
제 7 장

Action-angle variables for betatron

oscillations

• In Chap. 3, we learned that choosing the action-angle canonical variables in 1D
Hamiltonian system dramatically simplifies the dynamics: the action remains con-
stant and the angle increases linearly with time.

• With minor modifications, the same transformation can be applied to the betatron
oscillations in an accelerator.

• This yields an invariant of the motion and is also a useful starting point for analyzing
more complicated dynamics.

제 1 절 Action-Angle Variables

• The general solution of the equations of motion:

x(s) = A
√
β(s) cosψ(s) , (7.1)

where initial phase φ (or ψ0) in now included into ψ for simplicity. Note that the
phase ψ(s) is not necessarily a linear function of s.

• The canonical momentum:

Px(s) = x′(s) =
A√
β

cosψ(s)

(
β′

2
− tanψ(s)

)
=
x

β

(
β′

2
− tanψ(s)

)
. (7.2)
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그림 7.1: I think, in principle, x′ should be much smaller than 1.

• The same approach as in the case of the linear harmonic oscillator: assuming A =
A(J) and replacing ψ by φ.

x(s) = A(J)
√
β(s) cosφ , (7.3)

Px(s) = − x

β(s)
(α + tanφ) , (7.4)

where we have introduced the following notation (so called alpha-function)

α(s) = −1

2
β′(s) . (7.5)

• The generating function of the first kind to find the action (i.e., new canonical
momentum)

Px =
∂F1

∂x

F1(x, φ, s) =

∫
Pxdx = − x

2

2β
(α + tanφ) . (7.6)

Therefore, we find the action (d(tanφ)/dφ = sec2 φ)

J = −∂F1

∂φ
=
x2

2β
(1 + tan2 φ) , (7.7)
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and from Eq. (7.4)[i.e., using Px = −(x/β)(α + tanφ), we express φ in terms of x
and Px]

tanφ = −βPx

x
− α , (7.8)

we obtain J in terms of x and Px:

J =
1

2β

[
x2 + (βPx + αx)2

]
. (7.9)

Equations (7.8) and (7.9) give us the transformation (x, Px)→ (φ, J).

• The inverse transformation (φ, J)→ (x, Px):

J =
x2

2β
(1 + tan2 φ) =

x2

2β

(
1

cos2 φ

)
(7.10)

x =
√

2βJ cosφ . (7.11)

즉, 이식은 A(J) =
√

2J 로 해석될 수 있다. 마찬가지로 Px를 J 와 φ로 표현할 수
있다.

Px = −

√
2J

β
(sinφ+ α cosφ) . (7.12)

• The new Hamiltonian:

Ĥ = H +
∂F1

∂s

=
1

2
P 2
x +

1

2
K(s)x2 +

x2

4

β′′β − β′2

β2
+
x2β′

2β2
tanφ . (7.13)

After eliminating β′′ using the envelope equation for β, and replacing tanφ with
−βPx/x− α,

Ĥ =
1

2
P 2
x +

1

2β2
x2 +

α2

2β2
x2 +

α

β
Pxx

=
J

β
. (7.14)

• Equation of motion for J :

J ′ = −∂Ĥ
∂φ

= 0 , (7.15)

which means that J is an integral of motion. The quantity 2J is called the Courant-
Snyder invariant.

• Equation of motion for φ:

φ′ =
∂Ĥ
∂J

=
1

β(s)
. (7.16)

Comparing with ψ′ = 1/β, we see that the new coordinates φ is actually equal to
the old betatron phase, φ = ψ + const.
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제 2 절 Eliminating Phase Oscillations

The phase coordinate φ monotonically grows with s, but with a rate of change that
oscillates around some average value due to the oscillations of the beta function. We
can do one more canonical transformation to straighten out these oscillations: (φ, J) →
(φ1, J1)

F2(φ, J1, s) = J1

(
2πνs

C
−
∫ s

0

ds′

β(s′)

)
+ φJ1 , (7.17)

where C is the circumference of the accelerator and ν is the tune.

• The new angle

φ1 =
∂F2

∂J1
= φ+

2πνs

C
−
∫ s

0

ds′

β(s′)
= φ+

2πνs

C
− ψ(s) , (7.18)

• The action is unchanged,

J =
∂F2

∂φ
= J1 . (7.19)

• The new Hamiltonian (actually, J/β term in the old Hamiltonian is cancelled)

Ĥ1 = Ĥ +
∂F2

∂s
=

2πν

C
J1 . (7.20)

• The equation of motion for φ1

φ′
1 =

∂Ĥ1

∂J1
=

2πν

C
, (7.21)

which means that φ is a linear function of s with the slope given by 2πν/C. Indeed,
we got rid of the oscillations exhibited by the phase φ and obtained a new phase φ1

that follows a straight line in s. The tune is identical in both sets of coordinates.

제 3 절 Phase Space Motion at a Given Location

1. As a particle travels in a circular accelerator, every revolution period it arrives at
the same longitudinal position s.

2. Let us consider the phase plane (x, Px) at this location s, and plot the particle
coordinates every time it passes through s.

3. Because there is an integral of motion J , all these points are located on the curve
J = const.
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그림 7.2: The phase space ellipse (solid curve) and a particle’s positions at consecutive

turns. Dashed lines show ellipses for particles with smaller and larger values of action J .

The vertical axis is marked by x′ which is equal to Px. For convenience x is normalized

by the beta function at this location, β(s).

4. Since

J =
1

2β

[
x2 + (βPx + αx)2

]
it follows that this curve is an ellipse whose size and orientation depend on the
values of J, β, and α.

5. Particles with different values of J have geometrically similar ellipses enclosed inside
each other.

6. If α = 0, the ellipse turns into a circle. In this case, the trajectory is very simple:
on each revolution the representative point rotates by the betatron phase advance
in the ring ∆ψ = 2πν in the clockwise direction.

7. A set of ellipses at another location in the ring will have a different shape which is
defined by the local values of β and α.

8. When one travels along the circumference of the accelerator, one sees a continuous
transformation of these sets with the coordinate s.
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9. For a collection of particles in a bunch, this effect includes changes not only in the
size of the beam (e.g., 〈x2〉) but also in statistical correlations between x and Px

(e.g., 〈xPx〉).
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