Al 5%

Coordinate system and Hamiltonian

for a circular accelerator

Assumptions:

e First, we assume that there is no electrostatic field, ¢ = 0, and the magnetic field
does not vary with time.

e Second, the magnetic field is arranged in such a way that there is a closed reference
(or nominal) orbit for a particle with a nominal momentum py—this is achieved by
a proper design of the magnetic lattice of the ring.

e We will also assume that this reference orbit is a plane curve lying in the horizontal
plane.

e Our goal is to describe the motion in the vicinity of this reference orbit of parti-
cles having energies (or, equivalently, momenta) that can slightly deviate from the
nominal one.

Al 1 @ Coordinate System

e A segment of the reference orbit is specified by the vector function r¢(s).
e 5 is the arclength measured along the reference orbit in the direction of motion.
e Three unit vectors for the local coordinate system:

— Tangential to the orbit: § = dry/ds
— Perpendicular to s and in the plane of the orbit: @

A

— Perpendicular to the plane of the orbit: y = s x x
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Fo(s)

e The three unit vectors, being defined locally, vary with s:

ds T

= 1
dx ]

dy

— =0 5.3
dS Y ( )

where p(s) is the radius of curvature of the reference orbit.

— Since we have made the simplifying assumption that there is no vertical bend-
mng, d—m is always parallel to the longitudinal coordinate s and the reference

orbit lies in a plane.

— In the more general case of orbits that move out of a single plane, the expres-
sions for the derivatives above would have additional terms related to torsion,
and the dipole magnetic field could also have an z component, but those will
not be considered here. Under the above constraints, the torsion is always
Zero.

— The absolute value of the radius of curvature p is given by the equation

Io(s)| = —‘QBZO(S” , (5.4)

where pg is the kinetic momentum of the reference particle and B, is the
vertical component of the dipole magnetic field. The p(s) is generally different
from |7ro(s)| (for example, consider a straight section in the ring where p — o).

e Beam particle deviate from the reference orbit, but move close to it. A particle
position is represented by

r=1o(s) + za(s) + yy . (5.5)

dr dro dx . dz dy . %ﬁ
= = T aqa— 4 Zyty

ds ds ds ds  ds
= s+d—w+xi+d—yA
B ds p(s) ds”

38



Therefore,
dr = dzxx + dyy + [1 + z/p(s)]|dss = hyuyduy + howsdus + hyusdug (5.6)
The scale factors in the orthogonal curvilinear coordinates are

hlzl, hgzl, h3:1—|—l’/p(8) (57)

e From the formulae for differential operators in orthogonal curvilinear coordinates:

86 96 1 9

=322 1 5% 1 s g0 5.8
ve w8x+y3y+sl+x/p85’ (5:8)
1 0A 0A
A, =— Y u .
1 8A,(1+/p) 1 94,
A), = — 1
(VA 1+z/p Ox * l+az/p Os ' (5.10)
0A, 0A
A), = ——* Y A1
(¥ x ), = -2l O (5.11)
1 9A(L+a/p) A, 1 04,
A= . 12
v 1+z/p Ox oy * 1+xz/p Os (5.12)
where
A=A (z,y,s)x + Ay(z,y,5)y + As(2,y, 5)8 (5.13)

Al 2 @ Hamiltonian in Curvilinear Coordinate Sys-

tem

e The general Hamiltonian for a charged particle with ¢ = 0:

H = +/(mc®)? + c2(m — cA)?. (5.14)

This was derived for a Cartesian coordinate system (X,Y,Z), which are the old
(original) coordinates.

e To transform from old (original) coordinates to new local coordinates (x,y, s), we
use the generating function of the third type:

Fsy(m,z,y,s) = —m - (ro(s) + x&(s) + yy) . (5.15)
Here, 7 is the old momentum.

e The new canonical momentum IT is

F
Hx:—%:ﬂ'-:i:m,
OF,
Hy:—a—y:'ﬂ'- :7‘{‘y’
8F3 d'l"o dx N x . Zz
M=-—S g (24— ) =m- “a)=m (142, 1
5 = (ds —I—xds) ™ <S+ps) m < —i—p) (5.16)



e Since

(m —eA)? = (1, — eA,)? + (1, — eA)? + (7, — eA,)?

