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Abstract⎯The work is devoted to the study of scanning the transverse profile of a beam using a 
vibrating wire. A new algorithm has been developed that allows the use of a resonant vibrating target 
method for high scanning speeds. The method is based on the idea of measuring secondary/reflected 
particles/radiation generated from the interaction of the beam particles with the wire material, 
synchronously with the frequency of the wire oscillation. The proposed algorithm for using a 
differential signal with sign inversion on consecutive measurements from half-periods of wire 
oscillations is generalized for the case when the scanning speed is much higher than the average speed 
of the wire oscillation. 
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1.  INTRODUCTION 

The basis of traditional scanning methods is a quite simple idea of simultaneously measuring the 
position of the scanning beam of wire and the signal from this wire [1]. Scanners with a separate system 
for detecting secondary particles/radiation are used [2]. Usually this system is located at a sufficiently 
large distance from the location of the wire, and in addition to the useful signal from the wire, it is 
registering a sufficiently large background of particles and radiation scattered as a result of other 
processes. Scanners, that are registering the current of secondary charges generated in the wire as a result 
of the interaction of the beam particles with the wire material, have the advantage of concentrating the 
measuring setup in one node, but require measuring small currents (up to pA) by analog methods [3]. 
Increasing the scanning speed is one of the actual tasks [4]. 

In [5–6], it was proposed to use the frequency of the vibrating wire as a measuring signal, depending 
on its temperature, which in turn monitors the density distribution of particles in the beam. The method is 
more sensitive than the previous two, however, due to the thermal principle of operation, it has inertia 
(i.e., measurement time in a fixed position of the wire is, at best, a fraction of a second). In [7], a series of 
reflections from a vibrating wire during one half-period was used to measure the profile of thin beams. 
The transverse beam size is of the order of the wire oscillations amplitude. 

In [8–9], it was proposed to use a vibrating wire as a target wire, and measure the scattered/reflected 
particles/photons synchronously (resonantly) with the wire oscillations. The pairwise measurement of 
these particles/photons in the extreme positions of the wire during its oscillation allows using the 
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procedure of differentiation of this signal, which cuts off the constant component of the background. In 
[9], it was emphasized that in order to isolate the spatial component of the distribution of the beam being 
measured, a consecutive use of the differentiation procedure with sign inversion at each half-period of 
oscillations is required. As a result, temporary background fluctuations are also cut off. This method was 
called the resonant method of a vibrating wire. In [9] there is a limit on the scanning speed sν , which is 
derived from the condition that the scanning speed is much less than the average speed of the wire on its 
half period 4w AFν = , where A  is the amplitude of the wire oscillations (the maximum displacement of 
the center point of the wire from its equilibrium position), F  is the oscillation frequency of the wire ( it is 
assumed that the wire oscillates at the first harmonic). 

2.  THEORETICAL  MODEL 

In this paper, a method has been developed that allows scanning at speeds much higher than the 
average speed of a wire wν  during its oscillation. The method was tested on a model beam. 

For distinctness, the process of scanning a laser beam is considered. This assumption does not limit the 
application of the method, but further allows the use of the terms ‘reflected photons’ and ‘beam photons’ 
without loss of generality. 

2.1.  Slow  Scanning  of  the Laser  Beam  ( s wν ≤ ν ) 

Consider scanning a laser beam in the case when the scanning speed is less than the average speed of 
the wire during its oscillation. 

Taking into account that the wire in the process of oscillation makes two movements simultaneously – 
uniform and vibrational, for the position of the center of the vibrating wire in the direction x  we use the 
formula: 

 w s * *cos(2 )x t A Ft= ν + π , (1) 

where the term s * tν  describes the motion of the projections of the wires points on the scan axis x  trace 
through the center of the wire (it is assumed that the wire is perpendicular to this axis). In the following, 
the motion of the projections of the wire's fixed points will be called the motion of the scanner. 

We introduce the parameter of the period of oscillations of the wire 1 /T F=  and, accordingly, the set 
of measurement points in time through each half-period: 

 i / 2, 0,1,2...t iT i= = . (2) 

The corresponding center positions of the wire are written as 

 i
w s / 2x i T A= ν ± , (3) 

where the ‘+’ sign is taken for even i  and the ‘−‘ sign for odd i . 

The idea of resonant scanning is to measure the reflected photons of the beam in the limiting positions 
of the wire during its oscillation. 

