
제 10 장

The kinetic equation

• In the preceding chapters we focused our attention on the motion of a single particle.

• In this chapter, we will introduce the concept of the distribution function and de-
scribe the formalism of the kinetic equation for treating large ensembles of particles
in a beam.

• While this chapter focuses on deterministic Hamiltonian motion, kinetic equations
in general can also include stochastic motion and damping.

제 1 절 The Distribution Function in Phase Space

and the Kinetic Equation

• We begin from a simple case of one degree of freedom when each particle is char-
acterized by two canonically conjugate variables q and p.

• The particle motion is governed by external fields, as well as interactions between
the particles. In this chapter, however, we neglect the interaction effects.

1.1 Distribution function

Consider an infinitesimally small region dq×dp in the phase plane with the center located
at p, q:

• Let the number of particles at time t in this phase space element be given by dN .

• This mathematically infinitesimal phase element should be considered to be phys-
ically large enough to include many particles, so that dN � 1.

• The distribution function is

dN(t) = f(q, p, t)dp dq . (10.1)
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We can say that the distribution function gives the density of particles in the phase
space.

1.2 Time evolution of the Distribution function

그림 10.1:

At time t + dt the number of particles in the region dq × dp will change because of
the flow of particles through the four boundaries of the rectangle.

1. Due to the motion in the q direction, the number of particles that flow in through
the left boundary:

f

(
q − 1

2
dq, p, t

)
× dp× q̇

(
q − 1

2
dq, p, t

)
dt . (10.2)

• qdt is the distance from which the flow brings new particles into the rectangle
during time dt.

• We take the values of both f and q̇ in the middle of the left side of the rectangle

2. Similarly, the number of particles that flow out through the right boundary:

f

(
q +

1

2
dq, p, t

)
× dp× q̇

(
q +

1

2
dq, p, t

)
dt . (10.3)

3. Using the same logic, we calculate the number of particles which flow in through
the lower horizontal boundary as

f

(
q, p− 1

2
dp, t

)
× dq × ṗ

(
q, p− 1

2
dp, t

)
dt , (10.4)

4. The number of particles that flow out through the upper horizontal boundary:

f

(
q, p+

1

2
dp, t

)
× dq × ṗ

(
q, p+

1

2
dp, t

)
dt . (10.5)
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We are now ready to calculate the change of the number of particles in the phase volume
dq × dp. On one hand, this number is due to the change of the distribution function
during the time interval dt,

dN(t+ dt)− dN(t) = [f(q, p, t+ dt)− f(q, p, t)]dpdq.

On the other hand, it is equal to the sum of the four contributions calculated above.

[f(q, p, t+ dt)− f(q, p, t)]dp dq

= f

(
q − 1

2
dq, p, t

)
q̇

(
q − 1

2
dq, p, t

)
dp dt− f

(
q +

1

2
dq, p, t

)
q̇

(
q +

1

2
dq, p, t

)
dp dt

+ f

(
q, p− 1

2
dp, t

)
ṗ

(
q, p− 1

2
dp, t

)
dq dt− f

(
q, p+

1

2
dp, t

)
ṗ

(
q, p+

1

2
dp, t

)
dq dt .

(10.6)

Expanding both sides of this equation in the Taylor series and keeping only linear
terms in dp, dq, dt, and then dividing both sides by dp, dq, dt, we arrive at the following
result:

∂f(q, p, t)

∂t
+

∂

∂q
[q̇(q, p, t)f(q, p, t)] +

∂

∂p
[ṗ(q, p, t)f(q, p, t)] = 0 . (10.7)

This is the continuity equation for the function f —it is a mathematical expression
of the fact that the particles in the phase space are not created and do not disappear;
they are being transported from one place to another along smooth paths.

윗식을 전체 phase space 에 대해 적분하되, f 가 q, p → ±∞에서 0 이 되다는 것을
이용하면,

∂

∂t

∫
fdpdp =

∂N

∂t
=
dN

dt
= 0

즉, 이것은 total number of particle N 이 보존된다는 것을 의미한다.

1.3 Incompressibility

• From Liouville’s theorem (Sec. 3.4), the volume dpdq of a space phase element does
not change in Hamiltonian motion.

• Since f is proportional to the number of particles in this volume, and this number
is conserved, f too is conserved, but only within a moving phase space volume
element.

