Al 8 &
Magnetic field and energy errors

e Due to small magnetic field errors, the magnetic field in any real machine differ
from the ideal linear lattice.

e Also, the particle energy in the beam deviates from the reference energy for which
the ideal closed orbit is designed.

e In this chapter, we study how the dipole and quadrupole field errors as well as small
energy deviations affect the orbits.

Al 1 A Closed Orbit Distortions

e Assumptions:

— Design vertical magnetic field: By(s)
Magnetic field with error in y: B(s) = y [Bo(s) + AB(s)]
Deviation from the ideal field is small: |AB| < By

— Our curvilinear coordinate system (z, y, s) is associated with the ideal reference
orbit of By, which is the line x =y =0

— The vector potential AA; of the error field:

Ay = —B(s)z (1 - 22) — AA, = —AB(s)z to the first order
p

e From the Hamiltonian (6.10):

1 1 eAB(s)

= —P2+ K 2, = 8.1
where,
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The differential equation for x:

"+ K(s)x = _eApBO(s) : (8.2)

— This equation describes general betatron oscillations, but can also be used to
find a new closed orbit in the perturbed magnetic field.

— Because the perturbation is small, this new orbit should be close to the old
one; it is obtained as a periodic solution to Eq. (8.2).

— We denote this solution by z(s); it is called the closed orbit distortion.

— By definition, closed orbits must satisfy the periodicity condition x¢(s+ C) =

zo(s).

e Calculation of x¢(s):
We first consider the case of a field perturbation localized at one point,

AB(s) = AByd(s — §')

Since the right-hand side of Eq. (8.2) (perturbation term) is equal to zero every-
where except for the point s = s’, we seek a solution in the following form:

xo(s) = A/ B(s) cosli(s) — 1y . (8.3)

e Two requirements:

1. zy should be continuous at s = s’
We choose
o =9Y(s')+mvat s=¢

P(s) =(s") = Y(s') + 2nv when s = s — s + C

Then when s = s’

h(s) = (s
zo(s") = A\/B(s') cos[—mv]
After one turn around the ring,

zo(s' + C) = A\/B(s' + C) cos[mv] = xo(s)

Hence,

70(s) = Ay/B(s) coslib(s) — v(s') — 7] (8.4)

2. A jump in the first derivative of xq at s’

s'+e s'+e
/ [2" + K (s)x]ds = —/ 6AB(S>d5

—e s'—e Do
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eAB(s")

(s +¢)—2' (s —€)+ K(s)[x(s S Fe)=— -

Since s’ < s < s +C,

2(s +e) = (), and 2'(s' —€) = 2'(s' + O)

we have
A /
2 () — a(s' + C) = — 2B (8.5)
Do
Substituting Eq. (8.4) into Eq. (8.5) we find
Ao VB(s") eABy(s") ' (8.6)

2 sin(mv)  po

e Extending the delta-function perturbation to the case of an arbitrary AB(s): We
represent B(s) as a superposition of delta-function contributions using

AB(s) = / A AB(s)o(s — ). (8.7)

Because the solution of the following equation,

s+C
"+ K(s)x = _eAB(s) S ds'AB(s")0(s — &)
Do Po Js

Zg is linear in AB, we need to add contributions from all locations s, integrating
the right-hand side of Eq. (8.4) over s':

—e

s+C . ) ,
() = s / 05/ AB(')\/B()B() coslip(s) — () —m].  (8.8)

e Integer resonance: An important immediate consequence of this formula is that
integer values for the tune v are not allowed in a realistic magnetic lattice. Such a
lattice would be unstable with respect to small errors of the ideal magnetic field.

e General solution:

— We found the xq (closed orbit distortion, TFeF o} o]F==} of 7} QIttH
xo = 0) as a particular solution of the inhomogeneous differential equation.

— The general solution is
z(s) = wo(s) +&(s). (8.9)
— &(s) satisfies the homogeneous equation

¢+ K(s)E=0, (8.10)

which is the equation for the horizontal betatron oscillations. The meaning of
&(s) is the betatron oscillation around the perturbed closed orbit z(s).
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e Action-angle variables for the new Hamiltonian:

— The unperturbed coordinate x and the momentum P, = x’ are measured

relative to the ideal closed orbit x = 0.

— With the perturbed magnetic field, both the distance and the angle has to be

measured relative to the perturbed closed orbit z0(s).

— The new action is obtained by simply replacing z — x — z¢(s) and P, —

9 X 2ﬁ

Notes:

{@ =20 + [8(P; — ) + ale —x0)]'} .