Let ( )P x  is the photon distribution of the beam. Then the number of measured reflected photons is 
written in the form: 

 i
i w s* ( ) * ( / 2 )S k P x k P i T A= = ν ± , (4) 

where the ‘+’ sign is taken for even i  and the ‘−‘ sign for odd i , a constant coefficient k  determines the 
proportionality between the number of photons falling on the wire and reflected from the wire. Since we 
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are interested only in relative measurements of the profile without loss of generality, in the future, let us 
assume that 1k = . By consecutive measurements of the number of reflected photons, one can find the 
local value of the profile gradient in the form 

 -1 -1( ( ) ( ) / ( )i i i i
i w w w wG P x P x x x= − − , (5). 

if -1i i
w wx x> , and 

 -1 -1( ( ) ( ) / ( )i i i i
i w w w wG P x P x x x= − − , (6) 

if -1i i
w wx x> . 

The fact that both cases are possible are shown in fig. 1, where values from time i
wx  ( i index’s) are 

presented. The model parameters are as follows: sν  = 10 mm/s, A  = 0.05 mm, F  = 1000 Hz, so the 
average speed of the wire is 200 mm/s. As seen, consecutive positions of the wire on half periods oscillate 
with a small increase in the average value. 

Figure 1 shows the movement of the center of a vibrating wire at a speed lower than the average speed 
of the wire. 

As can be seen from the figure, the consecutive positions of the wire increase non-monotonously. 
Formulas (5, 6) rewrite in the form 

 i i i-1 s s s s( ) / ( / 2 2 ) ( ( / 2 ) (( 1) / 2 )) / ( / 2 2 )G S S T A P i T A P i T A T A= − ν + = ν + − − ν − ν + , (7) 

for even i  and 

 i i i-1 s s s s( ) / ( / 2 2 ) ( (( 1) / 2 ) ( / 2 )) / ( / 2 2 )G S S T A P i T A P i T A T A= − − −ν + = − ν + − ν − −ν + , (8) 

for odd i . 

If s / 2 2T Aν <<  (the condition that the scanning speed is much less than the average speed of the wire 
in its half period) formulas (7, 8) can be simplified 

 i i i-1 s s( ) / 2 ( ( / 2 ) (( 1) / 2 )) / 2G S S A P i T A P i T A A= − = ν + − − ν − , (9) 

for even i  and 

 i i i-1 s s( ) / 2 ( (( 1) / 2 ) ( / 2 )) / 2G S S A P i T A P i T A A= − − = − ν + − ν − , (10) 

for odd i . 

Fig. 1. Time dependence of the vibrating wire center: broken line 1 – connects circles, 2 – positions of 
maximum deviations of the wire, straight line 3 – scanner position. 
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According to the consecutive values of the beam gradient, by integrating (actually by summation over 
the index i ), the initial beam profile is found. 

Let us demonstrate the process using the example of a slow scan of a model beam. The distribution of 
photons in the transverse direction x  is given by the formula 

 0( ) 1 cos( (1 / ))P x x x= + π + , for 00 2x x≤ ≤ , (11) 

where 02x  is the beam half width. 

In the sequel, we will use different ratios of scanning speeds and wire vibrations. It is more convenient 
to do this by changing the amplitude of oscillations of the wire, while maintaining the frequency of 
oscillations of the wire and the type of photon beam profile, as well as the scanning speed. This will save 
the number of measurement points, which will make it possible to compare configurations of different 
ratios of speeds. 

The figure shows that the integrated differential signal with inversion of the sign (formulas  
(9, 10)) practically coincides with the initial distribution. 

Let us give an example of an experiment on slow scanning of a laser beam. Scanning was carried out 
using a pendulum with a shoulder of ≈ 1 m, on which a sensor with a vibrating wire was fixed. The laser 
and photodiode were fixed on a separate platform so that when a wire intersected a laser beam, some of 
the photons reflected from the wire would fall into the photodiode aperture. However, the photons of the 
laser beam reflected from other parts of the sensor and the external background from artificial light also 
fell on the photodiode. In the previous processing of the mathematical model (see Fig. 2) it was assumed 
that the scan is performed at a constant speed. Figure 3 shows the photodiode measurements 
corresponding to two consecutive passages of a laser beam by a wire. A differential signal is also 
presented here. In the case of a pendulum, this is not so: the pendulum reaches its limit position and 
begins to move in the opposite direction, and the speed of movement is not constant. Figure 3 shows a 
simple summation of the differential signal without taking this into account. 