• The density at a given point q, p of the phase space does, however, change because
a fluid element located at this point at a given time will be replaced by a new
element at a later time.
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From the Hamiltonian equations,

∂

∂q
q̇ =

∂

∂q

∂H

∂p
,

∂

∂p
ṗ = − ∂

∂p

∂H

∂q
, (10.8)

hence,
∂q̇

∂q
+
∂ṗ

∂p
= 0

1.4 Vlasov equation

Combining incompressibility with Eq. (10.7)

∂f

∂t
+
∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
= 0 , (10.9)

or
∂f

∂t
+
∂f

∂q
q̇ +

∂f

∂p
ṗ = 0 =

df

dt

In accelerator and plasma physics this version of the kinetic equation is often called the
Vlasov equation. Specifically, there are no scattering or damping terms.

In terms of Poisson bracket:
∂f

∂t
= {H, f} . (10.10)

For n degrees of freedom with canonical variables qi and pi, i = 1, 2, . . . , n:

∂f

∂t
=

n∑
i=1

(
∂H

∂qi

∂f

∂pi
− ∂H

∂pi

∂f

∂qi

)
. (10.11)

1.5 Normalization issue

• In some cases it is more convenient to normalize f by the number of particles N ;
in this case, the integral of f over the phase space is equal to one.

• With such a normalization, f(q, p, t)dqdp can be understood as a probability to find
a particle in the phase volume dqdp in the vicinity of the phase point q, p.

제 2 절 Integration of the Vlasov Equation Along Tra-

jectories

• We will prove by direct calculation that any distribution function which satisfies
the Vlasov equation remains constant in each “fluid” element of the phase space as
it moves along a particle trajectory.

• This follows from the Liouville theorem; because the phase volume of a small fluid
element is conserved, the value of the distribution function equal to the ratio of the
number of particles in this element to its volume does not change.
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2.1 Trajectory in the extended phase space

Difference of f at two close points, at time t and t+ dt, on this single trajectory:

df = f(q + dq, p+ dp, t+ dt)− f(q, p, t)

=
∂f

∂t
dt+

∂f

∂q
dq +

∂f

∂p
dp . (10.12)

Because the two points are on the same trajectory:

dq = q̇dt =

(
∂H

∂p

)
dt, dp = ṗdt = −

(
∂H

∂q

)
dt

Hence,

df =
∂f

∂t
dt− ∂H

∂q

∂f

∂p
dt+

∂H

∂p

∂f

∂q
dt = 0 , (10.13)

or

df

dt
= 0 . (10.14)

Here, we have used Eq. (10.9). This is the mathematical expression of the fact that f
remains constant along a trajectory. This derivative, which describes changes along a
trajectory, is referred to as the convective derivative, and can be written as

d

dt conv
≡ ∂

∂t
+ q̇

∂

∂q
+ ṗ

∂

∂p
. (10.15)

2.2 Solutions to the Vlasov equation

Knowing that f is constant along trajectories, we can find solutions to the Vlasov equation
if the phase space orbits are known.

• Let q(q0, p0, t) and p(q0, p0, t) be solutions of the Hamiltonian equations with initial
values q0 and p0 at t = 0.

• F (q0, p0) be the initial distribution function at t = 0.

To find the value of f at q, p at time t we need to trace back the trajectory that passes
through q, p at t, and find the initial values q0, p0 where it starts at t = 0. Hence, we need
to invert the relations

q = q(q0, p0, t) , p = p(q0, p0, t) , (10.16)

and find
q0 = q0(q, p, t) , p0 = p0(q, p, t)

The value of f at q, p at time t is then equal to the value of F at q0, p0:

f(q, p, t) = F (q0(q, p, t), p0(q, p, t)) . (10.17)

For simple trajectories, the inversion can be done analytically, and the above equation
then defines f for an arbitrary initial function F .
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2.3 Example: an ensemble of linear oscillators

Let us consider an ensemble of linear oscillators:

H(x, p) =
p2

2
+ ω2x

2

2
. (10.18)

The distribution function f(x, p, t) for these oscillators satisfies the Vlasov equation:

∂f

∂t
+ p

∂f

∂x
− ω2x

∂f

∂p
= 0 . (10.19)

Solving the Hamiltonian equations, it is easy to find the trajectory which has initial value
x0 and p0 at t = 0,

x = x0 cos(ωt) +
p0
ω

sin(ωt),

p = −ωx0 sin(ωt) + p0 cos(ωt) . (10.20)

Inverting these equations, we find

x0 = x cos(ωt)− p

ω
sin(ωt),

p0 = ωx sin(ωt) + p cos(ωt) . (10.21)

If F (x, p) is the initial distribution function at t = 0, then,

f(x, p, t) = F (x0, p0) = F
(
x cos(ωt)− p

ω
sin(ωt), ωx sin(ωt) + p cos(ωt)

)
. (10.22)

This solution describes a rotation of the distribution function in the phase space.

