제 7 장

Action-angle variables for betatron oscillations

- In Chap. 3, we learned that choosing the action-angle canonical variables in 1D Hamiltonian system dramatically simplifies the dynamics: the action remains constant and the angle increases linearly with time.
- With minor modifications, the same transformation can be applied to the betatron oscillations in an accelerator.
- This yields an invariant of the motion and is also a useful starting point for analyzing more complicated dynamics.

제 1 절 Action-Angle Variables

- The general solution of the equations of motion:

$$
\begin{equation*}
x(s)=A \sqrt{\beta(s)} \cos \psi(s) \tag{7.1}
\end{equation*}
$$

where initial phase ϕ (or ψ_{0}) in now included into ψ for simplicity. Note that the phase $\psi(s)$ is not necessarily a linear function of s.

- The canonical momentum:

$$
\begin{align*}
P_{x}(s)=x^{\prime}(s) & =\frac{A}{\sqrt{\beta}} \cos \psi(s)\left(\frac{\beta^{\prime}}{2}-\tan \psi(s)\right) \\
& =\frac{x}{\beta}\left(\frac{\beta^{\prime}}{2}-\tan \psi(s)\right) . \tag{7.2}
\end{align*}
$$

Fig. 7.1 Plots of x and x^{\prime} versus s for a particular solution to Eq. (6.15) with initial conditions $x(0)=0$ and $x^{\prime}(0)=1$

Fig. 7.2 Function $K(s)$ (left panel) and the corresponding β function (right panel)

그림 7.1: I think, in principle, x^{\prime} should be much smaller than 1 .

- The same approach as in the case of the linear harmonic oscillator: assuming $A=$ $A(J)$ and replacing ψ by ϕ.

$$
\begin{align*}
x(s) & =A(J) \sqrt{\beta(s)} \cos \phi \tag{7.3}\\
P_{x}(s) & =-\frac{x}{\beta(s)}(\alpha+\tan \phi), \tag{7.4}
\end{align*}
$$

where we have introduced the following notation (so called alpha-function)

$$
\begin{equation*}
\alpha(s)=-\frac{1}{2} \beta^{\prime}(s) . \tag{7.5}
\end{equation*}
$$

- The generating function of the first kind to find the action (i.e., new canonical momentum)

$$
\begin{gather*}
P_{x}=\frac{\partial F_{1}}{\partial x} \\
F_{1}(x, \phi, s)=\int P_{x} d x=-\frac{x^{2}}{2 \beta}(\alpha+\tan \phi) . \tag{7.6}
\end{gather*}
$$

Therefore, we find the action $\left(d(\tan \phi) / d \phi=\sec ^{2} \phi\right)$

$$
\begin{equation*}
J=-\frac{\partial F_{1}}{\partial \phi}=\frac{x^{2}}{2 \beta}\left(1+\tan ^{2} \phi\right), \tag{7.7}
\end{equation*}
$$

and from Eq. (7.4)[i.e., using $P_{x}=-(x / \beta)(\alpha+\tan \phi)$, we express ϕ in terms of x and P_{x}]

$$
\begin{equation*}
\tan \phi=-\frac{\beta P_{x}}{x}-\alpha \tag{7.8}
\end{equation*}
$$

we obtain J in terms of x and P_{x} :

$$
\begin{equation*}
J=\frac{1}{2 \beta}\left[x^{2}+\left(\beta P_{x}+\alpha x\right)^{2}\right] . \tag{7.9}
\end{equation*}
$$

Equations (7.8) and (7.9) give us the transformation $\left(x, P_{x}\right) \rightarrow(\phi, J)$.

- The inverse transformation $(\phi, J) \rightarrow\left(x, P_{x}\right)$:

$$
\begin{gather*}
J=\frac{x^{2}}{2 \beta}\left(1+\tan ^{2} \phi\right)=\frac{x^{2}}{2 \beta}\left(\frac{1}{\cos ^{2} \phi}\right) \tag{7.10}\\
x=\sqrt{2 \beta J} \cos \phi \tag{7.11}
\end{gather*}
$$

즉, 이식은 $A(J)=\sqrt{2 J}$ 로 해석될 수 있다. 마찬가지로 P_{x} 를 J 와 ϕ 로 표현할 수 있다.

$$
\begin{equation*}
P_{x}=-\sqrt{\frac{2 J}{\beta}}(\sin \phi+\alpha \cos \phi) . \tag{7.12}
\end{equation*}
$$

- The new Hamiltonian:

$$
\begin{align*}
\hat{\mathcal{H}} & =\mathcal{H}+\frac{\partial F_{1}}{\partial s} \\
& =\frac{1}{2} P_{x}^{2}+\frac{1}{2} K(s) x^{2}+\frac{x^{2}}{4} \frac{\beta^{\prime \prime} \beta-\beta^{\prime 2}}{\beta^{2}}+\frac{x^{2} \beta^{\prime}}{2 \beta^{2}} \tan \phi \tag{7.13}
\end{align*}
$$