1, 2
= (I, — eAx)2 + (I, — eAy)2 + (Tx/p — eAS) , (5.17)
our new Hamiltonian can be written as
- 51 1/2
H=c m202 + (Hz — GAI)2 + (Hy — 6Ay)2 + (T;/p — QAS) ] . (518)

Here, A, = A &, A, = A -, A, = A- 3.

Al 3 A Using s as Time Variable

For a time-independent Hamiltonian, Hamiltonian is a constant of motion of value h:
h=H(z,1,,y,11,, s 1), (5.19)
Solving it, we find Il,:
I, = (2, 1,,y,101,, b, s), (5.20)
We introduce a new Hamiltonian K as
K(z,1,,y,11,, h,s) = =Il,(x, 11, 9,11, h, s) . (5.21)

Here, x,II,,y,II, are considered as canonical conjugate variables, s is an independent
time-like variable, and h is a constant parameter.

3.1 Proof

e Using the old Hamiltonian H, we have
de _dx/dt _ OH/O,
ds ds/dt ~ OH/OIl,’
The derivative 0K /OI1, can be calculated as a derivative of an implicit function by
differentiating h with respect to 11,

(5.22)

Oh OH 0H (01l
o, ~ = o, am, (anw)h (5:23)
0K oll,\  OH/oll,
o, (anm)h T 9H/OI, (5:24)
Therefore,
dr 0K

which is a Hamiltonian equation for dx/ds.
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e Similarly,

Therefore,

dll, dl,/dt  —dH/dx

on_
or

ds

0

OK

o

ds/dt — OH/OI, "

_8_H+8H oIl
9z Ol \ Or b

(a) _ oo

or ), OH/OI,"
a. 0K
ds  Ox

which is a Hamiltonian equation for dIl, /ds.

(5.26)

(5.27)

(5.28)

(5.29)

e Although time is now eliminated from the equations, the time dependence of s can
be easily recovered. In the original Hamiltonian equations,

Therefore,

dt
ds  OH/OI, 0h  9(—h)

ds _ OH
dt Ol
@_1_ OH 011,
dh ~  OIl, Oh
1 o1l 0K

(5.30)

(5.31)

(5.32)

which is a Hamiltonian equation for (¢, —h) conjugate pair. Integrating this equation
over s we find t = t(s) with the inverse function defining s(t).

Al 4 @ Small Amplitude Approximation

e Solving Eq. (5.18) for I,

K:—Hs:—(uf

—eAs(l—i-z) .
P

p

)

1

c2

h? — (I, — eA,)* — (I, — eA,)? — m*c?

e In many cases (except for solenoidal magnets), A, = A, = 0:

II, = p, = ymu,, II, = p, = ymuv,

1 1/2
K:—(l—i—f) <—2h2—pi—p§—m202) —6A5<1+§).
p) \c p
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(5.33)

(5.34)

(5.35)



e Particles in an accelerator beam typically move at small angles relatives to the refer-
ence orbit. This means p, and p, are small in comparison with the total momentum
p, and the square root in Eq. (5.35) can be expanded as a Taylor series.