제 3 절 Action-Angle Variables in the Vlasov Equa-

tion

• The Vlasov equation has the same form independent of the choice of the canonical
variables q and p.

• We will demonstrate the advantages of using the action-angle variables φ, J in
finding a solution to the Vlasov equation.

3.1 Differential rotation

Consider a 1D system with the action-angle variables (φ, J) and a time-independent
Hamiltonian H(J). For f = f(φ, J, t),

∂f

∂t
+
∂H

∂J

∂f

∂φ
− ∂H

∂φ

∂f

∂J
=
∂f

∂t
+
∂H

∂J

∂f

∂φ
= 0 , (10.23)
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where we have used the fact that H does not depend on φ. Since

∂H

∂J
= ω(J)

∂f

∂t
+ ω(J)

∂f

∂φ
= 0 . (10.24)

This equation is satisfied by an arbitrary function f of the following form:

f(φ, J, t) = F (φ− ω(J)t, J) , (10.25)

• This result has a simple geometrical meaning: the values of the distribution function
on the orbit with a given action J rotate along this orbit with the angular frequency
ω(J).

• In general, this is a differential rotation: different layers of the phase space rotate
with different frequencies.

3.2 Steady-state solution

Using Eq. (10.25) we can find a general form of a steady-state distribution function that
does not depend on time. Because

∂f

∂t
= −ω(J)

∂F

∂φ

∂f

∂t
= 0 −→ F does not depend on φ

We come to the conclusion that any function f that depends only on J is a steady-
state solution to the Vlasov equation.

3.3 Beam equilibrium in an accelerator

• The particular form of the function f(J) for a beam in an accelerator cannot be
found from Eq. (10.24) alone.

• In practice, the function f(J) is often determined by either initial conditions (how
the beam was generated or injected into an accelerator) or some slow diffusion or
collision processes in the ring.

• In many cases, a negative exponential dependence of f versus J is a good approx-
imation to the equilibrium beam state,

f = const e−J/ε0 = const exp

(
− 1

2βε0

[
x2 + (βPx + αx)2

])
, (10.26)

where we have used the expression for J in a linear magnetic lattice. The quan-
tity ε0 is called the beam emittance. It is an important characteristic of the beam
quality.
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제 4 절 Phase Mixing

4.1 In the limit of t→∞
• From Eq. (10.25) we can draw some important conclusions about the evolution of

the distribution function in the limit t→∞.

• Because φ is an angular variable, two values of φ that differ by 2π correspond to
the same point in phase space. Hence F is a periodic function of φ with period 2π
and can be expanded into the Fourier series

F (φ, J) =
∞∑

n=−∞

Fn(J)einφ , (10.27)

where

Fn(J) =
1

2π

∫ 2π

0

F (φ, J)e−inφ dφ . (10.28)

Since f(φ, J, t) = F (φ− ω(J)t, J)

f(φ, J, t) =
∞∑

n=−∞

Fn(J)ein[φ−ω(J)t] . (10.29)

• In the limit t → ∞, all terms in this sum, except for n = 0, become rapidly
oscillating functions of the action J due to the factor e−inω(J)t. When calculating
any integral of f over the phase space, the contribution of these terms averages
out to almost zero and becomes negligible. (이 부분의 내용은 대략적으로는 이해가
가는데, 엄밀하게는 조금 더 살펴봐야 할 듯. )

• In the limit t→∞, we only need to keep the n = 0 term:

f(φ, J, t) −→ F0(J) ≡ 1

2π

∫ 2π

0

F (φ, J) dφ ≡ 1

2π

∫ 2π

0

f(φ, J, 0) dφ . (10.30)

Here, we use f(φ, J, 0) = F (φ − ω(J)0, J) = F (φ, J) This is simply the average
over the angle coordinate of the initial distribution function f .

• This derivation naturally explains why the steady-state distribution function de-
pends only on action

4.2 Phase mixing

• The mechanism that is responsible for the evolution of the distribution function to
a steady state through rapid oscillations of the phase factor e−inω(J)t is called phase
mixing.
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• A linear oscillator in which ω is constant and does not depend on J is an exception:
it does not exhibit phase mixing.

• Rough estimation of the time needed to approach equilibrium:

– Let’s use ∆ω to characterize the frequency spread in the system due to the
function ω(J) and the distribution of particles found in the beam.

– The phase variation nω(J)t at time t can be estimated as n∆ωt.

– The phases on different orbits start to diverge at n∆ωt & π, or t & π/n∆ω.

– The longest time needed to mix the phases corresponds to the n = 1 term,
giving an estimate t & π/∆ω.