After eliminating $\beta^{\prime \prime}$ using the envelope equation for β, and replacing $\tan \phi$ with $-\beta P_{x} / x-\alpha$,

$$
\begin{align*}
\hat{\mathcal{H}} & =\frac{1}{2} P_{x}^{2}+\frac{1}{2 \beta^{2}} x^{2}+\frac{\alpha^{2}}{2 \beta^{2}} x^{2}+\frac{\alpha}{\beta} P_{x} x \\
& =\frac{J}{\beta} \tag{7.14}
\end{align*}
$$

- Equation of motion for J :

$$
\begin{equation*}
J^{\prime}=-\frac{\partial \hat{\mathcal{H}}}{\partial \phi}=0 \tag{7.15}
\end{equation*}
$$

which means that J is an integral of motion. The quantity $2 J$ is called the CourantSnyder invariant.

- Equation of motion for ϕ :

$$
\begin{equation*}
\phi^{\prime}=\frac{\partial \hat{\mathcal{H}}}{\partial J}=\frac{1}{\beta(s)} . \tag{7.16}
\end{equation*}
$$

Comparing with $\psi^{\prime}=1 / \beta$, we see that the new coordinates ϕ is actually equal to the old betatron phase, $\phi=\psi+$ const.

제 2 절 Eliminating Phase Oscillations

The phase coordinate ϕ monotonically grows with s, but with a rate of change that oscillates around some average value due to the oscillations of the beta function. We can do one more canonical transformation to straighten out these oscillations: $(\phi, J) \rightarrow$ $\left(\phi_{1}, J_{1}\right)$

$$
\begin{equation*}
F_{2}\left(\phi, J_{1}, s\right)=J_{1}\left(\frac{2 \pi \nu s}{C}-\int_{0}^{s} \frac{d s^{\prime}}{\beta\left(s^{\prime}\right)}\right)+\phi J_{1} \tag{7.17}
\end{equation*}
$$

where C is the circumference of the accelerator and ν is the tune.

- The new angle

$$
\begin{equation*}
\phi_{1}=\frac{\partial F_{2}}{\partial J_{1}}=\phi+\frac{2 \pi \nu s}{C}-\int_{0}^{s} \frac{d s^{\prime}}{\beta\left(s^{\prime}\right)}=\phi+\frac{2 \pi \nu s}{C}-\psi(s) \tag{7.18}
\end{equation*}
$$

- The action is unchanged,

$$
\begin{equation*}
J=\frac{\partial F_{2}}{\partial \phi}=J_{1} \tag{7.19}
\end{equation*}
$$

- The new Hamiltonian (actually, J / β term in the old Hamiltonian is cancelled)

$$
\begin{equation*}
\hat{\mathcal{H}}_{1}=\hat{\mathcal{H}}+\frac{\partial F_{2}}{\partial s}=\frac{2 \pi \nu}{C} J_{1} . \tag{7.20}
\end{equation*}
$$

- The equation of motion for ϕ_{1}

$$
\begin{equation*}
\phi_{1}^{\prime}=\frac{\partial \hat{\mathcal{H}}_{1}}{\partial J_{1}}=\frac{2 \pi \nu}{C}, \tag{7.21}
\end{equation*}
$$

which means that ϕ is a linear function of s with the slope given by $2 \pi \nu / C$. Indeed, we got rid of the oscillations exhibited by the phase ϕ and obtained a new phase ϕ_{1} that follows a straight line in s. The tune is identical in both sets of coordinates.

제 3 절 Phase Space Motion at a Given Location

1. As a particle travels in a circular accelerator, every revolution period it arrives at the same longitudinal position s.
2. Let us consider the phase plane $\left(x, P_{x}\right)$ at this location s, and plot the particle coordinates every time it passes through s.
3. Because there is an integral of motion J, all these points are located on the curve $J=$ const.

그림 7.2: The phase space ellipse (solid curve) and a particle's positions at consecutive turns. Dashed lines show ellipses for particles with smaller and larger values of action J. The vertical axis is marked by x^{\prime} which is equal to P_{x}. For convenience x is normalized by the beta function at this location, $\beta(s)$.
4. Since

$$
J=\frac{1}{2 \beta}\left[x^{2}+\left(\beta P_{x}+\alpha x\right)^{2}\right]
$$

it follows that this curve is an ellipse whose size and orientation depend on the values of J, β, and α.
5. Particles with different values of J have geometrically similar ellipses enclosed inside each other.
6. If $\alpha=0$, the ellipse turns into a circle. In this case, the trajectory is very simple: on each revolution the representative point rotates by the betatron phase advance in the ring $\Delta \psi=2 \pi \nu$ in the clockwise direction.
7. A set of ellipses at another location in the ring will have a different shape which is defined by the local values of β and α.
8. When one travels along the circumference of the accelerator, one sees a continuous transformation of these sets with the coordinate s.
9. For a collection of particles in a bunch, this effect includes changes not only in the size of the beam (e.g., $\left\langle x^{2}\right\rangle$) but also in statistical correlations between x and P_{x} (e.g., $\left\langle x P_{x}\right\rangle$).