2 2
x px py z
Kre-pll+2) (122 22 ) —eA (1+2) 5.36
p<+p)( 2p? 2p2> ‘ <+p> (5.36)

E? = p*c® + (mc®)? = h? — p(h) = \/h%/c2 — m3c? (5.37)

e It is convenient to introduce dimensionless quantities P, = p,/pp < 1 and P, =
py/Po < 1, where pg is the nominal momentum in the ring. The transformation
from x, p,,y,p, to x, Py, y, P, is not canonical (not phase-space preserving), but it
does not change the Hamiltonian structure.

where

K
H(x, Py,y, Py) = — (5.38)

Po
— _£ (1 + £>
Po P

2 2
1_1]32 Po _1p2 Po
2 " \p 2%\ p

o 57 QA mHE (E= AU 712 Gl AR ol 9 B

L. (5.39)
Po

where n < 1. 97| A= n & Aok A5t 7FA 5] EE, time-dependent 2] 739
n = A7t "o

H(x, Py, y, Py) (5.40)

Y=l p (5.41)

Al 58 Time-Dependent Hamiltonian

o 340 A] time-independent Hamiltonian & 7}AsI=0|, AA 2= T2 A 52 &
of: @ B2 o] A9, oA (h)7t QRS gronz, e 3719 Af=t 1
=2 F24.

h = K(z,11,,y,11,, s,1I,,t) # const. (5.42)

The new Hamiltonian becomes a function of time:

K(z, 1L, y, 1L, t, h,s) = =1 (z, 1L, y, 11, ¢, h, 5). (5.43)
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From Eq. (5.44), we have a Hamiltonian equation for t(s), if —h is associated with
the momentum conjugate to t.

dt 1 oll, 0K
Te = = . 5.44
ds _ OHJOM, _ oh _ 9(—h) (5.44)
ol=Z 7| (¢,—h)7} conjugate pairZ} =2 H,
d(—h) 0K
=~ 45
ds ot (5.45)
T UkE2 Gjofs
4 (5.45)9] 573
dh  dh/dt OH/Ot
A = 4
ds _ dsjdt (5.46)
Here, we used the Poisson bracket relation
dH OH
T o 5.47
o = o T (5.47)

Further, we have (0] 2 247} o/ GA] U= & S0l bd: STILAF A])

OH  9K/ot
ot O0K/oh

g1e] AL As] 2T, A (5.45)0] Lhe-

Time-dependent Hamiltonian ©] E Q St of]: Description of acceleration of charged
particle by RF electromagnetic fields.

— We assume the field is localized in a short RF cavity which is powered to
voltage V.
— An additional term needs to be added to the Hamiltonian K.

i5(8 — So) sin(wrrt + @) , (5.49)
WRF

— Change in the kinetic energy after a passage through the point sq at time ¢:

dh 0K
PPl v eVi(s — sg) cos(wrrt + @) (5.50)
Ah = eV cos(wrpt + ¢) (5.51)
(Ah)ax = €V (5.52)
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Al 6 & XHZ: Wolski 3 J|&
o AAZ time-dependent St 74 St 71x] A¥lo] ¢ " QS

e “The next step is to define new longitudinal variables. The problem with the current
variables (t,—F) [0] £=Y9] w74 Stupakov ZHO] notation© &2 SFH, (t,—h)] is
that the ‘co-ordinate’ (actually the time t¢) increases with distance down the beam
line. In beam dynamics, we are often mostly concerned with the relative distance
between two particles in the beam: this distance can be smaller than the length of
the beam line by many orders of magnitude. Therefore, if we try to calculate the
relative position of two particles after tracking them down a long beam line, we
need to take the difference of two large numbers that are almost equal. In practice,
it can be very difficult to maintain good accuracy in the calculations using this
procedure. Instead, we shall define a new longitudinal co-ordinate that has
the physical significance of a distance relative to a nominal particle that
moves down the beam line with the reference momentum P, [0] =2 w74
Stupakov 2] notation © 2 SFH, po]. If all particles in the beam have momentum
close to Py, then we should expect that the new longitudinal co-ordinate should
remain conveniently small.”

Al 738 <A: Orthogonal Curvilinear Coordinates

M2 FAZA (ur, ug, uz)2t ZH2e] si@dst= scale factor?}t (hy, hy, hy)2 Fo13 74,
dMH o= & 4 Q= A ZARE AL

1. Vo =
2. VX A=
3. V- A=
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