(8.11)

— As the perturbation of the fields becomes larger, higher-order terms that were

neglected in this derivation become more important.

— At some point, it may even become impossible to find a closed orbit at all.

— The case of the horizontal perturbation, B(s) = yBy(s) + £AB(s), can be
considered in a similar fashion: to lowest order the perturbation propagates
into the Hamiltonian H,, and the perturbed closed orbit gets a distortion yo(s)

in the vertical direction.

Al 2 @ Effect of Energy Deviation

Another effect that causes a distortion of the closed orbit is the deviation of the

particle energy from the nominal one

We can directly adapt the results of the previous section to find the distortion for a
particle with a relative energy that differs from the nominal one by n = (p—po)/po-

From the Hamiltonian (6.10), we see that it has a term —nx/p that couples 1 to

the horizontal (z) motion.

1 1
He = éPxZ + §K(s)x2 - gx
Comparing with Eq. (8.1)
AB — 10

ep

and we find the orbit distortion caused by the energy deviation 7,

(8.12)

(8.13)

(8.14)



where the function D is

Dis) = 2sm (mv) / ) COS (s) =

This function is called the dispersion function of the ring, and it too is a periodic
function of s.

Y(s') — ). (8.15)

e Using Egs. (8.11) and (8.14), we can also find the action variable for a particle with
an energy deviation 7,

I Pane) = 55 (le = nD()P +{81P = nD'(9)] + ale =nD]Y’) . (816)

62



Al 3 @ Quadruple Errors

3.1 Perturbed Hamiltonian

e Let us assume that due to a perturbation of the quadrupole field the ideal focusing
strength K (s) is changed to K(s) + AK(s), where |AK| < | K.

e The perturbed Hamiltonian is

1 1 1
H = EP:? + éK(s)mQ + §€AK(8)I2 , (8.17)

where we have introduced a formal smallness parameter €, which will be set to unity
at the end of the calculation. (A4t B of| A ufj-¢- 2L-2 qFolgt= A& FA|o17] 9]
SHA ARt Zo]al, A4ke] upx|df @AM = 182 s oW H.)

e With the proper choice of function K (s), this Hamiltonian can be applied to both
horizontal (x) and vertical (y) coordinates.

e Since we know that the focusing function K (s) determines the betatron oscillations
in the system, it is clear that changing the focusing strength would result in the
perturbation of the beta function and, hence, the tune of the ring.

3.2 Action-angle variables

e Transformation to the action-angle variables J and ¢ casts the first two terms of
the Hamiltonian into J/f:

1 1
—P2+ —K(s)x* —

A

J
Bls)
e For the perturbed term in the Hamiltonian, we express x in terms of J and ¢ using

x =/206Jcos¢p
H J + eAK (s5)JB(s) cos® ¢
=——+c¢
B(s)

1 1 1
=J (% + §6AK(3)ﬁ(s)> + éeAK(s)Jﬁ(s) cos 2¢, (8.19)

where we have split the perturbation term into an averaged part and one oscillating
using

1
cos® ¢ = 5 (14 cos2¢)
e The last term in the above equation is denoted by €V'(¢, J, s):
1
Vg, J,s) = §AK(S)JB(S) cos 2¢ . (8.20)
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3.3 Perturbation theory based on canonical transformations

Here, the goal is to eliminate the perturbation term from the transformed Hamiltonian.
There is no general method that completely eliminates the angular dependence on ¢.
However, this dependence can be made of higher order in e.

e Step 1: A canonical transformation to new variables, (¢,J) — (&, I) using the
generating function of the second type.

Fy(¢,1,5) = ¢I + ¢G(9, 1, 5), (8.21)
We will determine the appropriate function G.

e We obtain the following relations between the old and new variables:

E=o+eGr(o,1,s), J=1+€eGy(0,1,s), (8.22)
where 9a 50
GI - Wa G(b - 8_¢

e Because GG is multiplied by the small parameter ¢, the difference between the old
and the new variables is small. We can solve these equations to the first order in e:

=, SO o G Il e 1 & J B ZAMH R gL

Ex~o+eGi(o,Js), I~ J—eGy(p,J,s), (8.23)
e New Hamiltonian: / oF, e
H :H+E—>H1:H+g

Hi=1 (% + %EAKﬁ) +eV + %EG(z) + €Gy + O(€%). (8.24)

e We can cancel out the angle-dependent part of the perturbation V' in the new
Hamiltonian by choosing G in such a way that the ¢-dependent terms in Eq. (8.24),
which are all linear in €, cancel:

