
제 4 장

Linear and Nonlinear Oscillators

The linear oscillator is a simple model that lies at the foundation of many physical
phenomena and plays a crucial role in accelerator dynamics. Many systems can be viewed
as an approximation to a set of independent linear oscillators.

제 1 절 Harmonic Oscillator Without and With Damp-

ing

• Ideal harmonic oscillator without damping:

x(t) = a cos(ω0t+ φ0) , (4.1)

• Damping due to a friction force that is proportional to the velocity ẋ:

ẍ+ γẋ+ ω2
0x = 0 , (4.2)

where where γ is the damping constant and has the dimension of frequency. When
the damping is not too strong, γ < 2ω0, (어떤 책에서는 2γ 로 쓰이니 주의할 것.)

x(t) = ae−γt/2 cos(ω1t+ φ0) , (4.3)

with

ω1 = ω0

√
1− γ2

4ω2
0

. (4.4)

If γ � ω0, the frequency ω1 is close to ω0, ω1 ≈ ω0.

• The damping effect is often quantified by the so-called quality factor Q defined as

Q = 2π
E

|∆E|
=
ω0

γ
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where,

E =
1

2
ẋ2 +

1

2
ω2
0x

2

dE

dt
=

d

dt

[
1

2
ẋ2 +

1

2
ω2
0x

2

]
= −γẋ2

∆E = −
∫

1 period

dE

dt
dt ≈ πω2

0a
2 γ

ω0

The regime of weak damping is characterized by Q� 1.

• If the oscillator is driven by an external force

ẍ+ γẋ+ ω2
0x = f(t) , (4.5)

where f(t) is the force divided by the oscillator mass. The general solution for
γ = 0:

x(t) = x0 cosω0t+
ẋ0
ω0

sinω0t+
1

ω0

∫ t

0

sin[ω0(t− t′)]f(t′)dt′ . (4.6)

The general solution for γ 6= 0:

x(t) = e−γt/2
[
x0 cosω1t+

(
x0γ

2ω1

+
ẋ0
ω1

)
sinω1t

]
+

1

ω1

∫ t

0

e−γ(t−t
′)/2 sin [ω1(t− t′)]f(t′)dt′ .

Here, x0 = x(0) and ẋ0 = ẋ(0). In both cases, Green functions (for t ≥ t′) are used
respectively:

G(t, t′) =
1

ω0

sin[ω0(t− t′)], G(t, t′) =
1

ω1

e−γ(t−t
′)/2 sin [ω1(t− t′)]

보충: 3.5 Non-conservative Forces in Hamiltonian Dynamics

Damping and arbitrary externally-applied forces lead to equations of motion that do
not quite match the framework of the Hamiltonian and Lagrangian formalisms. We can
consider such terms to be corrections to the equations of motion.

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi , i = 1, . . . , n , (4.7)

where Fi = Fi(qk, q̇k) is a generalized force.

dpi
dt

= −∂H
∂qi

+ Fi ,

dqi
dt

=
∂H

∂pi
.
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In these equations Fi is now understood as a function of the Hamiltonian variables qk
and pk which is obtained by expressing q̇k in the arguments of Fi through these variables.

df

dt conv
=
∂f

∂t
+ {f,H}+

∑
i

Fi
∂f

∂pi
.

Sometimes this force can be defined in terms of a potential-like term R(qk, q̇k), called the
Rayleigh dissipation function, as

Fi = −∂R
∂q̇i

Although R does not represent a true potential or relate to any conserved quantity, it is
convenient because, in contrast to Fi, it does not change under coordinate transformations
(? 나중에 다시).

dH

dt
=
∂H

∂t
+
∑
i

Fi
∂H

∂pi
=
∂H

∂t
+
∑
i

Fiq̇i =
∂H

∂t
−
∑
i

q̇i
∂R

∂q̇i
,

where the last expression is for a frictional force corresponding to a potential R, but the
derivatives of this potential and the q̇i terms should be viewed as functions of the qi and
pi coordinates.

• Harmonic oscillator with friction with p = ẋ:

F = −γẋ = −γp (4.8)

R = γp2/2 (4.9)

dH

dt
= −γp2 (4.10)

For a quadratic potential, in the absence of damping, the average of H over one
period is 〈

1

2
p2
〉

+

〈
1

2
ω2
0x

2

〉
=
〈
p2
〉

= 〈H〉 = H (4.11)

For weak damping, we find the approximate relation

d

dt
〈H〉 ' −γ 〈H〉 , (4.12)

so the Hamiltonian decays as

〈H〉 ' H0e
−γt (4.13)

This is also consistent with the definition of quality factor

Q =
2π

T0

E

|∆E|/T0
=
ω0

γ
→ |∆E|/T0

E
∼ γ =

ω0

Q
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제 2 절 Resonance in a Damped Oscillator

• An oscillator driven by a sinusoidal force with frequency ω: f(t) = f0 cosωt

ẍ+ γẋ+ ω2
0x = f(t) = f0 cosωt

It is convenient to represent x(t) as the real part of a complex function ξ(t), x(t) =
Re[ξ(t)].