In the graph of the signal from the photodiode is clearly visible 50 Hz – component of the lighting. It 
is also seen that the differential signal completely cuts off this component, as well as the central plateau of 

Fig. 2. Slow scanning of a photon beam by vibrating wire. Solid line 1 – beam profile, circles 2 – consecutive 
measurements over the half period of wire oscillations, 3 – differential signal, crosses 4 – integrated 
differential signal. 
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the signal from the photodiode, which is related with photons reflected from the mechanical elements of 
the sensor (from the non-vibrating wire). Figure 3 also presents the summation of the differential signal – 
a necessary step before the reconstruction of the laser beam profile. It is seen that the profile of the laser 
beam on the second scan is inverted due to the fact that the scanning speed has changed its sign. The drift 
of the sum signal is due to the fact that the summation does not take into account the change in the 
scanning speed. For more information about the profile recovery procedure with slow nonuniform 
scanning, see [9]. 

2.2.  Fast  Scanning  of  a  Laser  Beam  ( s wν ≥ ν ) 

Previous results were obtained on the basis of approximate formulas (9, 10). However, the exact 

formulas (7, 8) can be used only under the condition s wν < ν , since the denominator in the formula 

decreases and can even be zeroed out. Figure 4 shows several graphs of the center point of a moving wire 

depending on the oscillations amplitude. In the case of A  = 0.005 mm, the average oscillation velocity of 

the wire wν  is compared with the scanning speed sν  = 10 mm/s and at the half period, when the wire 

moves against the scanning movement, the center positions of the wire at the beginning and at the end of 

the half period coincide. This corresponds to zeroing the denominator in the formula (8). In the case when 

s wν ≥ ν  the position of the center of the wire monotonously increases during scanning, approaching the 

graph of the wire’s fixed point position (in Fig. 4, this is the graph corresponding to A  = 0.002 mm, with 

wν  = 4 mm/s). 

For the case, when s wν ≥ ν , it is proposed to continue using formulas (9, 10) with sign inversion on 

consecutive half-periods, although the total differential signal is far from the real beam gradient. Further it 

is proposed to integrate the differential signal generated in this way and, finally, apply the current average 

integral signal procedure over two consecutive points. Mathematically, it all looks like this – a differential 

signal is calculated as 

Fig. 3. Results of scanning a laser beam with a scanner mounted on the shoulder of a pendulum. Crosses 1 – 
photodiode measurement, 2 – differential signal, solid line 3 – summation of the differential signal. 
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Next, the integral signal is calculated. 

 i i-1 s i , 1,2,3,...I I G i= + Δ = , (13) 

where the s s / 2TΔ = ν  is a displacement of the scanner during the half period of wire oscillations. As a 
result, the current average of the integral signal is calculated by two consecutive points. 

 i i i-1( ) / 2, 1,2,3,...I I I i= + = . (14) 

The result of the procedures (12–14) with amplitude A  = 0.001 mm is shown in Fig. 5. 

Fig. 4. (a) The positions of the scanner and the center of the vibrating wire on consecutive half-periods of 
oscillations for different amplitudes: dashed line 1 – scanner position, 2, 3 and 4 – position of the wire with 
amplitudes of vibration A = 0.05 mm (slow motion), A = 0.005 mm (scanner speed equal to the wire's 
movement speed) and A = 0.002 mm (scanner speed is 2.5 times higher than the speed of the wire), 
respectively. (b) Fragment on an enlarged scale. 

Fig. 5. Reconstruction of the beam profile with amplitude A = 0.001 mm. Solid line 1 – photon beam 
profile, rhombs 2 – differential signal, circles 3 – integrated differential signal, crosses 4 – signal averaged 
from signal 3. 
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In Fig. 6, the results of applying the algorithm (12–14) to the position of the scanner are added to the 
previous result. As can be seen from the figure, the result is zero. 

The method can also be applied at a much higher ratio of speeds: sν  = 10 mm/s, wν  = 0.2 mm/s (see 
Fig. 7). The results of applying the algorithm (12–14) to the motion of a non-vibrating wire (of the 
scanner) are also presented. 

2.3.  Model  with  Background 

We introduce into our model a time-dependent background that is uniform within the photodiode 
aperture. Mathematically, this means that instead of (4) you should use the formula of the form 

 i w i i( ( )) ( )S P х t t= +Φ . (15) 

In our models, we fixed a scan speed of 10 mm/s. The whole process of scanning a beam with a width 
of 2 mm lasts 0.2 s. Consider a background with two oscillations during this time. 

