] canonical
transformation ¢l A& $%H 4A|: Problem 9.1]

2.2 Structure for only one cos term

The periodic delta-function used in Eq. (9.19) can be expanded as a Fourier series,

S(t)=1+2 f: cos (2mnt) . (9.22)

n=1
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1
H(0,1,t) = §IQ—|—KCOS< ) + 2K cos(¢ Zcos (27nt)

1
- 5]2 + K cos(f) + Kn;m cos(f — 2mnt), (9.23)
n#0

where we have used the relation
cos(f) cos(2mnt) = cos(0 — 2mnt) + cos(f + 2mnt)

e The two first terms on the right-hand side comprise the Hamiltonian of the pendu-
lum.

e The sum over terms with n # 0 is a time-dependent periodic driver with the
frequencies equal to 27n.

We can get some insight into the structure of the phase space by selecting only one term
n:

1
H(O,I,t) = 5_72 + K cos(0 — 2mnt) . (9.24)
Making the canonical transformation: (0, 1) — (¢, J)
J=1-2mn, ¢ =0 —2mnt, (9.25)

we eliminate the time variables and find the new Hamiltonian [5% 43A]: Problem 9.3],

H (P, J) = %J2 + K cosg|, (9.26)

e Comparison between pendulum equation:

2

_ P9 9
H(0,p) = 572 wyml® cos O
mi® — 1, —w§—>K, 0— 0+
e Separatrix:
H(,J) = |K]

wL ofgfo} o] A2t
J?=2(H — Kcos¢) >0 — for H = |K|, 0<¢<2r

e Stable fixed points:
Hl(gba J) =-K

J?P=2(H —Kcos¢) >0 —=for H =K, ¢=n
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e Maximum deviation of J on the separatrix:
J = +2./|K]|

e For the original action variable I:

I =2mn+2\/|K]|

R e e L ———
B e
10} :
B il i
5 L TTee—————— TThe—————— _
by
O o=
_5-_ — e e—— ]
— e —
0.0 0.5 1.0 1.5 2.0
G/2m

1% 9.3: 4] (9.26) & 18 T, [2 9ol & 2rn & shift 3. TIFAQF WA E] 7o A=
0= P, olntE ¢= Hof Uk 7 8 K = 0.2 2 A}FR6lY] K| <« 1 & UHEs}]
w2, overlap o] =7 =t}

2.3 Overlapping of the resonance

e To understand the overall structure of the phase space of the original Hamiltonian,
we can naively superimpose the phase portraits for the Hamiltonians (9.26) with
different values of n.

e Such superposition makes sense only if |K| < 1, when the resonances for different
values of n are well separated and, in the first approximation, do not interact with
each other.

e Computer simulations of the standard map show that, indeed, as long as the dis-
tance between the islands is much larger than the width of the separatrix, then
to a good approximation resonances with different values of n can be considered
separately.
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However, increasing |K| leads to an owverlapping of the resonances and the motion
becomes much more complicated. Because the distance between the resonance is 27 and

the width is 44/| K|, formally overlapping occurs
|K| > 7?/4

But, one should not expect a drastic transition at this exact value of K. Indeed, simu-
lations show that when |K| increases, there is a gradual transformation of the flow into
a regime in which the laminar orbits are destroyed and the motion becomes stochastic.
Qualitatively, the transition from the laminar to stochastic motion occurs at

K~1. (9.27)

When | K| becomes much larger than one, regular orbits are destroyed and the particle
motion becomes chaotic. In this limit, after each kick the particle loses memory of its
previous phase, and the consecutive phases 6,, can be considered to be uncorrelated.
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2.4 Diffusion for the action

As a result, the subsequent values of action [,, can be described as a random walk, and
over many steps a statistical description of the process as a diffusion along the I axis

becomes appropriate.
From Eq. (9.21), we calculate the change of the action in one step,

Al, = Ksinf,
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taking the square of A, and averaging it over the random phase 6,,, we obtain

(AI?) = %KQ. (9.28)

In a random walk, the average squares add up, and after N steps the average square of
the accumulated action Iy is

1
(I3) =~ (AI*)N =~ §K2N. (9.29)
The linear growth of (/%) with the number of steps is a characteristic feature of the

diffusion process.

Al 3 A Dynamic Aperture in Accelerators

3.1 Nonlinear fields

e We have seen in this chapter and the previous one that the severity of field errors
and nonlinearities depends strongly on the tune.

e Nonlinear fields (both external and self-forces) have the effect of varying the tune
corresponding to different particle orbits, leading to a tune spread.

e This means that even if a particle following the reference orbit is not near a res-
onance, other particles at higher amplitudes may be strongly perturbed by the
nonlinear fields.

e We have not discussed coupling between different degrees of freedom, but that leads
to more opportunities for resonances to appear (for example, if v, + v, = integer
or v, — v, = integer).

e In a typical situation, nonlinear fields make the phase space at some distance from
the reference orbit prone to stochastic motion, leading to a random walk of the
particle until it is lost.

3.2 Dynamic aperture

e At best there can only be a limited region near the reference orbit where particles
are properly confined. This region in phase space is called the dynamic aperture
of the machine.

e [t is computed with the help of accelerator codes by launching particles at various
locations away from the reference orbit and tracking their motion.

e Rather than having a sharp boundary, the dynamic aperture is usually surrounded
by an intermediate zone where the rate of diffusion which particles experience gets
gradually worse.
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e A related concept that focuses on the short-term tune of particles within a bunch
is the analysis of frequency maps.

e A modern circular accelerator has many magnets that play various roles in confining
the beam in the ring.

e Even as industry and researchers learn to reduce errors in the manufacture and
installation of magnets, more aggressive designs and improvements in other areas
tend to make nonlinearities a major constraint on the operation of acceler-
ators, limiting the total charge contained in storage rings and the luminosity of
colliders.
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