ξ̈ + γξ̇ + ω2
0ξ = f0e

−iωt , (4.14)

Taking real part gives the original equation.

• A particular solution in the form of ξ(t) = ξ0e
−iωt, where ξ0 = |ξ0|eiφ0 is a complex

number (a phasor):

x(t) = Re[|ξ0|e−iωt+iφ0 ] = |ξ0| cos(ωt− φ0) (4.15)

ξ0 =
f0

ω2
0 − ω2 − iωγ

. (4.16)

|ξ0|2 =
f 2
0

(ω2
0 − ω2)2 + ω2γ2

. (4.17)

When γ � ω0, |ξ0|2 exhibits resonant behavior: the amplitude of the oscillation
increases when the driving frequency approaches the oscillation frequency ω0. The
resonance width ∆ωres is defined as a characteristic width of the resonant curve. A
crude estimate is

∆ωres ∼ γ ∼ ω0

Q
(4.18)

제 3 절 Random Kicks

What happens if the external force is a sequence of random kicks?

• Let us assume that the external force is given by the following expression:

f(t) =
∑
i

fiδ(t− ti) , (4.19)

where ti are random moments of time, and the kick amplitudes fi take random
variable with zero average value, 〈fi〉 = 0.

• The forma solution with γ = 0 is

x(t) =
1

ω0

∫ t

0

sin[ω0(t− t′)]f(t′)dt′ =
∑
i

fi
ω0

sin[ω0(t− ti)] , (4.20)

where we have assumed that at a time t = 0 the oscillator was at rest, x0 = ẋ0 = 0.
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• It makes sense to consider the amplitude squared a2 averaged over many random
realization of the random force with the same statistical properties. Since

a2 = x2 + ω−20 ẋ2 (4.21)

we consider the following quantity:

〈x(t)2 + ω−20 ẋ2(t)〉 =

= ω−20

∑
i,j

〈fifj {sin[ω0(t− ti)] sin[ω0(t− tj)] + cos[ω0(t− ti)] cos[ω0(t− tj)]}〉

= ω−20

∑
i,j

〈fifj cos[ω0(ti − tj)]〉 , (4.22)

Let us assume that ti and tj are statistically independent random numbers, and
they are not correlated with the kick amplitudes fi. Then the averaging of fifj can
be split from the averaging of the cosine functions. Using 〈fifj〉 = f 2

rmsδij,

〈x(t)2 + ω−20 ẋ2(t)〉 =
f 2
rms

ω2
0

N(t) , (4.23)

where N(t) is the average number of kicks in the interval [0, t]. It can be estimated
as N(t) ≈ t/∆t, where δt is the averaged time between kicks.

• Notes:

– The square of the oscillation amplitude grows linearly with time which is a
characteristic feature of the diffusion process.

– Hence the random uncorrelated kicks lead to diffusion-like behavior of the
oscillation amplitude with time.

– In the limit of ω0 → 0, which corresponds to a free particle, we obtain

〈ẋ2(t)〉 = f 2
rmsN(t) . (4.24)

This is a well known result for the velocity diffusion of a free particle caused
by uncorrelated random kicks.

제 4 절 Parametric Resonance and Slow Variation of

the Oscillator Parameters

What happens if ω0(t) is a periodic function of time?

ẍ+ ω2
0(t)x = 0 , (4.25)

A well-known example is the Mathieu equation with the following time dependency.

ω2
0(t) = Ω2[1− h cos(νt)]. (4.26)
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• If h is small, (unless Ω/ν = n/2), solutions will be close to those of the harmonic
oscillator with frequency equal to Ω.

• For small h, oscillations become unstable if Ω/ν = n/2.

ν ≈ 2Ω

n
= 2Ω,Ω,

2Ω

3
,
2Ω

4
, . . . (4.27)

• The unstable gaps between the stable regions become exponentially narrow when
h . 1 and Ω/ν increases.

• This means for a slow modulation ν � Ω, the region h . 1 can be considered as
a practically stable area. This is the region of adiabatically slow variation of the
oscillator parameters.

– An adiabatically slow variation means

ω−20

∣∣∣∣dω0

dt

∣∣∣∣� 1 , (4.28)

which also means that the relative change of ω0 over time ω−10 is small.

– We seek a solution as a real part of the complex function ξ(t):

ξ(t) = A(t) exp

(
−i
∫ t

0

ω0(t
′)dt′ + iφ0

)
, (4.29)

where A(t) is the slowly varying amplitude and φ0 is the initial phase.