Fig. 6. (a) Reconstruction of the beam profile with amplitude A = 0.001 mm and use of the algorithm to a 
non-vibrating wire. The solid line 1 is the photon beam profile, rhombs 2 and hyphens 3 are differential 
signals from a vibrating and non-vibrating wire, respectively, circles 4 and triangles 5 are integrated signals 
of 2 and 3, oblique crosses 6 and straight crosses 7 are signals averaged from 4 and 5. (b) Fragment on an 
enlarged scale. 

Fig. 7. (a) Reconstruction of the beam profile with amplitude A = 0.0001 mm and use of the algorithm to a 
non-vibrating wire. The solid line 1 is the photon beam profile, rhombs 2 and hyphens 3 are differential 
signals from a vibrating and non-vibrating wire, respectively, circles 4 and triangles 5 are integrated signals 
of 2 and 3, oblique crosses 6 and straight crosses 7 are signals averaged from 4 and 5. (b) Fragment on an 
enlarged scale. 
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 0( ) (1 cos( (1 4 / )))t B t tΦ = + π + , (16) 

where 0 0 s2 /t x= ν  is the scan time, and 2B  is the maximum background value. 

Figure 8 shows the summary signal from the photodiode containing a component of reflections from a 
vibrating wire with amplitude A  = 0.001 and a large background. 

The process of profile extraction by the algorithm (12–14) is depicted in Fig. 9. 

If the ratio of scanning speed and wire speed is increased (amplitude A  = 0.0001 mm), the averaging 

from the integral signal (triangles in Fig. 10) is not yet imposed on the beam profile. Another averaging of 

this signal over the current average, similar to (14), restores the beam profile with good accuracy. 

Figure 11 shows the case when photons reflected from the vibrating wire are not falling on the 

photodiode (the first term to the right in the formula (15) is absent). 

Fig. 8. The dependence of the readings of the photodiode on time: crosses 1 – reflections from the vibrating 
wire, squares 2 – background, circles 3 – full signal from the photodiode. 

Fig. 9. (a) Profile reconstruction with amplitude A = 0.001 mm in the presence of background. Solid line  
1 – photon beam profile, straight crosses 2 – full signal from photodiode, rhombs 3 – differential signal, 
circles 4 – integrated differential signal, oblique crosses 5 – signal averaged from signal 4. (b) Fragment on 
an enlarged scale. 
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As follows from Fig. 11, the background does not make any contribution to the final resulting signal, 
which once again confirms the exceptional ability of the algorithm to filter out only the useful signal 
resulting from the interaction with the vibrating wire. 

3.  CONCLUSION 

A new algorithm has been developed in the case when the scanning speed is much greater than the 
average wire oscillation speed. The method allows significantly reducing the beam scanning time. The 
algorithm for using this method has been applied in the presence of the backgrounds of the reflection of 
the laser beam from the scanner structure and external unstable radiation. 

The possibility of reducing the amplitude of the vibrating wire is also useful from the point of view of 
increasing the vibrations stability. 

Fig. 10. (a) Profile reconstruction with amplitude A = 0.0001 mm in the presence of background. Solid line 
1 – photon beam profile, oblique crosses 2 – full signal from photodiode, rhombs 3 – differential signal, 
circles 4 – integrated differential signal, straight crosses 5 – signal averaged from signal 4, hollow circles 
6 – second averaging of the signal 4. (b) Fragment on an enlarged scale. 

Fig. 11. (a) Applying of beam reconstruction algorithm to background. Solid line 1 – photon beam profile, 
oblique, crosses 2 – full signal from photodiode, rhombs 3 – differential signal, circles 4 – integrated 
differential signal, straight crosses 5 – signal averaged from signal 4, hollow circles 6 – second averaged 
signal. (b) Fragment on an enlarged scale. 
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The proposed algorithm is quite universal and can be used to measure the profiles of charged particle 
beams, neutrons and electromagnetic radiation in a wide range of the spectrum. 

In the case of accelerator beam profiling, it may be necessary to use high-energy particle detectors 
(scintillator plus photomultiplier tube). However, given the high degree of selectivity of the proposed 
scheme, it is possible that photodiodes can be used for the X-ray range. 

The method can be useful for detecting objects containing constituent parts oscillating with a known 
frequency, for example, propellers. 
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