
제 6 장

Equations of motion in accelerators

• A typical accelerator uses a sequence of various types of magnets separated by
sections of free space (so-called drifts).

• To specify the Hamiltonian in Chap. 5, we need to know the vector potential As

for these magnets.

• In this chapter, we assume that the field profiles are uniform over their length.

• Often in analysis and simulations, one has to take into account that at the end
points of the magnets different field geometries appear, called fringe fields. The
impact of these fields are usually treated as highly localized corrections which are
calculated separately from the bulk of the magnet, and involve higher order terms.

• When fringe fields are weak they can be treated as field errors, which are covered
in Chap. 8.

제 1 절 Vector potential for different types of mag-

nets

In this section, we will list several magnet types and write down approximate expressions
for As(x, y). We are only interested in fields near the reference orbit, |x|, |y| � |ρ|, so we
can neglect higher powers of the ratios x/ρ and y/ρ.

• Dipole magnets are used to bend the orbit and, in circular accelerators, to eventually
make it close on itself.

B = ŷB(s) . (6.1)

Here, we assume that the field is directed along y and, in the lowest approximation,
neglecting its variation in the transverse plane (that is, neglecting its dependence on
x and y). The function B(s) characterizes the longitudinal variation of the field, and
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vanishes outside of the magnets, and within the dipole the field can be represented
by

As = −B(s)x

(
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2ρ

)
. (6.2)

Using B = ∇×A,
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. (6.3)

또는, 좀더 정확하게 하려면 (Wolski 교과서 처럼),

As = −B(s)x
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)
. (6.4)
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• Quadrupole magnet is used to focus off-orbit particles so that they remain close to
the reference orbit.

B = G(s)(ŷx+ x̂y) , (6.6)

where the function G(s) (often called field gradient) again isolates the longitudinal
variation of the field. Note that the field on the axis is zero, which means that the
reference orbit is a straight line (ρ→∞). The corresponding vector potential is

As =
1

2
G(s)

(
y2 − x2

)
. (6.7)

• A skew quadrupole is a normal quadrupole rotated by 45◦:

B = Gsq(s)(−ŷy + x̂x) , (6.8)

with

As = Gsq(s)xy . (6.9)
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• Sextupole magnets are used to correct some properties of the transverse proper-
ties of the transverse oscillations of the beam particles around the reference orbit
(e.g., chromatic aberration correction). This magnet has a nonlinear (quadratic)
dependence of the magnetic field with the transverse coordinates:

B = S(s)

[
1

2
ŷ(x2 − y2) + x̂xy

]
. (6.10)

with the corresponding vector potential

As = S(s)

(
1

2
xy2 − 1

6
x3
)
. (6.11)

There is also a skew version of the sextupole.

제 2 절 Taylor expansion of the Hamiltonian

For circular accelerator that has dipole and quadrupole magnets, replacing As with the
sum of the vector potentials (6.2) and (6.7):
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, (6.12)

1. We have made use of ρ = p0
eB(s)

.

2. Assuming η, x, Px, y, Py are of the first order, we neglected terms of the third and
higher orders.

3. We will drop the constant terms such as −1 in the Hamiltonian, which has no
significance for the dynamics.

4. We will mostly treat the case of on-momentum particles, η = 0.

With these assumptions, the Hamiltonian becomes the sum of two terms corresponding
to the horizontal (x) and vertical (y) degrees of freedom as:

H = Hx +Hy , (6.13)

with

Hx =
1

2
P 2
x +

x2

2ρ2
+

1

2

e

p0
G(s)x2 (6.14)

and

Hy =
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e
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G(s)y2 . (6.15)
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• The fact that the Hamiltonian is split into two pieces each of which involves only
variables corresponding to one degree of freedom means that the horizontal and
vertical motion are decoupled.

• The skew quadrupole and sextupole magnets which have been left out of this ex-
ample can in practice be used to correct unintended coupling as needed.

• The quadrupole magnetic field acts in opposite ways in x and y: positive G means
that the effective potential energy in Hx has a minimum on axis x = 0 and leads
to stable oscillations around this equilibrium point. At the same time, the effective
potential energy in Hy has a maximum at y = 0, which is unstable.

• Negative G changes the sign of the effect in x and y. A sequence of quadrupoles
with alternating polarities can make the transverse motion stable in both directions
and confine it near the reference orbit. As a result, a particle near the equilibrium
orbit executes stable betatron oscillations.

• Even in the absence of quadrupoles, there is a focusing force in the horizontal (x)
direction inside dipole magnets: x2/(2ρ). Being inversely proportional to ρ2, this
term is typically small and does not play a big role in the beam dynamics (it is
referred to as the weak focusing effect).

• To study general properties of the motion in both transverse planes, in the next
section we will use a generic Hamiltonian

H0(x, Px, s) =
1

2
P 2
x +

1

2
K(s)x2 , (6.16)

where

K =
1

ρ2
+
eG

p0
for the horizontal plane (6.17)

K = −eG
p0

for the vertical plane (6.18)

제 3 절 Hill’s equation, betatron function and beta-

tron phase

From the Hamiltonian (6.16),

x′′(s) +K(s)x(s) = 0 , (6.19)

where the prime denotes the derivative with respect to s.

• In a circular accelerator, K(s) is a periodic function of s with a period that we
denote by L (which may be equal to the ring circumference or a fraction of it).

• Equation (6.19) with a periodic K is called Hill’s equation; it describes the so-called
betatron oscillations around the reference orbit.
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• Note that we have encountered the same equation in the discussion of the para-
metric resonance, with the only difference that we now have s as an independent
variable instead of t. We know that this equation can have both stable and unstable
solutions.