– Hence, the distribution function reaches the steady state at times t� π/∆ω.

제 5 절 Damping and Stochastic Motion

In previous chapters we have discussed how the amplitude of motion of a single particle
can decrease due to damping, or take a random walk as a result of stochastic motion.
Here, we briefly describe how these effects are incorporated in the formalism of the kinetic
equation.

5.1 Effect of non-conservative force

• We recalculate the convective derivative with corrections to the Hamiltonian dy-
namics from Eq. (3.38) due to non-conservative forces:

0 =
∂f

∂t
+
∑
i

[
∂

∂qi
(q̇if) +

∂

∂pi
(ṗif)

]
=
∂f

∂t
+
∑
i

[
q̇i
∂f

∂qi
+ ṗi

∂f

∂pi
+ f

∂q̇i
∂qi

+ f
∂ṗi
∂pi

]
=
df

dt conv
+ f

∑
i

∂Fi
∂pi

, (10.31)

We used Eq. (3.38) with non-conservative force Fi:

ṗi = −∂H
∂qi

+ Fi

thus we find that

df

dt conv
= −f

∑
i

∂Fi
∂pi

. (10.32)

This is consistent with the more general result Eq. (3.39) (이 부분도 잘 이해가
안감):

df

dt conv
=
∂f

∂t
+ {f,H}+

∑
i

Fi
∂f

∂pi
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Using Eq. (3.46)
d

dt
detM = detM(t)

∑
i

(
∂Fi
∂pi

)
q(t),p(t)

we can connect the evolution of the distribution function with the time derivative
of the determinant of the Jacobian matrix M of the dynamic flow,

1

f

df

dt conv
= − 1

detM

d detM

dt
. (10.33)

Integrating this equation over time, we find that f(t) evaluated along a particle
trajectory scales in time as the inverse of the determinant of the matrix M(t):

f(qi, pi, t)

f(qi, pi, 0)
=

1

[detM(t)]
(10.34)

where detM(0) = 1. This is consistent with the notion that the phase space density
increases only when trajectories converge in phase space due to non-Hamiltonian
dynamics.

• For one degree of freedom

F = −γẋ = −γp
df

dt
= −f ∂F

∂p
= −f(−γ) = γf (10.35)

Hence

f(x(t), p(t), t) = f(x(0), p(0), 0) eγt . (10.36)

5.2 Random kicks

• Random kicks with a small correlation time can also be incorporated into the
formalism of the distribution function in a natural way if the coordinates are chosen
so that only the momenta are directly impacted by the kicks.

• Because these kicks lead to a random walk of individual particles, this appears in
the distribution function as a diffusion process when a large ensemble is considered

• We consider a single degree of freedom and very short time scales so that the
dynamics have

1. a negligible impact

2. uncorrelated random kicks with typical magnitude ∆p

3. a typical time ∆t between kicks lead to a random walk with〈
[p(t)− p0]2

〉
= (t− t0)

〈
(∆p)2/∆t

〉
where p(t0) = p0.
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• This process, convolved with the initial distribution, leads to a spreading out of the
distribution function.

• Statistically, it can also be described as the result of a differential operator

∂f

∂t
= Ds

∂2f

∂p2
, (10.37)

where
Ds =

〈
(∆p)2/∆t

〉
(10.38)

5.3 Vlasov-Fokker-Planck equation

• Because the above expression of the dynamics depends on infinitesimal time scales,
it is only necessary to add back the full dynamics by replacing ∂f/∂t with the
convective derivative (이 말도 명확하게 이해는 가지 않음.)—for completeness we
include the correction from frictional forces:

df

dt conv
= −f ∂F

∂p
+Ds

∂2f

∂p2
. (10.39)

The impact of this differential operator will be mixed with that of the particle
dynamics to yield a spread in both momentum and position, especially when the
frequency of motion is fast compared to the impact of the scattering.

• For a one-dimensional system and the simple form of damping F = −γp,

ṗ = −∂H
∂q

+ F = −∂H
∂q
− γp

we can expand this to find the partial time derivative:

∂f

∂t
= −∂H

∂p

∂f

∂x
+
∂H

∂q

∂f

∂p
+ γp

∂f

∂p
+ γf +Ds

∂2f

∂p2

= −{f,H}+
∂

∂p
(γpf) +Ds

∂2f

∂p2
. (10.40)

The second term in the final expression (related to damping) combines the effect
of the distribution function having a convective derivative (as found above) with
the fact that the flow in phase space is itself no longer fully defined by the Poisson
bracket, as seen in Eq. (3.39).
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