– Substituting into Eq. (4.25) yields

Ä− 2iω0Ȧ− iω̇0A = 0 . (4.30)
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– Since we expect that A is a slow function of time, we neglect Ä.

2ω0Ȧ+ ω̇0A = 0 . (4.31)

– Therefore,

d

dt
ln(A2ω0) = 0 , (4.32)

or,

A(t)2ω0(t) = const. (4.33)

– We found an adiabatic invariant. A(t) varies on the same time scale as ω0(t),
and hence is a slow-varying function as was assumed.

– The value of the constant is defined by the initial values of A and ω0; 나중
시간에는 A(t)2ω0(t) = const. = A(0)2ω0(0) 이기 때문에, A ∝ 1/

√
ω0 라고 볼

수 있다.

제 5 절 Nonlinear Oscillator and Nonlinear Resonance

• Accounting for higher order terms in the potential energy

ẍ = −ω2
0x+ αx2 + βx3 + . . . , (4.34)

where the terms on the right side of the equation are obtained through the Taylor
expansion of the potential energy close to the equilibrium position.

• The oscillator is weakly nonlinear if the nonlinear terms with α and β are small in
comparison with the linear ones.

• One of the most important properties of the nonlinear oscillator is that its frequency
depends on the amplitude.

5.1 Example: Pendulum Equation

θ̈ + ω2
0 sin θ = 0 . (4.35)

• For small amplitude, |θ| � 1,

sin θ ≈ θ − 1

6
θ3 , (4.36)

이것은 α = 0 그리고 β = ω2
0/6 에 해당.
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• Using the integral of motion that characterizes the energy (1 장에서 배운 내용):

d

dt

[
1

2
θ̇2 − ω2

0 cos θ

]
= 0 (4.37)

θ̇ = ±ω0

√
2(E + cos θ) . (4.38)

– Phase portrait: Plot of trajectories in the plane (θ, θ̇/ω0) using contours of
constant E.

– Stable points: (2πn, 0) and E = −1.

– Unstable points: (2πn+ π, 0) and E = 1.

– Separatrices: Trajectories that pass through the unstable points are called
separatrices. The separatrices are the orbits with energy E = 1.

– Bound motion (−1 < E < 1): These trajectories occupy a limited extension
in θ.

– Unbound motion (E > 1): Pendulum rotates about the pivot point. The angle
θ varies without limit.

• Period of pendulumn:

1

2
Tω0 = ω0

∫ t2

t1

dt = ω0

∫ θ0

−θ0

dθ

θ̇
=

1√
2

∫ θ0

−θ0

dθ√
cos θ − cos θ0

. (4.39)

where θ0 is defined by E + cos θ0 = 0.

• In terms of the complete elliptic integral of the first kind K with T0 = 2π/ω0:

T

T0
=

2

π
K

[
sin2

(
θ0
2

)]
=

2

π
K

(
1 + E

2

)
, (4.40)

For small values of argument, (2/π)K(x) ≈ 1 + x/4,

ω ≈ ω0

(
1− θ20

16

)
. (4.41)

The frequency decreases with the amplitude θ0.
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5.2 Weakly nonlinear oscillator

• For ω0 � |ν|a2, we expect a nonlinear correction to the frequency ω0,

ω(a) ≈ ω0 + νa2 , (4.42)

where a is the amplitude and ν is a constant. Detailed calculations show

ν = − 3β

8ω0

− 5α2

12ω3
0

. (4.43)

• Anharmonicity: Fourier spectrum of a weakly nonlinear oscillation contains not
only the fundamental frequency ω(a), but also small contributions from higher
harmonics nω(a).

5.3 Nonlinearity also changes the resonance effect

For a linear oscillator an external force at the resonant frequency can drive the oscillator
amplitude to very large values, if the damping is small. The situation is different for a
nonlinear oscillator for a reason that is easy to understand: when the amplitude grows,
the frequency of the oscillator drifts from its initial value, detuning the oscillator from
the resonance.

• The unlimited growth of the amplitude ceases when the amplitude reaches some
value a∗ which depends on the strength of the external force and the nonlinearity.
In Eq. (4.17),

|ξ0|2 =
f 2
0

(ω2
0 − ω2)2 + ω2γ2

. (4.44)

we set γ → 0, ω0 → ω0 + νa2∗, and ω = ωdriving → ω0. For small νa2∗, we find

a2∗ ≈
f 2
0

(2|ν|ω0a2∗)
2
. (4.45)

Solving for a∗ yields

a∗ ≈
(

f0
2|ν|ω0

)1/3

. (4.46)

• Due to the nonlinearity, even at exact resonance the amplitude of the oscillations
is finite

• For drive frequencies different from ω0, this dependence will change and the peak
amplitude may even increase for a forcing term having the same magnitude.
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