3.1 Floquet transforamtion

Some of the fundamental properties of Eq. (6.19) can be studied without specifying the
function K(s). Let us seek its solution in the following form:

x(s) = Aw(s) cos[ψ(s) + φ] , (6.20)

• Here, A and φ are arbitrary constants determined by the initial conditions.

x(0) = x0 = Aw(0) cos[φ] (6.21)

x′(0) = x′0 = Aw′(0) cos[φ]− Aw(0)ψ′(0) sin[φ] (6.22)

두 개의 초기조건이 있어야, 2차 미분방정식의 해를 얻을 수 있으므로, 두 개의 arbi-
trary constants가 필요한 게 맞다. Here, we set ψ(0) = 0 without loss of generality
(이부분은 Stupakov의책과다른 notation인데,나는 Ron Davidson과Martin Reizer
의 방식을 따른 것임).

• The two functions w(s) and ψ(s) are determined by the requirement that Eq. (6.20)
satisfies Eq. (6.19).

• The function w(s) is not uniquely defined: we can always multiply it by an arbitrary
factor w0 (i.e., w → w0w) and redefine the amplitude A→ A/w0, so that x(s) and
x′(s) are not changed. 이것은 당연한 것임. 왜냐하면, 입자의 운동은 초기 조건 x0
와 x′0에 의해 결정되기때문에, 어떤식으로 parametrization을 하느냐에 무관하다.

• If the particle motion is stable, we can require that w(s) and dψ/ds be periodic
functions of s with the period L. 이렇게 주기함수로 잡을 수 있다는 이야기이지
반드시 주기함수이여야 할 필요는 없다. 왜냐하면, 입자의 운동은 parametrization
방법에 무관하기 때문이다. 물론, 나중에 배우겠지만, w(s)와 dψ/ds을 주기함수로

만드는 것이 matched beam을 만들어 emittance 증가가 최소화 된다.

• Periodicity in dψ/ds can equivalently formulated as

ψ(s+ L)− ψ(s) =

∫ s+L

s

dψ

ds
(s′)ds′ ≡ σ = const. independent of s (6.23)

Here, σ is called phase advance per period.

• Introducing the two unknown functions w(s) and ψ(s) instead of one x(s) gives
us the freedom to impose a constraint of our choice on the functions w and ψ to
obtain an optimal parametrization of the solution.
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• Substituting Eq. (6.20) into (6.19) we obtain[
w′′ − wψ′2 +K(s)w

]
cos[ψ(s) + φ]− (2w′ψ′ + wψ′′) sin[ψ(s) + φ] = 0 . (6.24)

위의 식이 초기 phase φ 에 무관하게 항상 성립하려면,

w′′ − wψ′2 +K(s)w = 0 ,

−2w′ψ′ − wψ′′ = 0 . (6.25)

3.2 Phase advance rate

• 위의 마지막 식에서부터

1

w
(ψ′w2)′ = 0 . (6.26)

We integrate it and introduce the beta function, β(s) = w2(s)

ψ′ =
a

β(s)
, (6.27)

where a is an arbitrary constant of integration.

• Without loss of generality, we can assume that a > 0; if this is not the case, we
can always change its sign by redefining the angle ψ → −ψ, which does not change
x(s). As was pointed out above, the function w can be multiplied by an arbitrary
constant factor. Choosing this factor equal to

√
a and replacing β → aβ eliminates

a.

ψ′ =
1

β(s)
. (6.28)

3.3 Envelope equation

• 또 다른 방정식으로부터

w′′ − 1

w3
+K(s)w = 0 . (6.29)

This equation is called betatron envelope equation. By substituting w(s) =
√
β > 0

(초기에 w 가 양수이면, 0으로 줄어들다가도 w−3 항 때문에 다시 커진다. 따라서,
한번 양수이면 계속 양수이고, 마찬가지로 한번 음수이면 계속 음수이다. Since the
sign of the betatron function is not determined and does not change, it has become
customary to use only the positive solution), we obtain

1

2
ββ′′ − 1

4
β′2 +K(s)β2 = 1 . (6.30)

This is a nonlinear differential equation of the second order for β(s).
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• For a given periodic function K(s), we can solve the envelope equation for given
initial values of β and β′. We can impose the same periodicity condition on the
beta function.

β(s+ L) = β(s), β′(s+ L) = β′(s) (6.31)

After β(s) is found, the betatron phase ψ is obtained by a straightforward inte-
gration. For a periodic β(s) the derivative ψ′ is also periodic with the same period
L.

3.4 Tune in a ring

An important characteristic of the magnetic lattice of ring is the betatron phase advance
over its circumstance C:

∆ψ =

∫ C

0

ds

β(s)
(6.32)

The quantity ∆ψ/(2π) is called the tune ν (also denoted by Q in the European literature),

ν =
1

2π

∫ C

0

ds

β(s)
. (6.33)

It is the number of transverse oscillations that a particle makes as it circulates once
around the ring. As we will see in the following chapters, the tune plays an important
role in beam dynamics.

Notes

• The main advantage of introducing the two functions β(s) and ψ(s) is that, for a
given magnetic lattice, they need to be calculated only once. Having found them,
the general solution to the equation of motion can be written as

x(s) = A
√
β(s) cos[ψ(s) + φ] , (6.34)

where A and φ are two arbitrary constants that depend on the initial conditions.

• Note that the phase term only needs to be adjusted by a constant offset for different
initial conditions.

• Even without detailed knowledge of initial conditions (i.e., A’s and φ’s), this equa-
tion gives important information about the structure of particle trajectories in the
ring.

• We mention that although our analysis was motivated by circular accelerators, the
same representation (6.34) of particle orbits is often used in linear accelerators.

• In the absence of the periodicity condition in such machines, to solve envelope
equation in β one needs either to specify the initial β and its derivative β′ at the
entrance to the system, or to impose equivalent boundary conditions.
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