1

g

e Note that because the old and new variables differ by small terms of the order of ¢,
we can write V' as if it were a function of the variables (¢, I, s) to match the form of
the function G from the generating function. =, A H9} 7]& H = Afo] 9] zfo]=
e % A= goll hur] w2, e o] 1247} ol M= 2] Fou|stth= o]

e Solution:

V4 —Gy+G,=0. (8.25)

s+C
C(.1,5) = —m [ AR5 sin2lo - vl + u(s) - m).
(8.26)

10,

949 4 A (3.25)0] Sl dstod

o|N

s

st

7 = (SA4).
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— The function G should be periodic in s with the period equal to the ring
conference C.

AR, QA AR - 540 B s 540 7 247 AFL S A}
W] ghe
— To avoid a singularity in the formula we need to require that V' is not equal

to integer or half-integer values.

e New Hamiltonian with the solution G
1 1

— We have neglected higher order terms.

— Because H; does not depend on the angle £, the action [ is an integral of
motion.

— New action is given by Eq. (8.23)

€ s+C
T= T4 g [ AR cos2lo = i(s) + (<) — .

2sin(27v
(8.28)

3.4 New beta function and betatron phase

e New modified beta function 5, and corresponding betatron phase ¢y:

— @25, £ — ¢ o= bS] AR 18R] g
~ Bl My [/ 02 A7) 41eE..0] A BEA] 184 ¢k,
— 7O e o2 B A (7.14) oA 4] (7.19)2] Y&
e The proper definition of the beta function and betatron phase comes from Eqs.

(7.8)—(7.10). These expressions should hold equally in the new action-angle coordi-
nates by taking J — I, § — (; and ¢ — ¢q:

x = /2611 cos ¢,
P, = —\/i(sin@ + oy cos ¢1)
B
1
I = 28, [2° + (B1 P + auz)?] | (8.29)

where we again define oy = —f]/2. &, quadrupole 9|7} Ut} stE| e, 7] 224
0 2= Hill’s equation & TFE5}HA] betatron oscillation & F &2, YAHe] &%
Al F712 014 =
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e Even though both 5, and ¢; are unknown, we can overcome this by using the fact
that they are only functions of s, and that the above expressions have to hold true
for all combinations of z and P,. Thus we may limit our attention to the case
¢ = m/2. This requires z = 0, so ¢; is constrained to be 7/2 as well and

1 1

which implies
b= §f|¢=w/z- (8.31)
= g s9r0) PR TR, 1 gk gole] ¢ B Zolw WA ehg A,

o We write Eq. (8.28) as I = J +€AJ, and write the new beta function to first order
in € as

B =B +eAB
Since
ﬁ+6Aﬁ:§<J+€AJ) at ¢ =m/2 (8.32)
Therefore,
866) = 22l
s+C
= Yein(2r7) i&) | AREBE) cos2r/2 = 0(5) + 0(s) ]
s+C

= T 9sn(2m) Sfl(&y) / ds'AK(s')B(s") cos 2[—4(s) + () —mv],  (8.33)

where

cos(m + 6) = —cos 0

e Based on the above equation, one should avoid integer or half-integer values of the
tune — they are unstable with respect to errors in the focusing strength of the
lattice (half-integer resonance).

e Having found the correction to the beta function, we can find the correction to the

tune by using
1 (¢ d
o (8.34)

" or )y Bs)
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A4d B e TR §8% 19

e S.Y. Lee O] T17: S. Y. Lee -2 &2 WA & y=2 77|39

R b
\ a@f /}' J

e S

vy = integer Vy = half—integer

719 8.1: For dipole errors, only integer tunes induce instability.

vy=half—integer

139 8.2: For quadrupole errors, both half-integer and integer tunes induce instability.
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e A. Wolski 29| 119: @8] witx 9] JHoA = distorted closed orbit o] u]2Zko]
=2

-
AEQ X A8 A g2, AAlRs dEol7]=st nlRah2 d5elA] gt

v==6.15 v =635

v = 6.65 v = 6.85

Z1% 8.3: Distortion of the closed orbit in a storage ring with different tune values. In
each case, the reference trajectory is represented by a circle, with a straight line cutting
the circumference at the location of a dipole ‘kick’. The size of the dipole kick is the same
for all cases. The closed orbit is represented by the distance of the heavy line from the
reference trajectory. The amplitude of the closed orbit is largest for tune values close to

an integer, and smallest for tune values close to a half integer.
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